Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лазер связью

Лазер излучает световой луч в виде нескольких пучков, и по.этому еще одно требование, предъявляемое к лазерам, связано с пространственной когерентностью их излучения, которая определяется степенью интерференции этих отдельных пучков. Пространственная когерентность не влияет на качество голограммы, если лучи из разных пучков не перемешиваются и при записи происходит их полное совмещение.  [c.35]

Кроме лазера на арсениде галлия, применяются и другие типы полупроводниковых лазеров. Крупные успехи в разработке полупроводниковых лазеров связаны с появлением инжекционных лазеров на гетеропереходах. Так называют сложные р —п-структуры, состоящие из полупроводниковых материалов с различной шириной запрещенной зоны.  [c.297]


Этапы реализации этой методики для конкретных активных сред и лазеров связаны, с одной стороны, с экспериментальными измерениями (коэффициенты поглощения излучения накачки и усиления лазерного излучения), а с другой стороны, с расчетами указанных соотношений на ЭВМ. К основным результатам, полученным с помощью этой методики и апробированным в экспериментальных работах, можно отнести следующие.  [c.150]

Применение интенсивных газоразрядных ламп в технике твердотельных лазеров связано прежде всего с тем, что они обеспечивают высокий уровень мощности накачки. Однако достигается это нагревом плазмы до высоких температур (от 6000 до 20 000 К в зависимости от режима разряда), при которых спектр ее излучения близок к планковскому и весьма далек от оптимального по отношению к расположению полос поглощения неодима с точки зрения малого тепловыделения в активной среде. Это обстоятельство и порождает проблемы, связанные с большим тепловыделением и термооптическими искажениями в активных элементах.  [c.119]

Средняя интенсивность на выходе лазера связана со средней пороговой интенсивностью соотношением  [c.143]

Трудности в прямой генерации коротких лазерных импульсов с помощью активной или пассивной синхронизации мод эксимерных лазеров связаны с малым временем существования инверсии в активной среде (10" —10" с), что резко ограничивает число проходов излучения по резонатору.  [c.60]

Все эти ранние исследования показали, что катастрофическое разрушение инжекционных лазеров связано с плотностью световой мощности на зеркале, которая приводит к резкому и достаточно большому для того, чтобы вызвать локальное плавление, увеличению температуры. В литературе по деградации предел разрушения описывается несколькими способами оптической мощностью на пороге разрушения для данного лазера плотностью оптической мощности на пороге разрушения по площади сечения волновода Рлк. максимальной оптической мощностью на пороге разрушения Рмакс и оптической мощностью, излучаемой с единичной ширины волновода W на пороге разрушения К сожалению, в сообщениях связанных с катастрофической деградацией гомо- и гетеролазеров, чаще всего фигурирует величина Pw, вычисленная как P /W, безотносительно к каналам генерации и другим неоднородностям излучения. Главным образом по этой причине в данных по катастрофической деградации имеется сильный разброс.  [c.319]

Создание лазеров позволило широко применять их в различных исследованиях, для передачи информации и связи, измерения расстояний с большой точностью. Особое место занимает лазерная Технология как группа процессов, использующих мощное излучение лазера для нагрева, плавления, испарения, сварки и резки материалов. Это направление начало развиваться с 60-х годов и в настоящее время лазер рассматривают как один из наиболее перспективных лучевых источников энергии.  [c.115]


В некоторых областях технологического применения с лазером конкурируют электронный луч и полихроматические источники света, что связано прежде всего с более простым в изготовлении и эксплуатации оборудованием для осуществления процессов, в которых используются эти источники.  [c.115]

Для удаления корректирующих масс из тела ротора, изготовленного из любого материала, применяется балансировка с использованием лазера [8, т. 6]. Этот способ стал возможным в связи с появлением и разработкой мощных оптических квантовых генераторов. Для повышения производительности применен лазер непрерывного действия и разработана оптическая система, обеспечивающая синхронное следование луча лазера за тяжелой точкой ротора в плоскости коррекции. Практически это осуществлено, например, в автоматическом лазерном балансировочном станке ЛБС-3, принципиальная схема которого приведена на рис. 6.20. Балансируемый ротор Р опирается на неподвижные чувствительные опоры Л и S и приводится во вращение двигателем Д. От него же подается механический сигнал и в блок УБ, приводящий в синхронное с ротором вращение полый щпиндель с оптической призмой П. Сигналы опорных датчиков (t и р перерабатываются в решающем блоке РБ в фазирующий импульс, также посылаемый в управляющий блок УБ, который обеспечивает требуемое фазовое положение призмы П относительно ротора Р. Луч из оптического квантового генератора ОКГ проходит через полый шпиндель и, отражаясь от вращающей-  [c.224]

Классификацию различных нелинейных оптических явлений можно дать с единой точки зрения, анализируя отдельные члены выражения (18.1), несмотря даже на то, что в нем отсутствуют члены высших порядков. Поскольку каждый последующий член примерна в раз меньше (Е — напряженность внутриатомного поля) предыдущего, то вероятность обнаружения подобных нелинейных эффектов, обусловленных соответствующими членами разложения высших порядков, мала. Этим была связана невозможность обнаружения многих нелинейных эффектов до появления мощных источников излучения — лазеров.  [c.391]

Настоящее издание книги, пересмотренное и дополненное группой учеников и бывших сотрудников Г. С. Ландсберга, наряду с частично модернизированной трактовкой прежнего материала, содержит изложение физических основ новых направлений оптики, сложившихся за последние годы. Подавляющая часть материала, введенного в книгу, непосредственно или косвенно связана с созданием оптических квантовых генераторов (лазеров).  [c.9]

Явление отрицательной дисперсии тесно связано с излучением света (точнее, с явлением вынужденного испускания, см. 222 и 223) и было детально исследовано в связи с изучением свойств лазеров, в которых оно играет важную роль.  [c.562]

Применение зеркал — не единственный способ осуществления обратной связи в лазерах. Некоторые другие методы мы рассмотрим в 233.  [c.783]

Благодаря высокой когерентности гелий-неоновый лазер служит превосходным источником непрерывного монохроматического излучения для исследования всякого рода интерференционных и дифракционных явлений, осуществление которых с обычными источниками света требует применения специальной аппаратуры. Многочисленные варианты гелий-неонового л,азера нашли весьма разнообразные применения в биологических исследованиях, в системах лазерной связи, в голографии, машиностроении и многих других областях естествознания и техники.  [c.794]

Для выяснения связи между столь своеобразной временной структурой светового пучка и свойствами возбужденных типов колебаний рассмотрим следующую схематизированную ситуацию. Пусть в лазере возбуждено N осевых типов колебаний с собственными частотами соу = Оц -К /2л/Т, / = О, I, 2,. .., N— 1, а начальные фазы фу = фп и амплитуды Лу А типов колебаний одинаковы. Тогда поле в какой-либо точке резонатора определяется суммой  [c.812]

Утверждения о существовании сверхкоротких импульсов и о строгой синфазности многих типов колебаний представляются, согласно изложенным соображениям, физически эквивалентными одно соответствует описанию явления на временном языке, другое — на спектральном. В связи с этим для обозначения режима генерации сверхкоротких импульсов используется термин излучение лазера с синхронизованными типами колебаний.  [c.813]


Голографические дифракционные решетки используют в лазерной технике. Введенные в лазерный резонатор они служат хорошими селекторами длин волн излучения лазеров. В последнее время такие решетки находят широкое применение в интегральной оптике в качестве. элементов связи, обеспечивающих введение световых волн в тонкопленочные волноводы.  [c.65]

Излучение, возникающее при переходах с верхних уровней на нижние, является спонтанным. В среде с инверсной населенностью это спонтанное излучение индуцирует дополнительные переходы. Для того чтобы создать квантовый генератор, в среде с инверсной населенностью необходимо обеспечить условия автоколебательного режима. Такой режим достигается за счет помещения активной среды, т. е. вещества, в котором создается инверсная населенность, -В резонатор, выполняющий роль положительной обратной связи. Резонатор обеспечивает также пространственную и временную когерентность излучения. Простейший резонатор представляет собой два плоскопараллельных зеркала, одно из которых является полупрозрачным. В рубиновом лазере резонатором служат отполированные торцы рубинового стержня, покрытые тонким слоем металла, в полупроводниковом инжекционном лазере на арсениде галлия— это тщательно полированные боковые грани, перпендикулярные плоскости р-и-перехода.  [c.318]

Временная зависимость выходного излучения рубинового лазера, работающего в режиме свободной генерации, обычно представляет собой хаотические пульсации (пички), которые не воспроизводятся от одного импульса лазера к другому. Генерация начинается не сразу после включения лампы-вспышки, а с некоторой задержкой. Это связано с тем, что для возникновения генерации необходимо выполнить условие самовозбуждения, т. е. создать достаточную инверсную населенность (пороговую населенность) в системе рабочих уровней. Энергия лампы-вспышки от момента ее включения до момента начала генерации расходуется именно на создание такой пороговой населенности. Типичные осциллограммы излучения рубинового лазера, работающего в режиме свободной генерации, приведены на рис. 35.13.  [c.287]

Таким образом, в формуле (36.8) содержатся три члена. Первый член представляет собой волну поляризован-ности, колеблющуюся на частоте падающей волны. Второй член не зависит от времени. С ним связано так называемое оптическое детектирование, т. е. возникновение в нелинейной среде постоянной поляризованности при прохождении через нее мощной световой волны. Это явление аналогично выпрямлению синусоидального электрического тока. Схема опыта, в котором обнаруживается оптическое детектирование, показана на рис. 36.1. Лазерное излучение / большой интенсивности падает на кристалл кварца 3, помещенный между обкладками конденсатора 2. Световой поток подается отдельными импульсами длительностью т. Вследствие детектирования световой импульс лазера возбуждает импульс электрического тока в цепи конденсатора с той же длительностью т, который и наблюдается на экране осциллографа 4.  [c.301]

Явление затемнения среды. Это нелинейно-оптическое явление, предполагающее обратимое затемнение первоначально прозрачной среды при облучении ее интенсивным светом, представляет собой не что иное, как многофотонный внутренний фотоэффект. Рассмотрим это явление в приложении к практически важной задаче — растягиванию во времени лазерного импульса. Существуют способы, позволяющие получать лазерные импульсы длительностью, например, 10 с ( гигантские импульсы ). Однако для некоторых задач нужны более длительные импульсы — длительностью 10 —10 с. В подобных случаях можно использовать лазер, генерирующий гигантские импульсы , но при этом принять меры для растягивания таких импульсов во времени (надо реализовать отрицательную обратную связь).  [c.230]

Предположим, что управление потерями в резонаторе лазера осуществляется следующим образом когда мощность генерируемого излучения нарастает, потери увеличиваются, а когда мощность излучения начинает спадать, потери уменьшаются. Это и есть отрицательная обратная связь. Она оказывает тормозящее воздействие на развитие процессов вынужденного испускания в активном элементе лазера в результате процесс формирования выходного светового импульса затягивается во времени, длительность импульса увеличивается, его максимальная мощность уменьшается.  [c.230]

Отрицательную обратную связь можно реализовать, в частности, используя многофотонный внутренний фотоэффект -- двухфотонное поглощение света в полупроводнике. Внутрь резонатора лазера помещают пластинку полупроводника, у которого ширина запрещенной зоны удовлетворяет условию  [c.231]

В заключение стоит указать, что и по поляризации излучение лазера отличается от излучения обычных источников света. Физика процессов в лазере связана не со случайным началом колебаний (спонтаяное излучение , а с некочорыми более сложными явлениями, обусловленными взаимодействием электромагнитного излучения и атомных систем. Такое вынужденное излучение (это понятие было введено Эйнп1тейном еще в 1916 г. см, гл. 8) должно характеризоваться вполне определенной поляризацией. При работе со специально изготовленными лазерами, у которых окна разрядной трубки перпендикулярны ее оси, можно наблюдать, как чер( з определенное время At один вид. . .тлиптической поляризации переходит в другой. Но обычно окна разрядной трубки, находящейся внутри резонатора, располагают под некоторым углом к ее оптической оси (угол Брюстера), что (см. гл. 2)  [c.37]

Обнаруженные в последнее время самопульсация и оптический хаос в генерации ФРК-лазеров связаны с конкуренцией поперечных мод и различных каналов генерации в активном кристалле (гл. 4,7).  [c.39]


Как в кольцевом лазере связана разность частот генерации для вс1речных волн с угловой скоростью вращения и с параметрами резонатора Каково назначение невзаимных элементов в конструкциях лазерных гироскопов  [c.416]

Эффективность оптической накачки в случае твердотельных и жидкостных лазеров связана прежде всего с относительно большой шириной линий поглош ения твердых и жидких аетивных сред — порядка 0,1 мкм >. Газовые активные среды характеризуются существенно более узкими линиями поглош ения — шириной 10 мкм и менее. Для осущест вления оптического возбуждения в газе необходимо, чтобы излучение накачки обладало линейчатым спектром с достаточно узкими линиями и чтобы максимум хотя бы одной интенсивной линии источника накачки точно совпадал с максимумом одной из линий поглощения активного центра.  [c.41]

Керамики обладают разнообразными олектронными свойствами и в заиисимости от природы химической связи могут использоваться как диэлектрики, полупроводники, рромагпетики, актив1ше элементы лазеров и мазеров.  [c.9]

По законам дифракции наименьший размер сфокусированного пятна равен длине волны X и для оптического диапазона составляет размер порядка 1 мкм. Полихроматичность увеличивает размер до сотен и тысяч микрометров, в результате чего максимальная концентрация энергии в пятне нагрева в данном случае не превышает 10 Вт/мм , что соизмеримо с нагревом пламенем горелки и на 4...5 порядков меньше, чем для монохроматического луча лазера. Кроме того, фокусировка ухудшается в связи с тем, что применяющиеся фокусирующие линзы и фокусирующие зеркала со сферическими поверхностями имеют отклонения от требуемой для точной фокусировки геометрии поверхности. Ухудшает фокусировку и то, что светящееся тело обычно имеет конечные размеры и проецируется в виде определенной геометрической фигуры.  [c.116]

V Интенсивность лазерного излучения. При увеличении мощности накачки увеличивается интенсивность лазерного излучения. Однако такое увеличение имеет предел. Это обусловлено тем, что по мере увеличения чггсла атомов в метастабпльном состоянии возрастают процессы спонтанного излучения, в результате чего, уменьшается инверсия налесснности, приводящая к уменьшению интенсивности излучения. Энергия излучения рубиновых лазеров по сравнению с газовыми больше и может достигнуть 10 Дж и более, что связано с большей концентрацией активных атомов в рубине, чем в газе. Из-за очень малой длительности излучения в рубиновых лазерах такая энергия создает мощность порядка 10 Вт/см .  [c.388]

Луч лазера может прожечь отперстио в самом твердом материале, расплавить любую металлическую броню, и он же помогает хи1)ургам при 1 ып олнении самых тонких операций внутри человеческого глаза. По лучу лазера осуществляется телефонная связь и прокладка трасс, лазер применяется для измерения расстояний и для получения объемных изображений предметов — голограмм.  [c.316]

При этом искажается форма импульса и изменяется частота, соответствующая максимуму спектра В процессе расгфосгра -нения импульс может совершенно изменить свою исходную форму. Физические причины таких искажений многообразны так, например, в активной среде лазера наибольшее усиление происходит в передней части импульса, что должно приводить к дополнительному сдвигу максимума и соответственному увеличению групповой скорости, определяемой по указанной выше формальной схеме. Однако такая внутренняя перестройка импульса не может быть использована для передачи сигнала. В связи с этим нужно весьма критически относиться к иногда появляющимся публикациям, в которых утверждается, что групповая скорость лазерного излучения может быть больше скорости света в вакууме. Нужно ясно представлять себе, что в этом случае понятие групповой скорости теряет свой первоначальный смысл и величина U уже не определяет скорость распространения сигнала, которая, согласно специальной теории относительности, никогда не может быть больше скорости света в вакууме.  [c.53]

Наиболее, важной особенностью эффекта Керра, обусловившей широкое его применение, является весьма малая инерционность. Это свойство ячейки Керра проверялось в остроумных опытах (схема опытов изображена на рис. 3.11), а в последующем детально исследовалось в большом количеспве экспериментов. Источник света (конденсированная искра) и конденсатор Керра получают напряжение от одного источника тока. Как только произошел пробой газа между электродами (искра) и возник связанный с этим пробоем импульс света, начинает постепенно исчезать эффект Керра, что вызвано релаксацией дипольных моментов. молекул. Системой зеркал можно удлинить путь от источника света до ячейки Керра. Опыты показали, что, пока свет проходит расстояние 400 см, все следы двойного лучепреломления успевают исчезнуть. Отсюда была найдена инерционность процесса, характеризуемая средним временем х 10 с. В последующих прецизионных опытах было учтено время пробоя газа и была установлена еще меньшая инерционность эффекта (г Г 10 с). Таким образом, открылась возможность создания практически безынерционного оптического затвора и тем самым были заложены основы физики очень быстрых процессов ( нано-секундная техника 1 не = 10 с).. За последнее время эта техника приобрела особое значение в связи с возможностью получения очень больших мощностей светового потока в лазерах. Действительно, если возбудить в твердотельном лазере импульс света с энергией 10 Дж и продолжительностью 10" с, то мощность такого импульса составит 10 кВт. Если же с помощью какого-либо быстродействующего устройства (например, ячейки Керра) заставить высветиться эту систему за время порядка 10 с, то мощность импульса составит уже 1 ГВт. Такие гигантские импульс обладают некоторыми совершенно новыми физическими свойствами. Использование подобных сверхмощных световых потоков играет большую роль в области бурно развивающейся нелинейной оптики, а также при решении различных технических задач.  [c.123]

При различных приложениях полезен переход от фотографической регистрации интерференционной картины к фотоэлектрической записи. В этом случае исключается трудоемкая и чреватая дополнительными ошибками операция перехода от почернений фотопластинки к ее освещенности. Это важно тогда, когда исследователя интересует не только положение, но и относительная интенсивность компонент изучаемой структуры. Основы фотоэлектрического метода были разработаны в 50-х годах нашего столетия группой французских физиков (Жакино, Дюфур, Шабаль и др.). За последние годы фотоэлектрический метод получил широкое распространение, особенно в связи с исследованиями в области лазеров.  [c.250]

В этой связи создатель голографии Д. Габор в 1971 г. писал Пути науки часто неисповедимы. Электронная микроскопия так до сих пор и не извлекла существенной пользы из восстановления волн, тогда как мои оптические опыты (которые были задуманы как модельные) положили начало голографии. Хотя многие исследователи. .. достигли некоторых успехов в последующие годы, настоящее второе рождение голография пережила в 1962г., когда Э. Лейт иЮ. Упатниекс применили лазеры... .  [c.261]

В настоящее время на основе внешнего и внутреннего фотоэффекта строится бесчисленное множество приемников излучения, преобразующих световой сигнал в электрический и объединенных общим названием — фотоэлементы. Они находят весьма широкое применение в технике и в научных исследованиях. Самые разные объективные оптические измерения немыслимы в наше время без применения того или иного типа фотоэлементов. Современная фотометрия, спектрометрия и спектрофотометрия в широчайшей области спектра, спектральный анализ вещества, объективное измерение весьма слабых световых потоков, наблюдаемых, например, при изучении спектров комбинационного рассеяния света, в астрофизике, биологии и т. д. трудно представить себе без применения фотоэлементов регистрация инфракрасных спектров часто осуществляется специальными фотоэлементами для длинноволновой области спектра. Необычайно широко используются фотоэлементы в технике контроль и управление производственными процессами, разнообразные системы связи от передачи изображения и телевидения до оптической связи на лазерах и космической техники представляют собой далеко не полный перечень областей применения фотоэлементов для решения разнообразнейших технических вопросов в,современной промышленности и связи.  [c.649]


В случае оптического квантового генератора зеркальный резонатор создает положительную обратную связь между полем излучения и источником его энергии — активной средой ). Зеркала резонатора обеспечивают многократное распространение (и тем самым усиление) светового потока в активной среде. Это необходимо и для самовозбуждения генерации, и для ее поддержания. Однако роль резонатора в работе лазера не исчерпывается повышением плотности энергии поля в активной среде. Согласно указанной выше аналогии, для возникновения автоколебательного режима обратная связь должна быть положительной. Другими словами, должна иметь место строгая сннфазность колебаний, уже существующих в системе и приходящих по каналу обратной связи. Подобные соображения применимы и к оптическим квантовым генераторам, о чем будет идти речь в 228, 229.  [c.783]

Отражение света, происходящее из-за нелинейности среды и пространственного периодического изменения амплитуды поля, позволяет расширить наши представления о воз1 южных способах реализации положительной обратной связи в квантовых генераторах. До сих пор мы полагали, что положительная обратная связь между полем излучения и активной средой, необходимая для превращения усиливающей системы в автоколебательную (см. 225), осуществляется с помощью зеркал, отражающих волны обратно в резонатор. Рассмотренное выше нелинейное отражение света служит физической основой для иного способа реализации положительной обратной связи, применяющегося в некоторых лазерах. Пусть кювета К представляет собой активную среду (см. рис. 41.3). В направлении оси л имеет место периодическая неоднородность среды за счет нелинейных эффектов. Интерферирующими пучками / и //, создающими оптическуро неоднородность, могут быть пучки возбуждающего излучения. Следовательно, в данном случае отражение будет происходить в результате модуляции коэффициента усиления активной среды. Спонтанное излучение среды, испущенное в направлении оси х, будет отражаться от неоднородности и возвращаться в активную среду, что и соответствует обратной связи. Для некоторых частот обратная связь будет положительной, и при выполнении пороговых условий возбудится генерация излучения в направлении оси х.  [c.828]

Установлено качественное изменение механизма и кинетики разрушения при ударном изгибном погружении обработанного лазером поверхностного слоя по сравнению с металлом после объемной термической обработки, что связано с торможеиием роста трещины при ее прохождении через слои с различными физико-механическими свойствами.  [c.104]

Идеальный когерентный источник излучает свет строго одной частоты. Реальный лазер излучает спектр колебаний— спектральную линию, в которой присутствуют несколько частот. Ширина спектральной линии связана с понятием временной когерентности и в конечном счете определяет допустимую глубину голографируемой сцены, т. е. максимальную разность хода / между объектным и опорным пучками, допустимую без уменьшения контраста интерференционной картины 1=к / к.  [c.35]

Используемые в лазерах молекулы органических красителей (полиметиновых, ксантеновых, кумариновых и др.) относятся к классу сложных молекул, т. е. их спектры поглощения и люминесценции представляют собой широкие полосы (см. 34.3). Известно, что большая ширина полос сложных молекул связана с колебательной структурой электронных уровней. Колебательные уровни расположены очень густо, образуя сплошные зоны (рис. 35.19). Они объединяются в две системы одна  [c.292]

АВТОР. Это верно для света, распространяющегося в пустоте или воздухе, при условии, что интенсивность света не очень велика. Получаемые е помощью лазеров интенсивные световые пучки, попадая в прозрачную среду, могут весьма сильно взаимодействовать друг с другом. При этом свет в среде может дефокусировать-ся или, напротив, фокусироваться может изменяться его частота. Подобные явления и составляют содержание ново го направления в современной оптике, названного нелинейной оптикой . Позднее мы поговорим о нелинейно-оптиче- ских явлениях подробнее. Здесь же важно лишь отметить связь этих явлений с квантовой прпродой света. ОППОНЕНТ. Приходится согласиться о тем, что вопросы квантовой природы света и в связи е этим вопросы квантовой оптики действительно выходят за рамки обычно рассматриваемых квантово-опти  [c.13]


Смотреть страницы где упоминается термин Лазер связью : [c.50]    [c.93]    [c.75]    [c.392]    [c.210]    [c.275]    [c.378]    [c.44]   
Лазерная светодинамика (1988) -- [ c.67 ]



ПОИСК



ДГС-лазеров с широким контакто связь с изломами ватт-амперных

КПД лазеров связь на выходе резонатора

Лазер

Лазер с периодической структурой обратной связи

Лазер с распределенной обратной связь

Лазеры с РБО (распределенным брэгговским отражателем) связью)

Мезаполосковые лазеры с распределенной обратной связью

Нелинейное детектирование сверхслабых эхосигналов на основе включения атмосферы в кан-ал обратной оптической связи лазера

ОГС-лазеров в ДГС-лазерах

Оптимальная связь на выходе лазера

Полупроводниковые лазеры для оптической связи

Полупроводниковые лазеры распределенной обратной связью

Тарасов Л.В. Лазеры и их применение. — М. Радио и связь



© 2025 Mash-xxl.info Реклама на сайте