Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебания вынужденные электромагнитные

Во всех этих примерах речь идет об использовании переменного электрического тока. Переменный электрический ток в энергетических электрических цепях является результатом возбуждения в них вынужденных электромагнитных колебаний. Эти вынужденные колебания создаются генераторами переменного тока, работающими на электростанциях.  [c.237]

Е4.2. Переменный электрический ток. Обычно в цепях переменного тока есть внешний источник (ЭДС), и переменный ток представляет собой вынужденные электромагнитные колебания.  [c.172]


Вынужденные электромагнитные колебания. Переменный ток  [c.307]

Вынужденными электромагнитными колебаниями называются незатухающие колебания заряда д, разности потенциалов Аф на обкладках конденсатора, силы тока I и других физических величин в колебательном контуре, вызванные периодически изменяющейся синусоидальной э.д.с.  [c.307]

В вибрографе, описанном в задаче 54.35, стержень снабжен электромагнитным тормозом в виде алюминиевой пластины, колеблющейся между полюсами неподвижно закрепленных магнитов. Возникающие в пластине вихревые токи создают торможение, пропорциональное первой степени скорости движения пластины и доведенное до границы апериодичности. Определить вынужденные колебания стрелки прибора, если последний закреплен на фундаменте, совершающем вертикальные колебания по закону Z = Л sin pt.  [c.412]

Кроме спонтанного излучения возбужденного атома существует индуцированное (вынужденное) излучение, когда атомы начинают излучать энергию под действием внешнего электромагнитного поля. Явление вынужденного излучения дает возможность управлять излучением атомов с помощью электромагнитных колебаний и таким путем усиливать или генерировать когерентное световое излучение.  [c.119]

Механические, электромагнитные, акустические, (не-) линейные, прямолинейные, нутационные, свободные, останавливающиеся, собственные, (не-) затухающие, вынужденные, сложные, простые, главные, (не-) гармонические, крутильные, малые, (не-) полные, (не-) изохронные, периодические, параметрические. .. колебания.  [c.30]

Согласно волновой теории механизм рассеяния рентгеновского излучения объясняется возникновением вторичных электромагнитных волн в результате вынужденных колебаний электронов в атомах вещества под действием переменного электрического поля первичного пучка. При этом частота рассеянного рентгеновского излучения должна почти точно совпадать с частотой первичного излучения. Наблюдаемое же различие частот первичного и рассеянного излучений волновая теория объяснить не могла.  [c.302]

Особенности отражения света от металлической поверхности обусловлены наличием в металлах большого числа электронов, настолько слабо связанных с атомами металла, что для многих явлений эти электроны можно считать свободными. Вторичные волны, вызванные вынужденными колебаниями свободных электронов, порождают сильную отраженную волну, интенсивность которой может достигать 95% (и даже больше) интенсивности падающей, и сравнительно слабую волну, идущую внутрь металла. Так как плотность свободных электронов весьма значительна (порядка 10 в 1 см ), то даже очень тонкие слои металла отражают большую часть падающего на них света и являются, как правило, практически непрозрачными. Та часть световой энергии, которая проникает внутрь металла, испытывает в нем поглощение. Свободные электроны, приходя в колебание под действием световой волны, взаимодействуют с ионами металла, в результате чего энергия, заимствованная от электромагнитной волны, превращается в тепло.  [c.489]


В вынужденные колебания при воздействии электромагнитного поля. Резонансная частота осциллятора равна  [c.476]

Прежде чем перейти к изложению сущности, укажем на различие трех выше указанных дифракционных методов. Оно обусловлено различной силой взаимодействия рентгеновского, электронного и нейтронного излучений с веществом. Рентгеновское электромагнитное излучение при прохождении через кристалл взаимодействует с электронными оболочками атомов (возникающие вынужденные колебания ядер вследствие их большой массы имеют пренебрежимо малую амплитуду), и дифракционная картина связана с распределением электронной плотности, которую можно характеризовать некоторой функцией координат р(л. у, z). В электронографии используют электроны таких энергий, что они взаимодействуют, главным образом, не с электронными оболочками атомов, а с электростатическими потенциальными полями ф(х, у, Z), создаваемыми ядрами исследуемого вещества. Взаимодействие между двумя заряженными частицами (электроном и ядром атома) значительно сильнее, чем между электромагнитным излучением и электронной оболочкой атома. Поэтому интенсивность дифракции электронного излучения примерно в 10 раз сильнее, чем рентгеновского. Отсюда понятно, почему получение рентгенограмм часто требует нескольких часов, электронограмм — нескольких секунд.  [c.36]

При распространении света в веществе возникают, как известно, вторичные волны, вызываемые вынужденными колебаниями электронов. Эти волны рассеивают в стороны часть энергии, переносимой электромагнитной волной. Поскольку вторичные волны когерентны между собой, то при расчете интенсивности света, рассеянного в стороны, надо принимать во внимание их взаимную интерференцию. Эта интерференция вносит существенные изменения в рассеяние света волны, идущие в стороны, могут в значительной степени или даже полностью скомпенсировать друг друга, в результате чего перераспределение энергии по разным направлениям, т. е. рассеяние света, может оказаться очень слабым или совсем отсутствовать.  [c.111]

Экспериментальные законы, которым подчиняется фотоэффект, находятся в противоречии с основными представлениями волновой теории света. Электромагнитная световая волна, падая на поверхность вещества, содержащего электроны, должна вызывать их вынужденные колебания с амплитудой, пропорциональной амплитуде самих световых волн. Если силы, удерживающие электроны внутри вещества, не велики, то электроны могут вылетать наружу со скоростью, которая должна зависеть от амплитуды падающей световой волны. Так  [c.158]

Благодаря этому электроны в металле начинают раскачиваться , амплитуда их вынужденных колебаний возрастает. При достижении достаточно большой энергии электрон покидает катод, т. е. происходит внешний фотоэффект. Однако объяснить количественные закономерности фотоэффекта оказалось невозможно. Амплитуда вынужденных колебаний электрона в волновой картине излучения пропорциональна амплитуде колебаний вектора напряженности электрического поля падающей на катод электромагнитной волны. Плотность светового потока энергии прямо пропорциональна квадрату амплитуды колебаний напряженности электрического поля волны. Следовательно, максимальная скорость покидающих катод фотоэлектронов должна увеличиваться с возрастанием плотности светового потока энергии. В действительности же скорость фотоэлектронов не зависит от нее. Не согласуется также с волновыми представлениями очень малое время запаздывания в фотоэффекте. Время запаздывания, которое дают расчеты, оказывается во много раз большим экспериментальной верхней оценки времени запаздывания. Наличие граничной частоты  [c.21]

Уравнения второго порядка (234) и (235) отличаются от приведенного в начале этого параграфа уравнения, описывающего динамику механической системы без учета влияния электромагнитных процессов, происходящих в электродвигателе. Из уравнения (235) видно, что система с электродвигателем является колебательной. В такой системе возможен резонанс, если приведенный момент сил сопротивления представляет собой периодическую функцию времени. При совпадении частот вынужденных и свободных колебаний рассматриваемой системы, как и в случае механизма с упругим звеном, будет происходить явление резонанса угловой скорости.  [c.194]


Некоторое распространение получила также высокочастотная резонансная машина Лера-Шенка. Конструкция этой машины основана на принципе электромагнитного возбуждения вынужденных колебаний большой частоты (до 500 циклов в секунду) [18, 11/2, 12/2—4, 31]. Отличаясь значительной производительностью, она позволяет осуществлять лишь небольшие нагрузки с максимальной амплитудой до 1,5 т. Пределы усталости, установленные на этой машине, могут оказаться на 5—15% выше по сравнению с полученными на машинах с частотой до 10 гц [30].  [c.79]

В отличие от обычного рассеяния, при котором рассеянный свет имеет ту же частоту, что и первичный, при комбинационном рассеянии частота рассеянного света равна разности или сумме частот первичного света и внутримолекулярных колебаний. В первом случае имеет место стоксовый, а во втором — антистоксовый компонент рассеяния. При малых интенсивностях падающей волны происходит самопроизвольное — спонтанное комбинационное рассеяние, когда тепловые молекулярные колебания хаотичны, т. е. некогерентны. При больших интенсивностях лазерного луча, распространяющегося в нелинейных средах, под действием электромагнитного поля волны происходит когерентное возбуждение молекулярных колебаний частоты Q при этом, если частота первичного рассеиваемого света v, то рассеянный свет имеет частоту v = v — Q. Это так называемое вынужденное комбинационное рассеяние.  [c.65]

Укажем также на электромагнитный способ возбуждения вынужденных колебаний изменяемой частоты, не требующий электронной аппаратуры. Этот способ состоит в использовании вращающегося зубчатого железного диска, изображенного на фиг. 78. Прохождение зубцов диска между ярмом и якорем электромагнита постоянного тока создает пульсацию магнитного поля, приводящую к появлению переменной составляющей  [c.385]

Необходимая для генерации обратная связь осуществляется в лазере за счет помещения рабочей среды в объемный резонатор, в котором возможно возбуждение согласованной со свойствами среды стоячей электромагнитной волны. Схема лазера, состоящего из двух необходимых компонент — активной среды и резонатора, представлена на рис. 1.9. Обладающая инверсной заселенностью рабочая среда 1 обеспечивает возможность усиления колебаний за счет процессов вынужденного излучения. Резонатор, состоящий условно из одного плоского непрозрачного зеркала 2 и параллельного ему, частично пропускающего резонансное излучение плоского зеркала 3 с прозрачностью , обеспечивает раскачку колебаний с частотами в пределах ширины линии уси-  [c.38]

В предыдущей главе мы рассмотрели принципиальные вопросы, возникающие при изучении единственного атома, взаимодействующего с монохроматической световой волной и излучающего спонтанно и вынужденно фотоны. При этом остался в тени важный для практики вопрос о том, каким образом может быть приготовлена система, состоящая только из одного атома. Если атомы исследуемого вещества находятся в газовой фазе, то задача уединения единственного атома является решаемой, но достаточно сложной технической проблемой. Однако исследования в газовой фазе становятся даже в принципе невозможными для сложных органических молекул, так как многие из них уже при небольшом нагревании, предшествующем испарению, распадаются. Поэтому в последние несколько лет успешно развиваются методы исследования единичных молекул, внедренных в твердые матрицы, охлажденные до гелиевых и более низких температур [18-20]. В этом случае перед нами стоит проблема исследования поглощения и излучения света единственным примесным центром. Однако оптические электроны примесной молекулы или атома взаимодействуют не только с электромагнитным полем, но и с колебаниями атомов матрицы (фононами). Это электрон-фононное взаимодействие приводит к рождению и уничтожению фононов в процессе оптического перехода в примеси. Оно актуально даже при сверхнизких температурах, потому что процессы рождения фононов имеют место даже при абсолютном нуле. Поэтому в теорию, изложенную в предыдущей главе, необходимо включить взаимодействие оптических электронов примесного центра с фононами. Фононы и другие низкочастотные возбуждения твердой матрицы рассматриваются в данной главе.  [c.53]

Итак, при параметрическом распаде излучения частоты соз в синхронизме имеет место совместное экспоненциальное усиление излучения на частотах oi и 2. При увеличении Ак усиление сменяется на синусоидальную зависимость от z. Указанное усиление — одно из проявлений эффекта бозе-конденсации фотонов [19]. Оно является аналогом вынужденного излучения в системе, где роль возбужденного состояния играет фотон частоты соз в нелинейной среде. Вероятность распада этого состояния пропорциональна интенсивности излучения на частотах oi и сог-При Ао1 == Ло2 = О классические уравнения (1.104) дают Ai(z) = = A2 z)=0. При учете в квантовом описании пулевых колебаний электромагнитного поля на частотах oi и 0J2 1,2(2) не равны нулю, даже если падающее на среду излучение на частотах со 1 и 052 отсутствует. Это явление называется спонтанной параметрической люминесценцией [20] и находится в том же отношении к параметрическому усилению, что и спонтанное излучение на резонансном переходе к вынужденному [21].  [c.40]

Катушка антенны имеет индуктивную связь с катушкой колебательного контура генератора незатухающих электромагнитных колебаний. Вынужденные колебания высокой частоты в антенне создают в окружающем пространстве переменное электромагнитное поле. Со скоростью 300 ООО км/с электромагнитые волны распространяются от антенны.  [c.252]


УСИЛИТЕЛИ ЭЛЕКТРИЧЕСКИХ КОЛЕБАНИЙ—устройства, в к-рых осуществляется повышение мощности электрич. колебаний с частотами 0 3-10 Гц за счёт Преобразования энергии стороннего источника питания (накачки) в энергию усиливаемых колебаний. Физ. явления, используемые для преобразования энергии, могут быть разделены на следующие осн. группы взаимодействие эл,-магн. поля с управляемыми потоками носителей заряда в вакуумных или полупроводниковых усилит, элементах и приборах перераспределение мощности по комбинац. частотам при изменении энергоёмкого параметра колебат. контура под воздействием источника накачки (см. Параметрическая генерация и усиление электромагнитных колебаний), вынужденное излучение возбуждённых частиц вещества, вызванное действием эл.-магн. поля (квантовые парамагн. У. э. к.— мазеры) взаимодействие зл.-магн. волн с распределёнными полупроводниковыми структурами с нелинейными или изменяющимися во времени параметрами.  [c.239]

Б. 3. Каценеленбаум, Вынужденные электромагнитные колебания диэлектрических тел в бесконечной области и собственные функции дискретного спектра, Радиотехника и электроника 13, № 4, 586—590 (1968).  [c.287]

Классическая теория дисперсии, предложенная впервые Г. А. Ло-рентцем, основана на воздействии светового поля (электромагнитной волны) на связанные электроны атомов с учетом их торможения. Согласно электронной теории дисперсии, диэлектрик рассматривается как совокупность осцилляторов, совершающих вынужденные колебания под действием светового излучения.  [c.269]

Радноприепшшс. Электромагнитные волны, излученные антенной радиопередатчика, вызывают вынужденные колебания свободных электронов в любом проводнике. Напряжение между концами проводника, в котором электромагнитная волна возбуждает вынужденные колебания электрического тока, пропорционально длине проводника. Поэтому для приема электромагнитных волн в простейшем детекторном радиоприблмнике применяется ДЛИН1ТЫЙ провод — приемная ан-  [c.254]

Согласно электромагнитной теории под действием света, падающего, например, на поверхность твердого тела, должны приходить в вынужденные колебания одновременно все электроны в слое вещества та1сой толщины, на которую проникает в него электромагнитная (световая) волна.  [c.301]

В заключение стоит указать, что и по поляризации излучение лазера отличается от излучения обычных источников света. Физика процессов в лазере связана не со случайным началом колебаний (спонтаяное излучение , а с некочорыми более сложными явлениями, обусловленными взаимодействием электромагнитного излучения и атомных систем. Такое вынужденное излучение (это понятие было введено Эйнп1тейном еще в 1916 г. см, гл. 8) должно характеризоваться вполне определенной поляризацией. При работе со специально изготовленными лазерами, у которых окна разрядной трубки перпендикулярны ее оси, можно наблюдать, как чер( з определенное время At один вид. . .тлиптической поляризации переходит в другой. Но обычно окна разрядной трубки, находящейся внутри резонатора, располагают под некоторым углом к ее оптической оси (угол Брюстера), что (см. гл. 2)  [c.37]

При построении строгой физической теории, описывающей отражение электромагнитных волн металлами, необходимо учитывать вторичные волны, обусловленные вынужденными колебаниями свободных электронов, плотность которых внутри металла весьма велика. Такая теория должна быть сугубо квантовой, так как ллектронь[ в металле подчиняются законам не классической, а квантовой физики. Изложение подобной теории выходит далеко за пределы. этой книги.  [c.100]

Очевидно, что чем больше га, тем удобнее наблюдение явления. Для рентгеновских лучей, у которых п < 1, эффект исключается. Особенностью эффекта Вавилова - Черснкова является то, что характерное свечение возникает при равномерном движении возбуждающих его частиц со скоростью и > с/п. Это бесспорный факт и простые оценки показывают, что потерей энергии этих частиц на возбуждение свечения можно пренебречь. Таким образом, свечение среды связано с возбуждением частицами постоянной скорости, что как бы противоречит фундаментальному положению (см. 1.5) о том, что для излучения электромагнитной энергии необходимо ускоренное движение частиц. Но при этих рассуждениях нужно учитывать, что в изложенной выше простейшей модели явления излучают не налетающие частицы, а атомные электроны, движение которых носило характер вынужденных колебаний, т. е. имело отличное от нуля ускорение.  [c.173]

Несколько изменим постановку задачи, приблизив ее к изучаемой проблеме. Пусть осциллятор находится в равновесии с электромагнитным полем равновесного излучения, изотропно заполняющим при некоторой температуре замкнутую полость. Тогда осциллятор будет совершать не свободные, а вынужденные колебания, т.е. он не только излучает энергию, но и поглощает ее из окружающего пространства. Для простоты будем рассматривать колебания зарядов под действием монохроматического излучения частоты m. В этом случае вынуждающую силу запишем как реальную часть Re F t) = Re qEox e " == qEox os at. Тогда уравнение движения имеет вид  [c.418]

Кроме спонтанного испускания и поглощения Эйнштейн ввел представление о вынужденном (индуцированном или стимулированном) испускании. Под действием внешнего электромагнитного поля атомы, находящиеся в возбужденном состоянии (например, на уровне 2), могут согласно Эйнштейну либо поглощать энергию, переходя на более высокий уровень, либо, наоборот, отдавать энергию к = Ё2— ь возвращаясь на более низкий уровень энергии. Такие переходы являются вынужденными и обусловливают вынужденное испускание. Вероятность этих переходов в единицу времени есть 2lWv Величина Б21 называется коэффициентом Эйнштейна для вынужденного испускания. Если внешнее поле отсутствует (и = 0), то вынужденные переходы не происходят. Таким образом, внешнее электромагнитное поле вызывает переходы, сопровождающиеся как поглощением, так и испусканием энергии. Следует отметить, что существование вынужденного испускания не противоречит и классической теории. Согласно законам электродинамики электромагнитная волна, падающая на колеблющийся диполь, в зависимости от соотношения фаз их колебаний может усиливать или тормозить колебания диполя. Иными словами, излучение, падающее на атом, может заставлять последний не только поглощать, но и испускать соответствующие кванты энергии.  [c.143]

ВОЛНА бегущая—распространение возмущения в среде ВОЛНА (световая — электромагнитное излучение, содержащее в своем составе синусоидальные электромагнитные волны с длинами волн в диапазоне 0,4...0,76 мкм синусоидальная—распространение в среде гармонических колебаний какой-либо физической величины, происходящих со строго определенной частотой спиновая — волна нарушений спинового порядка в магнитоупорядоченной среде (ферромагнетике, ферримагнетике и антиферромагнетике) ударная — распространение в среде области, внутри которой давление резко повышено по сравнению с давлением в соседних областях уединенная — волна с устойчивым профилем в нелинейной диспергирующей среде, ведущая себя подобно частице цилиндрическая— волна, имеющая цилиндрический волновой фронт) ВОЛНЫ [вторичные — волны электромагнитные, излучаемые молекулами в процессе вынужденных колебаний той же частоты, что и падающий свет гравитационные — поверхностные волны, в которых основную роль играет сила тяжести или свободное гравитационное поле, излучаемое ускоренно движущимися массами де Бройля — волны, связанные с любой движущейся частицей и отражающие ее квантовую природу инфразнуковые — волны звуковые с частотой у<16Гц]  [c.227]


РЕАКЦИЯ [термоядерная — реакция слияния легких атомных ядер в более тяжелые, происходящие при высоких температурах 10 К фотоядерная- -расщепление атомных ядер гамма-квантами цепная — реакция деления атомных ядер тяжелых элементов под действием нейтронов, в каждом акте которой число нейтронов возрастает, так что может возникнуть самоподдерживающийся процесс деления ядерная — превращение атомных ядер, вызванное их взаимодействием с элементарными частицами, в том числе с гамма-квантами, или друг с другом] РЕВЕРБЕРАЦИЯ — процесс постепенного затухания звука в закрытых помещениях после окончания действия его источника РЕЗОНАНС (есть явление резкого возрастания амплитуды вынужденных колебаний системы при приближении частоты вынужденной силы к собственной частоте колебаний системы акустический — избирательное поглощение энергии фононоБ определенной частоты в парамагнитных кристаллах, помещенных в постоянное магнитное поле антиферромагнитный — избирательное поглощение энергии электромагнитных волн, проходящих через антиферромагнетик, при определенных значениях частоты и напряженности приложенного к нему магнитного поля гигантский — широкий максимум, которым обладает зависимость сечения ядерных реакций, вызванных налетающей на атомное ядро частицей или гамма-квантом, от энергии возбуждения ядра магнитный — избирательное поглощение энергии проходящих через магнетик электромагнитных волн на определенных частотах, связанное с переориентировкой магнитных моментов частиц вещества параметрический — раскачка колебаний при периодическом изменении параметров тех элементов колебательных систем, в которых сосредоточивается энергия колебаний)  [c.271]

Рожденный в результате спонтанного перехода квант может иметь любое направление поляризации, а квант, появившийся в результате процессов вынужденных переходов, будет иметь ту же поляризацию, что и квант, вызвавший этот процесс. Поэтому для получения линейно поляризованного излучения необходимо вводить в резонатор лазера некоторый селектирующий элемент, позволяющий обеспечить различный уровень внутрирезонатор-ных потерь для электромагнитных колебаний с различными поляризациями. В случае неполяризованных лазерных пучков выделить заданное направление поляризации можно с помощью различных поляризаторов — устройств, обладающих различным пропусканием излучения с различной поляризацией.  [c.60]

Способ решения задачи синтеза и практической корректировки требуемого поля вынужденных колебаний балкп или трубы при использовании нескольких электромагнитных вибровозбудителей резонансного типа рассмотрен в работе [4] этот способ может быть распространен на общий случчй упругих тел.  [c.152]

Проведенные исследования позволили создать новый эталон секунды, основанный на способности атомов излучать и поглощать энергию во время перехода между двумя энергетическими состояниями в области радиочастот. С появлением высокоточных кварцевых генераторов и развитием дальней радиосвязи появилась возможность реализации нового эталона секунды и единой шкалы мирового времени. В 1967 г. XIII Генеральная конференция по мерам и весам приняла новое определение секунды как интервала времени, в течение которого совершается 9 192 631 770 колебаний, соответствующих резонансной частоте энергетического перехода между уровнями сверхтонкой структуры основного состояния атома цезия-133 при отсутствии возмущения внешними полями. Данное определение реализуется с помощью цезиевых реперов частоты [5 15]. Репер, v nn квантовый стандарт частоты, представляет собой устройство для точного воспроизведения частоты электромагнитных колебаний в сверхвысокочастотных и оптических спектрах, основанное на измерении частоты квантовых переходов атомов, ионов или молекул. В пассивных квантовых стандартах используются частоты спектральных линий поглощения, в активных — вынужденное испускание фотонов частицами. Применяются активные квантовые стандарты частоты на пучке молекул аммиака (так называемые молекулярные генераторы) и атомов водорода (водородные генераторы). Пассивные частоты выполняются на пучке атомов цезия (цезиевые реперы частоты).  [c.35]

Основой экспериментов Кестера, представляющих интерес для настоящего обзора, явился остроумный прибор, описанный Фритцем Фёрстером (Forster [1937,1 ) в 1937 г. Целью было подвесить образец с помощью тонких проволочек таким образом, чтобы потери энергии в опорах или соединении опорных устройств и образца стали действительно пренебрежимыми. Были усовершенствованы различные конфигурации опор, допускающих протекание изгибных, крутильных и даже продольных колебаний параллелепипедов или цилиндров как вынужденных, так и свободных. Один из концов каждой из поддерживающих проволок был закреплен, а другой прикреплен к движущейся механической части электромагнитного преобразователя (датчика). Одна система служила как возбуждающая причина при вынужденных колебаниях, а другая как приемник. Установка позволяла определять также частоты свободных колебаний и параметр демпфирования. Статья содержала детальное описание различных рассмотренных конфигураций схем и обширное исследование многих проблем, с которыми пришлось столкнуться в процессе достижения необходимой точности измерения не только для определения модуля упругости Е, но и параметра резонансного демпфирования,— обеих величин как функций окружающей температуры.  [c.493]


Смотреть страницы где упоминается термин Колебания вынужденные электромагнитные : [c.736]    [c.337]    [c.251]    [c.254]    [c.265]    [c.225]    [c.20]    [c.134]    [c.243]    [c.202]    [c.115]   
Физика. Справочные материалы (1991) -- [ c.231 ]

Теплотехнический справочник том 1 издание 2 (1975) -- [ c.10 ]



ПОИСК



Вынужденные электромагнитные колебания. Переменный ток

Колебания вынужденные

Колебания электромагнитные

Электромагнитные



© 2025 Mash-xxl.info Реклама на сайте