Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Детали Деформации упруго-пластические

Различают упругие и пластические (остаточные) деформации. Детали машин и приборов работают, главным образом, в области упругих деформаций. Упругостью называется свойство тела восстанавливать свои первоначальные размеры и форму после снятия нагрузки.  [c.124]

Таким образом, раскрытие закономерностей любого вида изнашивания при ударе неизбежно связано с необходимостью учета сложных взаимосвязанных процессов, происходящих при ударе упругопластической деформации, высокоскоростного нагрева и охлаждения, фазовых и структурных превращений, упрочнения и разупрочнения, развития усталостных явлений и др. Ударные нагрузки нарастают и снижаются в очень короткий промежуток времени (тысячные доли секунды) и порождают волны напряжений, которые исходят из зоны контакта. При многократных соударениях деталей в процессе эксплуатации современных машин, различных аппаратов и приборов возможно возникновение в одной детали одновременно упругих и пластических волн растяжения и сжатия. По-видимому, сложность явлений, сопровождающих соударение поверхностей, и связанное с этим принятие различных упрощающих предположений, отклонение реальных механических свойств от их абстрактных механических моделей служат причиной несогласованности результатов теоретических и экспериментальных исследований удара. Структура и механические свойства одного и того же металла существенно различаются при динамическом и статическом нагружении [22].  [c.22]


Механизм образования поверхностного слоя в процессе механической обработки. Физическое состояние (структура, свойства) и напряженность поверхностного слоя детали в основном являются следствием упруго-пластической деформации и местного нагрева, возникающих в зоне резания.  [c.48]

Макронапряжения (деформационные, температурные) являются прежде всего следствием макронеоднородности упруго-пластической деформации по глубине поверхностного слоя. Проявление макронапряжений в основном связано с перераспределением и определенной ориентацией дислокаций одного знака в поверхностных слоях, обусловленного воздействием неоднородного силового, температурного или материального поля внутри детали.  [c.128]

Оптически чувствительные слои на поверхности детали [32]. Слой из оптически чувствительного материала (например, ЭД6-М) наносится на поверхность металлической детали или ее модели в жидком виде (и затем подвергается полимеризации) или наклеивается на нее в виде пластинки. Измерения проводят в пределах пропорциональности между наблюдаемым порядком полос интерференции и деформацией в слое. С применением нормального и наклонного просвечивания поляризованным светом, который отражается от поверхности металла, определяют разность и величины главных напряжений и их направления. Деформации (и напряжения) в поверхности металлической детали могут находиться как в пределах, так и за пределом упругости. При деформациях в пластической области для определения напряжений необходимо иметь зависимость между напряжениями и деформациями для данного материала и имеющегося соотношения главных деформаций. Для повышения предела пропорциональности слоя эксперимент может проводиться при повышенной температуре, соответствующей методу замораживания (100—130°) или применяют соответствующий материал слоя.  [c.595]

При релаксации уменьшение напряжений в детали вызывается нарастанием пластической деформации за счет упругой деформации при неизменной длине детали, а при ползучести нарастание пластической деформации происходит исклю-  [c.576]

Гибка - операция, изменяющая кривизну заготовки практически без изменения ее линейных размеров (рис. 3.74, а). В процессе гибки пластическая деформация сосредоточивается на узком участке, контактирующем с пуансоном, в то время как участки, образующие полки детали, деформируются упруго. В зоне пластических деформаций наружные слои растягиваются, а внутренние (обращенные к пуансону) сжимаются. У середины заготовки (по толщине) находятся слои, деформация которых равна нулю. Из сказанного следует, что с достаточной степенью точности размеры заготовки для детали, получаемой гибкой, можно определять по условию равенства длин заготовки и детали по средней линии. Деформация растяжения наружного слоя и сжатия внутреннего увеличивается с уменьшением радиуса скругления рабочего торца пуансона. Деформация растяжения наружного слоя не беспредельна, и при определенной ее величине может начаться разрушение заготовки с образованием трещин, идущих от наружной поверхности в толщу заготовки. Это обстоятельство ограничивает минимальные радиусы r ia, исключающие разрушение заготовки. В зависимости от пластичности материала заготовки Гти, = (0,1. .. 2) 5.  [c.131]


При приложении к материалу напряжений, изменяющихся во времени, из-за структурной неоднородности материала, обусловленной его кристаллической структурой, в некоторых кристаллографических плоскостях отдельных зерен возникает циклическая упруго-пластическая деформация даже при напряжениях, меньших предела упругости. В результате по мере накопления числа циклов нагружения чаще всего на поверхности детали возникает небольшая начальная макротрещина. Она является фокусом последующего усталостного разрушения (рис. 16.1). Чаще всего в турбинных лопатках фокус появляется в зонах максимальных напряжений, вызванных концентрацией напряжений  [c.428]

Поскольку иногда детали машин и элементы конструкций работают за пределом текучести, необходимо исследовать зависимость между напряжениями и деформациями в пластической области, где соотношения линейной теории упругости уже неприменимы. Соотношения между деформациями и напряжениями в пластической области в общем случае нельзя считать не зависящими от времени. В любой точной теории пластического деформирования следовало бы учитывать влияние всего процесса изменения пластической деформации с момента начала пластического течения. Соотношения, учитывающие это, были бы очень сложными, они содержали бы в себе напряжения и скорость изменения деформации во времени. Уравнения были бы аналогичны уравнениям течения вязкой жидкости, а деформацию в каждый момент времени следовало бы определять, осуществляя пошаговое интегрирование по всему процессу изменения деформации. Такой подход привел бы к очень трудоемким расчетам даже при решении простейших задач о пластической деформации. Вследствие этого обычно делают некоторые упрощающие предположения, которые позволяют относительно просто исследовать процессы пластического деформирования и получать достаточно простые результаты, пока температура ниже температуры ползучести и в случае обычных скоростей деформации.  [c.118]

При циклически меняющемся длительном нагружении в нагретом состоянии в детали протекают процессы перераспределения деформаций и напряжений в результате как активного деформирования при изменении нагрузки, так и ползучести или релаксации во время выдержек в нагруженном и деформированном состояниях. Расчет усилий, чисел циклов и времен, соответствующих предельным состояниям, основывают на решении задач об упруго-пластическом распределении деформаций и напряжений в зонах концентрации в зависимости от циклов и времени, а также на использовании критериев разрушения (возникновения трещины) в условиях сочетания длительных статических и циклических изменений, постепенно протекающих в материале.  [c.7]

Критерии несущей способности деталей при упруго-пластическом циклическом деформировании могут быть приняты такими же, что и при статическом деформировании, но нужно иметь в виду, что в этом случае деформации, напряжения и перемещения в детали от цикла к циклу изменяются.  [c.118]

Остаточные напряжения растяжения возникают в сварных соединениях вследствие тепловых и упруго-пластических деформаций в процессе образования шва. Особенно велика их роль при наличии концентраторов напряжения. При некоторых условиях растягивающие остаточные напряжения снижают предел выносливости изделия или образца на 35—50%. Для исключения отрицательной роли остаточных напряжений растяжения детали подвергаются отжигу или поверхностному упрочнению пластическим деформированием [148].  [c.54]

В вязком состоянии их разрушению предшествует существенная пластическая деформация. Для определения несущей способности деталей из пластических материалов обычно рассматривается их поведение при небольшой степени пластического деформирования. Здесь существенное значение приобретает определение предела текучести, который при расчетах в упруго-пластической области принимается равным пределу пропорциональности на кривой деформирования [20]. Различают истинную и условную диаграмму деформирования, В условной диаграмме на оси ординат откладываются напряжения a = S/Fo, а на оси абсцисс — деформации 1 = А1/1о. Здесь S— сила, действующая на растягивающийся образец Fo, 1о — начальная площадь сечения и длина образца А/ — абсолютная деформация образца. На этой диаграмме предел текучести соответствует остаточной деформации образца, равной 0,2 %. Значения этого условного предела текучести приводятся в справочной литературе. Следует учитывать, что после возникновения пластических деформаций в какой-либо части сечения детали имеет место увеличение несущей способности. Это происходит за счет перераспределения напряжений по сечению (например, при изгибе оси или балки) и за счет упрочнения материала детали при пластическом деформировании.  [c.120]


Коэффициент сопротивления в пластической области характеризует также влияние на несущую способность деталей при статической нагрузке ограничений по жесткости, налагаемых в соответствии с условиями эксплуатации конструкции. В случае, когда пластическая или остаточная деформация в детали не может быть допущена, Q p = Qp и = 1. Если предельно допустимые значения деформаций детали выше значений деформаций, соответствующих достижению предела текучести, то коэффициент сопротивления К, характеризует возрастание несу щей способности благодаря упруго-пластическому перераспределению напряжений в процессе деформирования. Это возрастание может быть использовано в соответствии с допустимыми перемещениями, уже превышающими упругие. Коэффициент зависит от распределения напряжений за пределами упругости и параметров диаграммы деформирования. Определение предельных нагрузок и по ним величин коэффи-  [c.440]

Для прямого решения упруго-пластических задач оптический материал должен подчиняться за пределом упругости тем же условиям деформирования, что и материал исследуемой детали (сталь), а также давать за пределом упругости оптический эффект в зависимости от напряжений и в зависимости от деформаций.  [c.521]

Условия подобия при упруго-пластических деформациях полностью воспроизводятся, если модель выполнена из того же материала, который применен для натурной детали, и масштаб геометрического подобия 1 1.  [c.83]

Основные преимущества метода, обеспечившие его практическое применение, следующие а) напряженное состояние может наблюдаться визуально по всей рассматриваемой плоскости модели б) весьма просто определяются напряжения на сложном контуре плоской модели в) напряжения могут быть определены с высокой точностью г) изменением формы модели может быть найдена улучшенная конструкция детали. К основным недостаткам метода относится следующее а) измерения проводятся на моделях, а не на натуре (исключая случаи применения наклеек — см. раздел 18) б) измерения на объемных моделях требуют применения более сложной техники эксперимента в) определение с большой точностью отдельных компонентов напряжений внутри объемной модели затруднительно г) метод исследования, достаточно разработанный для деформаций в пределах пропорциональности, труден для решения задач упруго-пластических деформаций на прозрачных моделях.  [c.159]

Первое направление исследований разработано применительно к упругим моделям как ряд методов, позволяющих с применением просвечивания поляризованным светом находить компоненты напряжений на поверхности объемной модели или внутри ее объема. Второе направление исследований, разрабатываемое в последние годы, относится к методу измерения деформаций в точках поверхности непосредственно на самой натурной детали зто позволяет поляризационно-оптическим методом, обеспечивающим нулевую базу измерений, вести исследования при наличии особенностей упруго-пластического деформирования материала и других условий натурной детал и.  [c.175]

Предельная несущая способность при пластическом состоянии материала детали соответствует тому состоянию, при котором её деформации возрастают без дальнейшего увеличения нагрузок. Такое предельное состояние соответствует упруго-пластическому распределению напряжений (соответствующие расчёты см. гл. V).  [c.333]

Для иллюстрации сказанного на фиг. 39 приводятся последовательность процесса вырубки (пробивки) и форма поверхности среза на детали для случая нормального (фиг. 39,а), малого (фиг. 39,6) и большого (фиг. 39,в) зазоров между пуансоном и матрицей. Как и указывалось ранее, процесс вырубки состоит из трех стадий стадии упругих деформаций, стадии пластических деформаций, стадии скалывания  [c.54]

В условиях работы молота происходит упруго-пластический удар, в результате которого поковка деформируется пластически и упруго, ударные массы и детали молота —упруго. Эффективная энергия молота Г, расходуется на полезную работу пластического деформирования поковки Лд, работу упругой деформации поковки Лу. Г1 и деталей молота Лу, на трение в подвижных элементах конструкции молота и штампов (уплотнениях, направляющих, замках и т. п.) Л , смещение центра взаимодействующих масс Лг .  [c.360]

При релаксации уменьшение напряжений в детали вызывается нарастанием пластической деформации за счёт упругой деформации при неизменной длине детали, а при ползучести нарастание пластической деформации происходит исключительно за счёт удлинения детали. При этом общая деформация при ползучести значительно больше, чем при релаксации величина же деформации при высоких температурах может оказать существенное влияние на протекание ползучести, вызывая рекристаллизационные, диффузионные и другие процессы, отражающиеся иа сопротивлении материала пластической деформации.  [c.799]

Уплотнения неподвижных соединений. Предназначены для герметизации разъемов аппаратов, машин, трубопроводов и устройств — фланцев, крышек, смотровых устройств, ниппелей, резьбовых соединений и др. Эффект уплотнения в неподвижных соединениях достигается сжатием уплотняемого стыка с определенной силой, обеспечивающей полное смыкание стыкуемых поверхностей с их упруго-пластической деформацией и с заполнением микронеровностей поверхностей в зоне контакта непосредственно соединяемых или промежуточной детали (прокладки). Эти уплотнения можно классифицировать в соответствии со схемой (рис. 2.13.39).  [c.505]


Гибка - операция, изменяющая кривизну заготовки практически без изменения ее линейных размеров (рис. 10.22, а). В процессе гибки пластическая деформация сосредоточивается на узком участке, контактирующем с пуансоном, тогда как другие участки, образующие полки детали, деформируются упруго. В зоне пластической деформации наружные слои растягиваются, а внутренние сжимаются. У середины заготовки (по толщине) находятся слои, деформация которых равна нулю (см. также рис. 2.25, в).  [c.485]

При наличии упруго-пластических деформаций увеличение наружного диаметра охватывающей детали 2 также может быть использовано для определения величин удельного давления р и натяга Л р.  [c.159]

Расчеты на ползучесть по теории старения эквивалентны расчетам при нелинейных зависимостях между напряжениями и деформациями. Наиболее общая формулировка теории старения принадлежит Ю. Н. Работнову [124, 125]. Согласно ей напряжения и деформации в условиях ползучести для заданного значения времени определяются путем расчета детали на основе изохронной кривой ползучести для этой величины времени. Поэтому так же, как и в случае установившейся ползучести, результаты, полученные в теории пластичности [50, 60, 149], а также приближенные методы решения упруго-пластических и пластических задач, например метод упругих решений [50], метод переменных параметров упругости [8, 9], вариационные методы [60], могут быть использованы и для расчетов по теории старения.  [c.220]

Попутно не вредно обсудить вопрос о так называемых константах материала, термине, широко употребляемом в механике сплошной среды. Константы или постоянные материала действительно существуют, пока материал рассматривается на уровне кристаллической решетки. Чем больше по масштабной шкале (укрупняя объем) мы уходим от параметров решетки, тем менее константы остаются таковыми. Для уяснения степени постоянства укажем на введенное Я.Б. Фридманом деление механических свойств на докритические, критические и закритические [261]. Все они в равной мере относятся к трем, последовательно возникающим и параллельно идущим вплоть до полного разрушения, видам деформации — упругой, пластической и разрушения. Докритические определяются по допуску на величину данного вида деформации или на появление нового, и это на стадии возрастающей несущей способности. Папример, условный предел текучести определяется по допуску на величину появившегося на фоне упругой деформации, нового вида деформации — пластической. Докритические характеристики можно считать постоянными материала. Па стадии упругой деформации модули упругости и коэффициент Пуассона — докритические характеристики и, следовательно, постоянные материала. По, например, критическое напряжение Эйлера сжатого упругого стержня есть механическая характеристика, отражающая свойства упругости в момент потери устойчивости и, как и положено критической характеристике, зависит не только от докрити-ческих характеристик, но и от формы и размеров стержня и условий закрепления. Аналогично предел прочности (временное сопротивление) является критической характеристикой, поскольку шейкообразо-вание представляет собой смену форм равновесия и сопровождается прекращением роста несущей способности. Естественно, что предел прочности должен зависеть и зависит от размеров, формы образца и схемы приложения нагрузки. По привычка считать предел прочности постоянной материала (естественно, имеется в виду неизменность условий нагружения, скорости, температуры, среды и т.п.) есть результат стандартизации метода его определения. Изменив габариты, форму сечения, взяв, наконец, вообще реальную конструкционную деталь, получим сильно различающиеся значения пределов прочности, что и должно быть для критической характеристики. Поэтому неудивительно, что при разрушении реальной детали напряжение в  [c.14]

В условиях технологической обработки и фрикционного взаимодействия поверхностные слои детали подвергаются упругим и пластическим деформациям. При упругом деформировании под действием внешней силы изменяется расстояние между атомами в кристаллической решетке. Снятие нагрузки устраняет причину, вызвавшую изменение межатомного расстояния, атомы возвраьцаются в исходное равновесное положение, деформация и напряжения исчезают.  [c.48]

Наклеп деталей машин (обкатка роликами и обдувка дробью) часто производится для повышения их усталостной прочности. Поверхностный наклеп приводит, с одной стороны, к меха1П ческому упрочнению поверхностных слоев металла, с другой стороны, к возникновению остаточных напряжений (сжатие на поверхности и рас-тях<енпе внутри металла). Рассеяние энергии при общей упругой деформации детали связано с пластической деформацией в микроскопических объемах структуры, испытывающих пластические деформации. Поскольку уирочиеиие поверхностных слосв металла соиро-  [c.119]

Термическая усталость является результатом деформации, которая возникает из-за стесненности термического расширения детали, связанного с возникновением температурных градиентов термическая усталость может привести к растрескиванию детали. Деформация, порождающая термическую усталость представляет собой произведение коэффициента термического расширения на изменение температуры. Хорошим способом моделировать термическую усталость является испытание на малоцикловую усталость при постоянной амплитуде деформации. Петля гистерезиса, соответствующая такому методу испытаний, представлена на рис. 7.15. Верхняя часть рис. 7.15 характеризует петлю гистерезиса при испытаниях суперсплавов в обычной отливке. А на нижней части рисунка, относящейся к суперсплавам направленной кристаллизации, показано, что чем ниже модуль упругости, тем уже петля гистерезиса. Такая связь объясняется тем, что, во-первых, предел текучести у низкомодульного сплава направленной кристаллизации равен пределу текучести высокомодульного сплава для обычных отливок и, во-вторых, более низкий модуль упругости требует меньшей пластической деформации, чтобы достигнуть той же самой полной деформации. Амплитуда пластической деформации высокомодульного сплава для обычных отливок (Дe ,)oк выше, чем у низкомо-  [c.272]

Удар прямой, угол атаки а = 90°. В зависимости от массы частиц, скорости их падения,свойств абразива и физико-механических свойств материала детали возникает упругая деформация, пластическая деформация, хрупкое разрушение, перенаклеп с отделением материала в виде чешуек. По данным К- Велингера и Г. Беца, наибольшей износостойкостью при твердости абразивных частиц, равной и выше твердости кварца, и скорости потока около 100 м/с обладает резина и спеченные материалы весьма малой износостойкостью — базальт и стекло. Износостойкость углеродистых и инструментальных сталей примерно одного и того же порядка.  [c.167]


Иначе обстоит дело при изгибе, кручении и других видах деформации, отличающихся неравномерным распределением напряжений по сечению. Пока нагрузка мала (момент на рис. 14), деформации упруги. Когда напряжения в крайних волокнах достигают предела текучести Ор, несущая способность детали сохраняется, так как остальные волокна испытывают напряжения, меньшпе Ор. Затем область пластических деформаций охватывает все большую часть сечения, пока при моменте М = пред напряжения во всех волокнах (за исключением бесконечно малого центрального ядра) не достигают предела текучести. Если материал неупрочняющийся, то дальнейшее увеличение нагрузки невозможно.  [c.27]

Если предельно допустимые значения деформаций детали выше значения деформаций, соответствующих достижению предела текучести, то Qпpeд >Qr и коэффициент сопротивления в пластической области характеризует возрастание несущей способности благодаря упруго-пластическому перераспределению напряжений в процессе деформирования это возрастание может быть использовано в соответствли с допустимыми перемещениями, уже превышающими упругие деформации. В случае, когда пластическая или остаточная деформация в детали, не может быть допущена, Спред = Qt и Qap = 1.  [c.75]

Изменение формы какого-либо тела под действием силы называется деформацией. Если после прекращения действия силы первоначальная форма восстанавливается, деформация называется упругой. Если после прекращения действия сплы первоначальная формя ие восстанавливается, деформация называется пластической. При резании металлов имеют место главным образом пластические деформации, так ках рсзеи, внедряясь з металл под действием приложенной силы, изменяет форму поверхностного слоя металла обрабатываемой детали, сдвигая его частицы и превращая их в стружку.  [c.433]

Детали молота подвергают интенсивным ударным нагрузкам. Расчет на максимальную нагрузку (и максимальные напряжения) необходим для разработки прочной конструкции деталей молота. Максг1мально возможное усилие при ударе штампа о штамп без учета местных упруго-пластических деформаций  [c.397]


Смотреть страницы где упоминается термин Детали Деформации упруго-пластические : [c.106]    [c.13]    [c.91]    [c.222]    [c.440]    [c.487]    [c.395]    [c.17]    [c.73]    [c.371]    [c.29]    [c.154]    [c.236]    [c.133]    [c.133]   
Справочник машиностроителя Том 3 Изд.3 (1963) -- [ c.0 ]

Справочник машиностроителя Том 3 (1951) -- [ c.187 ]



ПОИСК



Деформации в пределах упругости деталей машин пластические Расчет

Деформация детали

Деформация пластическая

Деформация упругая

Деформация упруго-пластическая

Пластическая деформаци

Прочность соединения при упругих деформациях детаПрочность соединения при упруго-пластических деформациях деталей

Упругие деформации детали

Формулы для расчета соединений при упруго-пластических деформациях деталей



© 2025 Mash-xxl.info Реклама на сайте