Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Подшипники качения конические

На подшипники качения конического зубчатого редуктора (рис. 11.2) действуют одновременно радиальная и осевая нагрузки. Поэтому для решения вопроса о замене радиально-упорных подшипников 1, 3, 6, 7) на радиальные необходимо конкретно знать действующие радиальную и осевые нагрузки.  [c.349]

В учебнике даны краткие сведения из теории ошибок, изложены основные понятия о допусках и посадках, рассмотрены схемы расположения полей допусков для гладких цилиндрических изделий, гладких калибров, подшипников качения, конических поверхностей, резьбовых изделий и калибров, шпоночных и шлицевых соединений, зубчатых колес, а также описаны методы и средства измерения линейных и угловых величин.  [c.2]


Точность обработки при бесцентровом шлифовании по диаметру можно получить 2-го и даже 1-го класса, а точность на концентричность и параллельность осей внутреннего отверстия и наружной поверхности—до 0,003 мм. Этот способ можно применять для внутреннего шлифования деталей диаметром от 10 до 200 мм со сквозными и глухими отверстиями, а также с коническими отверстиями. Можно также шлифовать отверстия в деталях, имеющих на наружной поверхности уступы и буртики. Этот способ широко применяется для шлифования колец подшипников качения. Измерение шлифованного отверстия при бесцентровом внутреннем шлифовании может производиться автоматически.  [c.226]

К неподвижным разъемным соединениям относят те, которые можно разобрать без повреждения соединяемых и скрепляющих их деталей (резьбовые, шпоночные, некоторые шлицевые, конические, а также соединения с переходными посадками) к неподвижным неразъемным — такие, разъединение которых связано с повреждением или полным разрушением деталей. Такие соединения получают посадкой с гарантированным натягом, развальцовкой и отбортовкой, сваркой, пайкой, клепкой, склеиванием. К подвижным разъемным соединениям относят соединения с подвижной посадкой, а к подвижным неразъемным — подшипники качения, втулочно-роликовые клепаные цепи, запорные краны,  [c.187]

Дан редуктор общего назначения, нагрузка с сильными ударами, перегрузка до 200% на опоры действуют радиальные реакции R, = и R2 = 50 кН и осевая реакция / = 10 кН на левой опоре установлены два однорядных конических подшипника 7318, имеющих размеры d = 90, D = 190, В = 43, ( = 4 и Г1 = 1,5 мм угол контакта р = 12° на правой плавающей опоре установлен радиальный роликовый подшипник 32617 с размерами d = 85, D = 180, В = 60 к г = 4 мм нагружение внутренних вращающихся колец подшипников циркуляционное, а наружных неподвижных-местное класс точности подшипников 0 подобрать посадки для соединения подшипников качения с ведущим валом цилиндрического косозубого редуктора (рис. 8.5).  [c.93]

Заплечики валов и корпусов под подшипники качения нормальной точности торцы ступиц и распорных втулок отверстия в корпусах конических редукторов  [c.237]

Подшипники качения. Существуют много типов подшипников. качения (рис. 9.36,0—3) по направлению воспринимаемой нагрузки — радиальные (а, б, г, е), упорные (ж, з) и радиально упорные (в, д) по форме тела качения — шариковые (а, ж, з), роликовые с цилиндрическими (б), коническими (в), бочкообразными (г, д) и игольчатыми (е) роликами по числу рядов тел качения — однорядные (а, б, в, г), двухрядные (д) и многорядные, одинарные (з) и двойные (ж). Кроме того, их выпускают сверхлегкой, особо легкой, легкой, средней и тяжелой серий по диаметру, обозначаемых одной из цифр О, 8, 9, 1, 7, 2, 3, 4 и 5 в порядке увеличения размера наружного диаметра подшипника при одинаковом внутреннем диаметре, и узкой, нормальной, широкой или особо широкой серий по ширине (высоте), обозначаемых одной из цифр 7, 8, 9, О, 1, 2, 3, 4, 5 и 6 в порядке увеличения размера ширины или высоты ГОСТ 3478—79 (СТ СЭВ 402—84).  [c.306]


Особое направление заключается в компенсации износа, осуществляемой периодически или автоматически. К числу узлов с периодической компенсацией принадлежат подшипники скольжения с осевым или радиальным регулированием зазора (с коническими несущими или посадочными поверхностями, с периодически подтягиваемыми вкладышами). Другие примеры — осевая подтяжка подшипников качения (радиальноупорных и конических) и регулирование зазора в прямолинейных направляющих с помощью переставных клиньев и планок.  [c.31]

Упорные подшипники с коническими роликами выполняют с конусами, вершины которых сходятся на оси подшипника (13, 14), что обеспечивает правильное качение роликов.  [c.460]

В от.цельных случаях подшипники с коническим посадочным отверстием применяют для регулирования зазора между телами качения и обоймами, выбирания зазора в телах качения, увеличивающегося в результате износа, и, наконец, как средство создания предварительного радиального натяга.  [c.475]

Цапфы валов для подшипников качения (рис, 16,3) характеризуются меньшей длиной, чем цапфы для подшипников скольжения. Исключение составляют конструкции с двумя подшипниками качения в опоре. Как правило, цапфы для подшипников качения выполняют цилиндрическими, В редких случаях применяют конические цапфы с малой конусностью — для регулирования зазоров в подшипниках упругим деформированием колец. Цапфы для подшипников качения нередко выполняют с резьбой или другими средствами для закрепления колец  [c.318]

Кпд зубчатых передач. Для приближенных расчетов в силовых зубчатых передачах на подшипниках качения при номинальных нагрузках можно пользоваться следующими экспериментальными данными у цилиндрической передачи Т = 0,99... 0,98 при 6-й и 7-й степенях точности -/ = 0,975. .. 0,97 при 8-й и 9-й степенях точности в закрытой передаче и т =0,96... 0,95 в открытой передаче, у конической передачи при упомянутых условиях соответственно = 0,98. .. 0,96 т] = 0,96. .. 0,95 и г, = = 0,95.. . 0,94.  [c.216]

Опоры качения валов и осей выполняют чаще всего в виде подшипников качения. Конструкции подшипников (рис. 27.6) состоят из наружного кольца 1, внутреннего кольца 2, между дорожками качения 3 которых помещаются тела качения 4 (шарики или ролики). Тела качения распределяются равномерно по дорожкам качения с помощью сепаратора 5. На рис. 27.7 показаны различные виды тел качения шарики (а), цилиндрические ролики короткие 6) и длинные (в), цилиндрические витые ролики (г), конические (д), бочкообразные (е), игольчатые (ж) тела вращения.  [c.320]

По действующим стандартам подшипники качения различаются типом, серией и диаметром. Эти сведения зашифрованы в номере подшипника, выбитом на торце кольца. Тип характеризует основные конструктивные особенности и шифруется четвертой справа цифрой номера [например, радиальный однорядный шариковый (рис. 13.17, а) — четвертая цифра справа — 0 конический роликовый (рис. 13.17,8) — четвертая цифра справа — 7, и т. д. . Серия определяет соотношения между основными размерами и диа-  [c.339]

Внутренние силы в подшипнике качения. При нагружении подшипника качения радиальной Fyj и осевой Fа силами в точках касания тел качения с беговыми дорожками колец возникают силы давления. Определим эти силы в простейшем случае. Рассмотрим конический подшипник, имеющий всего четыре тела качения в тот момент, когда они расположены так, как это изображено на рис. 13.19. Под действием силы Fi наружное кольцо стремится опуститься относительно внутреннего. Поэтому два нижних ролика не могут быть нагружены. Два верхних в силу симметрии нагружены одинаково.  [c.340]

Посадочные поверхности валов и осей под ступицы насаживаемых деталей выполняют цилиндрическими и коническими (см. рис. 22.2). При посадках с натягом диаметр этих поверхностей принимают больше диаметра соседних участков для удобства напрессовки (см. рис. 22.2). Диаметры посадочных поверхностей выбирают из ряда нормальных линейных размеров (см. 22.4), а диаметры под подшипники качения — в соответствии с ГОСТами на подшипники.  [c.294]


Пример 24.2. Подобрать подшипник качения для опор вала конической шестерни редуктора транспортера (см. рис. 24.16). На опоры вала действуют радиальные силы / 2 = 5000 Н, Лг1=2000 Н и осевая сила Ра = 7В0 Н. Нагрузка на подшипники с легкими толчками. Диаметр цапф вала п = 35 мм, угловая скорость вала о = 75 рад/с. Рабочая температура подшипников / 70°. Требуемая долговечность (ресурс) подшипников А = 8000 ч.  [c.336]

Подшипники качения по форме тел качения делят на шариковые (рис. 294, я) и роликовые (рис. 294,6). В свою очередь, ролики бывают цилиндрические (рис. 295, а), конические (рис. 295, б), бочкообразные (рис. 295, в), игольчатые (рис. 295, г), витые (рис. 295, д). Роликоподшипники имеют более высокую (в среднем  [c.322]

Подшипники качения классифицируют по следующим основным признакам по направлению воспринимаемой нагрузки — радиальные, радиально-упорные и упорные по форме тел качения — шариковые и роликовые, причем последние могут быть с цилиндрическими, коническими, бочкообразными, игольчатыми и витыми роликами (рис. 24.1, б). По числу рядов тел качения — одно рядные и многорядные по способности самоустанавливаться —  [c.413]

Вид функции с (х) в первую очередь определяется материалом и конструктивными особенностями упругого элемента. Например, в рабочем диапазоне напряжений металлы обычно подчиняются закону Гука, в то время как для резины более свойственна жесткая характеристика, а для многих полимеров — мягкая. Однако и в металлических деталях возможно возникновение нелинейных восстанавливающих сил. В частности, это имеет место при точечном или линейном контакте двух рабочих поверхностей, что характерно для высших кинематических пар. В этом случае контактная жесткость возрастает с ростом нагрузки. Такая же характеристика строго говоря свойственна и обычным шарнирам при использовании подшипников качения. Нередко с целью получения требуемых нелинейных характеристик в машинах применяются специальные устройства, например конические пружины, у которых числа рабочих витков зависят от нагрузки, нелинейные муфты и т. п. [12, 13, 181.  [c.33]

По определению экспериментальных значений параметров демпфирования имеется обширная литература. Следует отметить, что диапазон изменения параметров диссипации в зависимости от различных условий достаточно широк. Так, усредненное значение коэффициента ij для подшипников качения колеблется от 0,2 до 0,6 [20, 52] для сухих цилиндрических и конических стыков от 0,03 до 0,15, а для хорошо смазанных поверхностей коэффициент достигает значения 1.  [c.41]

По форме тела качения подшипники качения делятся на шариковые и роликовые. Ролики могут быть цилиндрические (короткие или длинные), игольчатые, бочкообразные, конические, витые.  [c.222]

Правила выполнения чертежей пружин (401) Условные изображения зубчатых колес, реек, червяков и звездочек цепных передач (402) Правила выполнения чертежей цилиндрических зубчатых колес (403), — зубчатых реек (404) — конических зубчатых колес (405) — цилиндрических червяков и червячных колес (406) — червяков и колес червячных глобоидных передач (407) — звездочек приводных роликовых и втулочных цепей (408) — зубчатых (шлицевых) соединений (409) — металлических конструкций (410) — труб и трубопроводов (411) — чертежей и схем оптических изделий (412) — электромонтажных чертежей электротехнических и радиотехнических изделий (413) — чертежей жгутов, кабелей и проводов (414) — изделий с электрическими обмотками (415) Условные изображения сердечников магнитопроводов (416) Правила выполнения документации при плазовом методе производства (419) Упрощенные изображения подшипников качения на сборочных чертежах (420) Правила выполнения чертежей печатных плат (417) — чертежей тары Правила выполнения звездочек для грузовых пластинчатых цепей (421), — чертежей цилиндрических зубчатых колес передач Новикова с двумя линиями зацепления (422).  [c.363]

Для изображения сгандарзных подшипников качения по габаритам ( /, ), В) следует нанести тонкими линиями внешний контур подшипника. Затем для всех типов подшипников (кроме конических роликоподшипников) наносят диаметр окружности, проходящей через центры тел качения,  [c.125]

Допуски сооспосч и посадочных поверхностей счакана (поз. 4 и 5) назыачаюч, чтобы ограничить перекос колец подшипников качения и отклонения межосевого расстояния в конической передаче.  [c.312]

Данное пособие поможег учащимся техникумов выполнить расчеты зубчатых, червячных, планетарных и волновых передач, расчегы валов, подшипников качения, научиг их конструировать зубчатые и червячные колеса, червяки, подшипниковые узлы, валы, корпусные детали, ознакомиг со способами смазывания и с уплотнениями. Учащиеся приобретут знания по выполнению рабочих чертежей деталей. Весь процесс работы над проектом последовательно показан в пособии на примерах расчега и конструирования цилиндрических, конических, червячных и планетарных передач.  [c.393]

Для изображения стандартных подшипников качения по габаритным размерам б, В и В следует нанести тонкими линиями внешний контур. Затем для всех типов подшипников (кроме конических роликовьк) откладывают диаметр  [c.140]

В четвертое издание учебника по сравнению с предыдущим внесены следующие изменения. Все формулы представлены так, что остаются справедливыми для любой системы единиц физических величин. В справочных данных и примерах расчета используется только Международная система единиц. Расчеты на ресурс распространены на зубчатые (шлицевые) соединения в соответствии с ГОСТ 21425—75 и на клиноременные передачи — ГОСТ 1284.3—80. В расчетах на ресурс зубчатых передач и подшипников качения использована общая методика по типовым графикам нагрузки. Дана современная методика расчета конических передач с круговыми зубьями, Использована теория вероятности при расчетах прессовых соединений, подшипников скольжения и качения, также результаты современных исследований прочности волновых передач и передач Новикова. Внесены изменения в методику изложения некоторых разделов курса. Все эти изменения связаны с быстрым развитием отечественной науки в области машиностроения, которому уделяется первостепенное внимание в планах нашей партии и правительства, в решениях XXVI съезда КПСС.  [c.3]


Определите базовую ось или поверхность для пронерки ра-дяг 1Ы10Г0 биения или расположения элементов, пере.аа1ощих вращающий момент, и рассмотрите требования к точности формы и расположения поверхностен а) зубчатого колеса б) червяка в) звездочки ценной передачи г) шкива д) подшипника качения с) подшипника скольления ж) вала з) полумуфты конической фрикционной и) полу-муфты втулочно-пальцевой.  [c.80]

Подшипник качения, как правило, представляет собой отдельный узел, состоящий из наружного и ьнутреннего колец, тел качения, расположенных между кольцами, i сепаратора, разделяющего и удерживающего эти тела в определгнном положении. Подшипник закрытого типа имеет встроенные в наружное кольцо защитные шайбы, служащие для удержания заложенной в него при сборке смазки. В качестве тел качения используют шарики или ролики. Последние могут быть цилиндрическими, коническими, бочкообразными, сплошными, полыми или витыми. Для обеспечения правильного качения шариков или роликов кольца подшипников имеют соответствующие поверхности, называемые беговыми дорожками. Посадочные поверхности колец выполняются, как правило, гладкими цилиндрическими, но отдельные типы подшипников могут иметь на наружных кольцах буртики или канавки для крепления их в корпусе, а отверстия внутренних колец выполняют иногда коническими. В некоторых типах поди ипников наружные и внутренние кольца выполняются разъемньми в плоскости, перпендикулярной к оси вращения подшипника.  [c.86]

Подшипники качения имеют условные обозначения, составленные из цифр и букв. Система основные обозначений подшипников предусмотрена ГОСТ 3189—75. В эт х обозначениях число для подшипников с внутренним диаметром 20...495 мм, состоящее из двух рядом стоящих крайних цифр справа, умноженное на 5, дает диаметр отверстия внутреннего кольца Третья цифра справа (совместно с седьмой, если она имеется) обозначает серию подшипников всех диаметров, кроме малых (до 9 мм). Основная из особо легких серий обозначается цифрой 1, легкая — 2, средняя — 3, тяжелая— 4, легкая широкая — 5, средняя широкая — 6. Четвертая цифра справа обозначает тип подщип4ика радиальный шариковый— О (если нули стоят левее последней значащей цифры, их отбрасывают), радиальный шариковый двухрядный сферический — 1 радиальный с короткими цилиндри 1ескими роликами — 2 радиальный роликовый двухрядный с([)ерический — 3 роликовый игольчатый — 4 роликовый с витыми роликами — 5 радиальноупорный шариковый — 6 роликовый конический — 7 упорный шариковый — 8 упорный роликовый — 9у Конструктивные особенности подшипников обозначаются пятой или пятой и шестой цифрами справа. Цифры, обозначающие Kia точности подшипников 6, 5, 4, 2, ставятся через тире перед у ловным обозначением подшипников цифра О не пишется.  [c.88]

Более совершенны системы с автоматической компенсацией износа (самопритирающиеся конические пробковые краны, торцовые и манжетные уплотнения, узлы подшипников качения с пружинным натягом, системы гидравлической компенсации зазоров в рычажных механизмах и т. д.).  [c.31]

Стандартные подшипники качения по основным признакам разделяют на следующие типы по форме тел качения — на шариковые (см. рис 292, а), роликовые (рис. 292, б, г) игольчатые (рис 292, д, е) в свою очередь, ролики бывают цилиндрические короткие (рис. 293, а) и длинные (рис 293, б), конические с прямолинейной образующей (рис. 293, е), сферические (рис. 293, г), бочкообразные (рис. 293, д), витые (рис. 293, е) и др. по числу рядов тел качения — на однорядные (рис. 292, а—е) двухрядные (рис. 292, ж) и четырехрядные по воспринимаемым нагрузкам — на радиальные (рис. 292, а—ж), радиально-упорные (рис. 292, з, и), упорно-радиальные и упорные (рис. 292, к, л) по важнейшему конструктивному признаку — на самоустанавливающиеся или сферические (рис. 292, ж) и несамо-устанавливающиеся. Сферические подшипники отличаются тем, что внутреннее кольцо вместе с телами, или наружное кольцо  [c.433]

Подшипники качения по направлению действия нагрузки относительно оси вращения делятся на радиальные, упорные и радиальноупорные (рис. 4.62) по размерам (щирине и наружному диаметру) на серии от особо легкой до тяжелой по точности — о г нормальной до сверхпрецизионной. В зависимости от формы тел качения подщипники делятся на шариковые и роликовые (цилиндрические, сферические, конические) по конструктивным особенностям они бывают несамоустанавливающиеся и самоустанав-ливающиеся (допускающие значительный перекос оси внутреннего кольца по отношению к оси наружного), одно-, двух-, и четырехрядные (в зависимости от числа тел качения, расположенных по ширине подшипника), со стопорными шайбами, с уплотнениями и без них.  [c.459]

Типы подшипников качения. Существуют три основные разновидности подшипников качения 1) радиальные (рис. 13.17, а, б, в) с нерегулируемым зазором между телами качения и беговыми Дорожками 2) радиально-упорные и конические (рис. 13.17, г, д), у которых при монтаже подшипника путем осевого смещения наружного кольца относительно внутреннего регулируются осевой и радиальный зазсфы 3) упорные (рис. 13.17, е, ж).  [c.339]

Дополнительная трудность возникает в связи с тем, что угол а является вполне определенной величиной только для роликовых конических подшипников. Для радиальных и радиально-упорных шарикоподшипников с малым конструктивным углом а действительный угол Од заметно отличается от конструктивного вследствие упругой деформации их деталей, возникающей под действием осевой силы Ра- Разность Од — а зависит не только от величины силы Ра, но также и от жесткости конструкции, которая оказывается пропорциональной статической грузоподъемности Со подшипника качения. Последняя указывается в каталогах и представляет собой такую статическую нагрузку (радиальную для радиальных и радиально-упорных и осевую для упорных подшипников), при которбй появляются первые признаки остаточной деформации в зоне контакта. Поэтому действительный угол Од зависит от отношенияТ д/Со.  [c.345]

По форме шипы и шейки бывают главным образом цилиндрическими, а по сечению — сплошными и полыми. Кроме того, применяются еще шаровые цапфы, конструкция которых дает возможность обеспечить валу или осп поворот на некоторый угол. Посадочные поверхности под ступицы насаживаемых деталей вьь полняют цилиндрическими (рис. 22.1, а), реже — коническими (рис. 22.1, б). Диаметры этих поверхностей выбирают по ГОСТу, а диаметры под подшипники качения — по стандартным раэмерам внутренних колец подшипников.  [c.379]

VII-VIII Направляющие и базовые поверхности холодно-высадочных и отрезных автоматов. Торцы станочных втулок. Заплечики валов корпусов под подшипники качения классов П и Н. Торцы ступиц и распорных втулок. Оси отверстий в корпусах конических редукторов при сопряжениях по С и Д. Ось отверстия под палец в поршнях автомобильных и тракторных двигателей Шлифование, фрезерование, строгание, долбление, растачивание  [c.125]

При расчете вал принимают за балку, лежащую па шарнирных опорах. Эта расчетная схема точно соответствует действительному положению только для валов на подшипниках качения, установленных по одному или по два в опоре при двух подшипниках должна быть обеспечена самоустанавл иваемость опоры например, установкой конических роликоподшипников верши-налш роликов в разные стороны.  [c.20]



Смотреть страницы где упоминается термин Подшипники качения конические : [c.403]    [c.302]    [c.312]    [c.117]    [c.345]    [c.371]    [c.371]    [c.395]    [c.120]    [c.230]    [c.320]    [c.556]   
Детали машин Издание 3 (1974) -- [ c.493 , c.500 ]



ПОИСК



Долговечность зубчатых колес конических подшипников качения расчетна

Подшипник качения с витыми с коническими роликами

Подшипники качении роликовые конические — Натяг

Подшипники качения

Подшипники качения роликовые конические однорядные — Размеры

Подшипники качения роликовые конические с большим углом

Подшипники качения роликовые конические — упорные

Подшипники конические

Система допусков для зубчатых конических и подшипников качения

Установка подшипников качения на валах конических редук- торов



© 2025 Mash-xxl.info Реклама на сайте