Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Переходы оптические

При переходах оптического электрона в атоме А1 возникают следующие основные серии спектральных линий  [c.63]

В сдвиге линий проявляется только часть смещения уровней, обусловленная оптическим электроном. Сдвиг уровней, связанный с электронами атомного остатка, при переходах оптического электрона остается неизменным и поэтому не может быть экспериментально зарегистрирован. Исходя из этого, при расчете сдвига уровней из наблюдаемого сдвига линий его обычно полагают равным нулю.  [c.72]


Правила отбора. Излучение происходит в результате перехода оптического электрона с одного энергетического уровня на другой. Однако не все переходы возможны. Возможными являются лишь переходы, разрешенные правилами отбора, которые совпадают с правилами отбора для одноэлектронного атома [см. (28.26) и (30.42)]  [c.200]

В соответствии с правилами отбора атомных переходов, оптические переходы между энергетическими уровнями внутри одной электронной подоболочки запрещены. В нашем случае это означает, что вероятность всех оптических переходов между такими  [c.16]

Возможные значения энергетического выхода. Если в системе все переходы оптические, то, как следует из закона сохранения энергии, энергетический выход тождественно равен единице.  [c.26]

Интерес к этому материалу должен, по-видимому, поддерживаться известными из учебников [149, 164, 165] идеями о важной роли симметрии при определении правильных линейных векторных пространств, лежащих в основе любого расчета. Поскольку эти главы посвящены в основном математическим проблемам, хотя и изложенным с точки зрения физика, их результаты являются общими и самостоятельными независимо от приложений. Они могут найти применение в проблеме фазовых переходов, сопровождающихся изменением симметрии, в зонной электронной теории, в теории обусловленных электронными переходами оптических свойств и в задачах электрон-фононного. взаимодействия и процессов рассеяния, включая явления переноса. При непосредственном обобщении этих результатов они могут быть применены к проблемам магнитных кристаллов, спиновых волн и т. д. Мы надеемся, что изложенные здесь основы теории позволят читателю легко освоить эти обобщения.  [c.256]

Это значение является константой. С другой стороны, для линий главной серии, образующихся при переходах оптического электрона между пР п = 2, 3, 4,. ..)-уровнями и уровнем 25 основного состояния  [c.342]

Обычно модулятор работает как управляемый оптический затвор под воздействием управляющего сигнала изменяется пропускание затвора, а следовательно, и потери в резонаторе. Если затвор открыт , то потери низки (добротность резонатора высока) если затвор заперт , то потери высоки (добротность резонатора низка). В отдельных случаях роль модулятора играет быстро вращающееся зеркало резонатора (модулятор оптико-механического типа). Очевидно, что переходы оптического затвора из запертого состояния в открытое должны быть синхронизованы с импульсами накачки затвор должен открываться после того, как достигнута достаточно высокая инверсная заселенность рабочих уровней.  [c.271]


Развитие таких систем предъявляет повышенные требования к техническим средствам. Необходимо существенное увеличение емкости и уменьшение габаритов внешних накопителей, уменьшение времени выборки информации. Переход на оптические диски доведет емкость до 200 Гбайт на одну поверхность. Необходимо улучшать характеристики терминалов. Намечается переход на графические терминалы со встроенными функциями обработки изображений, имеющие достаточно большую буферную память, модули для подключения к сетям передачи данных.  [c.68]

Переход на титанат кальция повышенной чистоты позволил получить покрытие с более стабильными оптическими характеристиками в интервале температур от 800 до 1200 К е 0,9, дальнейший нагрев до 1300 К приводит к уменьшению степени черноты до 0,85.  [c.98]

Глубину проникновения излучения внутрь вещества можно охарактеризовать укрывистостью — способностью покрытия полностью укрывать металлическую подложку от излучения во всем спектральном интервале. За характерную глубину проникновения излучения внутрь вещества принимают так называемую глубину оптического проникновения, т. е. такую глубину (в долях от длины волны), при которой интенсивность излучения падает в е раз. Экспоненциальное уменьшение интенсивности излучения при переходе из одной среды в другую описывается законом Бугера, который в общем виде с учетом возможного рассеивания и распределения по частотам выражается следующим образом  [c.117]

По сравнению с оптическим спектром рентгеновские спектры элементов обладают довольно простой структурой. Рентгеновские спектры характеризуются однообразием и наличием малого числа линий. При переходе от одного (легкого) элемента к другому (тяжелому) элементу единственное изменение в рентгеновском спектре заключается в смеш,ении линий в сторону коротких волн. Об этом свидетельствует схема рентгеновских спектров различных элементов (от кислорода до урана), представленная на pnj . 6.38, где по оси ординат отложены атомные номера элементов, а по оси — абсцисс — длина волны.  [c.161]

При переходе света через границу раздела двух изотропных сред наблюдается преломление света, закономерности которого вытекают из принципа Гюйгенса. Со способом построения преломленного луча мы уже знакомы. Аналогичное построение имеет место при переходе света из изотропной среды в анизотропную. В этом случае при известном знаке кристалла и направлении оптической оси строят лучевые поверхности обыкновенного и необыкновенного лучей.  [c.261]

Оптические переходы. В основе квантовомеханических представлений лежит подтвержденная экспериментальными фактами идея о том, что атомные системы могут пребывать лишь в состояниях с дискретными значениями энергии Ei, L 2, 3,. .. Согласно Бору, излучение и поглощение атомами электромагнитных волн связано с переходами атомов с одних энергетических уровней на другие, причем энергия излучения (или поглощения) при каждом таком переходе определяется как  [c.338]

Эйнштейн постулировал возможность оптического перехода атома с верхнего энергетического состояния на нижнее под дей-  [c.339]

Под действием такого излучения атом переходит в состояние 3. Возможны как оптические, так и неоптические (из-за передачи энергии при столкновении атомов) переходы атомов из состояния Еа в состояние Е . В дальнейшем возбужденные атомы, излучая энергию hvj, = 2 — El, переходят в состояние Ei- Будем полагать, что состояние Е< не является метастабильным. Согласно закону сохранения энергии, если возбуждающий квант часть своей энергии Еа — Е превращает в тепловую (если переход от Ез в Е2 является неоптическим), то оставшаяся часть идет на люминесцентное излучение, т. е.  [c.364]

Резонансная флуоресценция. Кроме люминесценции с измененной длиной волны наблюдается также свечение с неизменной длиной волны, т. е. длина волны света возбуждения совпадает с длиной волны света люминесценции. Этот вид люминесценции называется резонансной флуоресценцией. Она впервые наблюдалась Вудом в 1904 г. при исследовании оптических свойств паров натрия. Механизм возникновения резонансной флуоресценции заключается в следующем. Атом (или молекула), поглощая световой квант, переходит в некоторое возбужденное состояние. Спустя время, равное продолжительности жизни атома в этом возбужденном  [c.366]


Усиление света с помощью трехуровневой системы. Рассмотрим трехуровневую систему (рис. 17.4) . Под действием оптического излучения с энергией hv = — Ei атомы переходят из состояния i в состояние 3. Из состояния 3 возможны спонтанные переходы в 2 и в Ех. Из состояния 2, в свою очередь, возможны спонтанные переходы в состояние ,. Чтобы получить инверсную заселенность между уровнями Ei и состояние Е должно быть более долгоживущим по сравнению с 3, т. е. должны удовлетворяться следующие условия  [c.383]

Лазер — генератор электромагнитных волн оптического диапазона, излучающий когерентный световой поток с малым углом расхождения за счет перехода атомов с высшего энергетического уровня, на который они переводятся под действием мощных импульсов света или электри-ческого разряда, на более низший в газовых лазерах используется, например, смесь атомов гелия и неона, а в твердотельных лазерах — кристаллы некоторые типы лазеров могут работать в непрерывном режиме излучения, но их средняя мощность излучения меньше, чем в импульсе 19].  [c.146]

Из двух сред та среда, которая обладает меньшим значением абсолютного показателя преломления, называется оптически менее плотной средой. Если свет переходит из оптически менее плотной среды в оптически более плотную, то угол преломления р меньше угла падения а.  [c.266]

При переходе из оптически более плотной среды в оптически менее плотную среду угол преломления р оказывается больше угла падения а (рис. 261).  [c.266]

Такую же методику построения волнового фронта можно применить для описания перехода волны из изотропной среды в анизотропную. Если для исследуемого криста.лла известно направление оптической оси, то построение в нем двух волновых поверхностей (обыкновенной и необыкновенной) не представит труда.  [c.132]

Электрорадиографический (ксерорадиографический) процесс контроля ясен из рис. 5.47. Для получения элект-рорадиографического изображения необходимо на всех этапах его получения выполнять ряд требований, вытекающих из специфики метода. Величина поверхностного заряда должна быть пропорциональна плотности исследуемого изделия и иметь высокую контрастность. Это достигается подбором величины поверхностного заряда при электризации пластины. Высокая контрастность снимка обеспечивается за счет краевого эффекта, выражающегося в резком переходе оптических плотностей почернений на их границе. Регулирование контрастности и величины кра-  [c.614]

Развитие усталостных поЬреждений схематически представлено на рис. 160. На первых стадиях нагружения возникают, сначала в отдельных кристаллических объемах, пластические сдвиги, не обнаруживаемые обычными экспериментальными методами (светлые точки). С повышением числа циклов и уровня напряжений сдвиги охватывают все большие объемы и переходят в субмикроскопические сдвиги, наблюдаемые с помощью электронных микроскопов (точки со штрихами). При определенном числе циклов и уровне напряжений (кривая 1) образуется множество трещин, видимых под оптическим микроскопом (заштрихованные точки). Начало образования металлографически обнаруживаемых трещин условно считают порогом трещинообразован и я. У низколегированных и углеродистых сталей первые трещины появляются при напряжениях, равных 0,7 —0,8 разрущающего напряжения у высоколегированных сталей и сплавов алюминия и магния микротрещины обнаруживаются уже при напряжениях, равных 0,4—0,6 разрушающего напряжения. Порог трещинообразования снижается с укрупнением зерна.  [c.278]

Вихревые трубы с щелевыми диффузорами, предназначенные для охлаждения объектов преимущественно осесимметричной конфигурации, помещенных в приосевую область труб такой конструкции, которые в больщинстве отечественных работ называют самовакуумирующимися [40, 112, 116]. Впервые это название ввел А.П. Меркулов [116]. Их используют, например, для охлаждения излучающего элемента (рубина) твердотельного оптического квантового генератора и зеркальца вихревого гифо-метра. В больщинстве случаев использование для охлаждения отдельных элементов устройств вихревых труб с щелевыми диффузорами позволяет существенно снизить габариты и массу системы охлаждения, заметно упростить конструкцию и повысить коэффициент теплоотдачи от охлаждаемого элемента, помещенного в приосевую зону камеры энергоразделения [21]. Опыты показывают, что эффективность теплосъема при переходе с обыч-  [c.295]

Переход от черного тела к понятию оптически плотного потока, сформулированному Росселендом [658], был исследован в работе [811]. Уравнения пограничного слоя в среде, поглощающей тепловое излучение, были выведены в работах [100, 852]. Из других работ, посвященных пограничному слою излучающей среды (только газ), отметим работы Хоува, исследовавшего химически равновесный ламинарный пограничный слой в области торможе-24-517  [c.369]

Описанным выше приемом просвечивания, плоской модели в монохроматическом свете не исчерпываются возможности оптическо10 метода. Часто просвечивание модели проводится в белом свете. На экране в этом случае вместо темных и светлых полос получаются цветные полосы с непрерывными переходами через цвета спектра. Существуют способы просвечивания моделей с погашением изоклин. Известны приемы исследования напряженного состояния в пространственных моделях путем замораживания оптической анизотропии с последующим разрезанием модели на плоские образцы.  [c.520]


При использовании ультразвука и электромагнитного излучения оптического, инфракрасного и радиоволнового диапазонов для реконструкции изображений необходимо решение обратных задач с интегралами не вдоль прямолинейных траекторий, а вдоль криволинейных, что значительно усложняет процессы вычислений, но устраняет необходимость применения для диагностирования опасных для человека ра-диационньгх излучений и соответствующей защиты от них. Переход к типовым модульным сканерным системам, более широкому использованию спецпроцессоров и замена Минина мшсроЭВМ, позволит создать транспортабельные и переносные ВТ, построенные на различных физических принципах для разных условий эксплуатации машин.  [c.228]

Известно, что оптический спектр изолированргого атома состоит из отдельных линий. При образовании молекулы оптический спектр усложняется — возникает полосатый спектр. При переходе вещества в твердое состояние изменяется характер спектра он может стать сплошным. В отличие от этого линейчатый рентгеновский спектр атома не изменяется он не зависит от того, к какому веществу относится. По-видимому, характеристические рентгеновские лучи порождаются не слабо связанными с ядром валентными (оптическими) электронами, а электронами, расположенными близко к ядру.  [c.159]

Увеличение разрешающей силы микроскопа путем уменьшения длины световой волны прнв ело к положительному результату. Микроскопы, пспользующне ультрафиолетовые лучи, позволяют увеличить разрешающую силу примерно в два раза. Переход к микроскопам, использующим рентгеновские лучи, позволил бы резко увеличить разрешающую силу. Однако отсутствие оптических линз для рентгеновских лучей делает практически почти невозможным создание рентгеновских микроскопов. Такие принципиальные трудности были преодолены после того, как в 1923 г. Луи де Бройлем была выдвинута гипотеза, согласно которой любой частице с массой т, движущейся со скоростью v, соответствует волна с длиной  [c.203]

Лучевая поверхность в одноосных кристаллах. Для одноосных кристаллов две из трех главных скоростей равны между собой поэтому трехосный лучевой эллипсоид превращается в эллипсоид вращения. Следовательно, у одноосных кристаллов двухполост-ная лучевая поверхность переходит в совокупность эллипсоида вращения и шара с двумя точками касания, расположенными на оптической оси.  [c.259]

Инверсная заселенность уровней. Как увидим в дальнейшем, систему, энергетические уровни которой удовлетворяют определенным условиям, можно перевести в состояние с инверсной населенностью уровней. Процесс перевода системы в инверсное состояние называется накачкой. Накачку можно осуществить оптическими, электрическими и другими способами. При оптической накачке атомы, поглощая излучение, переходят в возбужденное состояние. При электрической накачке (например, в газообразной среде) атол ы переходят в возбужденное состояние благодаря неупругим столкновениям атомов с электронами в газовом разряде. В этой связи следует еще раз отметить идею В. А. Фабриканта, выдвинутую в 1939 г., сущность которой заключалась в том, чтобы с помощью спеи,иальных молекулярных примесей избирательно исключить некоторые нижние энергетические состояния, в результате чего осуществилась бы инверсная заселенность.  [c.382]

Полное отражение. При наблюдении явления преломления света можно заметить, что наряду с преломлением происходит и отражение света от границы раздела двух сред при увели-ченп . угла падения интенсивность отраженного луча увеличивается. В случае перехода света из оптически более плот-  [c.266]

В заключение стоит указать, что и по поляризации излучение лазера отличается от излучения обычных источников света. Физика процессов в лазере связана не со случайным началом колебаний (спонтаяное излучение , а с некочорыми более сложными явлениями, обусловленными взаимодействием электромагнитного излучения и атомных систем. Такое вынужденное излучение (это понятие было введено Эйнп1тейном еще в 1916 г. см, гл. 8) должно характеризоваться вполне определенной поляризацией. При работе со специально изготовленными лазерами, у которых окна разрядной трубки перпендикулярны ее оси, можно наблюдать, как чер( з определенное время At один вид. . .тлиптической поляризации переходит в другой. Но обычно окна разрядной трубки, находящейся внутри резонатора, располагают под некоторым углом к ее оптической оси (угол Брюстера), что (см. гл. 2)  [c.37]

Следовательно, при углах падения, меньших угла Брюстера (ф < ФБр). отражении от оптически менее плотной среды (П1 > П2) отраженная и падающая волны совпадают по фазе, т.е. нет потери полуволны при отражении. Рассмотрение больших углов (заметим, что для случая ni n < 1, т.е., например, при переходе волн из стекла в воздух, фвр < 45°) затруднено тем, что существует такой угол ф = ф ред, при котором ф2 = я/2, т.е. весь световой поток отражается и преломленная волна отсутствует. Ранее считалось, что формулы Френеля теряют смысл при Ф Фпред. но впоследствии было выяснено, что использование комплексных величин для амплитуд и углов позвол.яет получить достаточно полное описание и этого частного случая отражения и преломления электромагнитных волн (явления полного внутреннего отражения), представляющего самостоятельный интерес.  [c.92]

Выше уже упоминалось, что задача о движении электрона в поле световой волны может рассматриваться квантово-механически. В результате этого получается почти такое же выражение, как и классическая формула (4.13), однако смысл сходных f6o3-начений будет в этом случае совсем иным. Здесь символ aik означает уже не частоты свободных колебаний различных квазиупругих электронов, а круговые частоты, соответствующие разрешенным переходам в атоме для одного и того же оптического (валентного) электрона, которые можно опре- " Л.с ниТпГборГ делить по известным правилам, впервые сформулированным Бором. Так,  [c.145]


Смотреть страницы где упоминается термин Переходы оптические : [c.18]    [c.52]    [c.116]    [c.275]    [c.339]    [c.341]    [c.357]    [c.357]    [c.370]    [c.379]    [c.393]    [c.398]    [c.11]    [c.98]    [c.116]   
Оптика (1977) -- [ c.338 ]



ПОИСК



Вероятности оптических переходов

Внутризонные оптические переходы в квантовых ямах

КРИСТОФЕЛЬ, П. И. КОНСИН. Динамическая теория фазовых переходов в кристаллах типа сегнетовой соли и тиомоО нелинейных оптических материалах с изменяемой дисперсией

Межзонные оптические переходы в квантовых ямах

Многоимпульсное сужение однородной ширины спектральных линий в магнитном резонан. 5.4.3. Многоимпульсное сужение однородной ширины спектральных линий оптических переходов

Начальный коэффициент усиления для оптически разрешенных и запрещенных переходов

Непрямые оптические переходы

Операторы перехода в пространстве коэффициентов фурье-разложений оптических характеристик

Оптическая анизотропия кубических кристаллов. Дипольные переходы

Оптическая анизотропия кубических кристаллов. Квадрупольные переходы

Оптические переходы в дефектах кристаллической решетки, конфигурационные координаты

Оптические переходы в зонном приближении

Оптические переходы в магнитоупорядоченных кристаллах

Оптические переходы между мннизонами в сверхрешетках

Оптические правила отбора и запрещенные переходы

Оптические свойства сегнетоэлектриков с размытым фазовым переходом

Подавление дипольной ширины спектральной линии оптического перехода ионов в кристалле путём радиочастотного воздействия на ядра кристаллической решётки

Правила отбора для оптических переходов

Приближение почти свободных электронов и порог межзонных оптических переходов

Приближенная симметрия, возмущения и правила отбора для оптических переходов

Прямой оптический переход

Электрон-фононные оптические переходы в приближении Кондона и при нулевой температуре



© 2025 Mash-xxl.info Реклама на сайте