Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жидкости Пограничный слой ламинарный

Пусть вдоль пластины снизу вверх движется только тонкий слой жидкости, а основная масса жидкости остается в состоянии покоя. Если толщина движущегося слоя жидкости значительно меньше высоты пластины, то его можно рассматривать как пограничный слой. Ламинарный пограничный слой возникает при числах Грасгофа Сг > Ю". На рис. 28.1  [c.372]

В пограничном слое, как и при течении в трубе, режимы течения жидкости могут быть как ламинарными, так и турбулентными. Режим течения в пограничном слое определяет и характер силы взаимодействия тела с потоком. Так же, как и при движении жидкости в трубах, имеются характерные числа Рейнольдса, при которых в пограничном слое ламинарное течение переходит в турбулентное. Само явление перехода имеет много общего с явлением перехода ламинарного движения в турбулентное в трубах. При турбулентном пограничном слое на об-  [c.298]


Поскольку на течение жидкостей и газов в каналах решающее влияние оказывает вязкость среды, то теоретические исследования здесь в основном базируются на использовании методов гидродинамики вязкой жидкости и, в частности, гидродинамики пограничного слоя. Именно успехи в развитии теории пограничного слоя —- ламинарного и турбулентного — позволили получить ряд важнейших результатов в области аэродинамики каналов.  [c.792]

С увеличением толщины теплового пограничного слоя при ламинарном течении жидкости у поверхности пластины интенсивность теплоотдачи уменьшается. В переходной зоне общая толщина пограничного слоя продолжает возрастать, однако значение а при этом увеличивается, потому что толщина ламинарного подслоя убывает, а в образующемся турбулентном слое тепло переносится не только теплопроводностью, но и конвекцией вместе с перемещающейся массой, т. е. более интенсивно. В результате сум-.марное термическое сопротивление теплоотдачи убывает.  [c.80]

Определение симплекса скоростей v jv вызывает трудности, особенно для сред с Ргп>1 (капельные жидкости). Для газов выбор метода оценки этой величины не может вносить заметной погрещности, так как комплекс согласно (6-16) меньше единицы всего на несколько процентов и в первом приближении может вообще не учитываться. Как известно, для однородных потоков по Прандтлю и7 = 0,3, а по Лейбензону при параболическом изменении скорости в ламинарном пограничном слое v jv = 0,33. Известны рекомендации иного рода, например u /v = l,74 Re- или в более общем виде по Гофману v lv=, 5 Re- / Pr / .  [c.190]

Теплоотдача от жидкости к пластине определяется характером течения рабочего тела вдоль поверхности. Около пластины образуется пограничный слой, в котором движение может быть как ламинарным, так и турбулентным. Однако и при турбулентном пограничном слое у стенки имеется тонкий ламинарный подслой, представляющий собой главное термическое сопротивление.  [c.431]

Рейнольдса, и течение перестает быть стационарным, несмотря на постоянство скорости обтекания Voo- При атом некоторая часть жидкости время от времени вырывается из кольцевого вихря и сносится вниз но потоку. Указанные колебания вихря сопровождаются колебаниями продольной силы /р, и появлением колеблющейся значительной поперечной (перпендикулярной к скорости потока) силой на сферу (средняя по времени величина которой равна нулю). Резкое падение С при Re,, Ю связано с переходом ламинарного пограничного слоя в турбулентный режим, что приводит к затягиванию точки отрыва погранслоя вниз по потоку и уменьшению сопротивления.  [c.251]


Ламинарная круглая струя. Ламинарные струи однофазной жидкости исследовались многими авторами. Подробный обзор этих исследований можно найти в работах [7,222,442]. Ламинарная круглая струя несжимаемой жидкости была исследована Шлихтингом [886], который из решения уравнений пограничного слоя определил радиальную составляющую скорости и и осевую составляющую скорости ю струи  [c.373]

Выведем уравнения движения жидкости в ламинарном пограничном слое. Для простоты вывода рассмотрим двухмерное обтекание жидкостью плоского участка поверхности тела. Эту плоскость выберем в качестве плоскости х, z, причем ось х направлена по направлению обтекания. Распределение скорости не зависит от координаты г г-компонента скорости отсутствует.  [c.223]

Падение средней скорости как в турбулентном, так и в ламинарном пограничном слое, обусловливается в конечном итоге вязкостью жидкости. Однако влияние вязкости проявляется в турбулентном пограничном слое очень своеобразно. Самый ход изменения средней скорости в слое не зависит непосредственно от вязкости вязкость входит в выражение для градиента скорости только в вязком подслое. Общая же толщина пограничного слоя определяется вязкостью и обращается в нуль вместе с ней (см. ниже). Если бы вязкость была в точности равна нулю, то никакого пограничного слоя вовсе не было бы.  [c.252]

Применим полученные в предыдущем параграфе результаты к турбулентному пограничному слою, образующемуся при обтекании тонкой плоской пластинки, — таком же, какое было рассмотрено в 39 для ламинарного течения. На границе турбулентного слоя скорость жидкости почти равна скорости LJ основного потока. С другой стороны, для определения этой скорости на границе мы можем (с логарифмической точностью) воспользоваться формулой (42,7), подставив в нее вместо у толщину пограничного слоя б ). Сравнив оба выражения, получим  [c.252]

Рассмотрим ламинарное слоистое движение вязкой жидкости около неподвижной твердой стенки. На самой стенке скорость жидкости равна нулю, а вблизи стенки жидкость подтормаживается под действием сил вязкости. Эта область течения вязкой жидкости, расположенная около обтекаемого тела, называется пограничным слоем. Вне пограничного слоя влияние вязкости обычно проявляется слабо и картина течения близка к той, которую дает теория идеальной жидкости. Поэтому для теоретического исследования течения вязких жидкостей все иоле течения можно разбить на две области на область пограничного слоя вблизи стенки, где следует учитывать силы трения, и на область течения вне пограничного слоя, в которой можно пренебречь силами трения и поэтому применять закономерности теории идеальной жидкости. Следовательно, пограничный слой представляет собой такую область течения вязкой жидкости, в которой величины сил трения и инерции имеют одинаковый порядок. На основании этого можно оценить толщину пограничного слоя.  [c.279]

Описанные результаты относятся к наиболее простым случаям течения в ламинарном пограничном слое. При более сложной форме обтекаемой поверхности и произвольном распределении параметров внешнего потока необходимо решать систему уравнений в частных производных (31), (32) численными методами. Наряду с разработкой численных методов были сделаны попытки создать приближенные методы расчета, основанные на решении интегральных соотношений, составленных для всего пограничного слоя. Составим интегральное соотношение импульсов при установившемся течении в пограничном слое сжимаемой жидкости. Применяя уравнение количества движения к элементу пограничного слоя длины dx и единичной ширины, получим ( 5 гл. I)  [c.299]


В отличие от ламинарного течения, для которого связь между коэффициентом сопротивления (или перепадом давления) и расходом жидкости определяется теоретически из решения уравнений Навье — Стокса, при турбулентном режиме такая связь может быть найдена только в том случае, если профиль скорости известен из эксперимента. Как уже указывалось в 4, профиль скорости в пограничном слое на плоской пластине при Ri= 10 —10 (Ra=2- 10 —10 ) хорошо описывается степенной формулой с показателем 1/7, которая в выбранной системе координат имеет вид  [c.351]

Особенностью электромагнитной объемной силы является то, что в отличие от других объемных сил (силы тяжести, инерционных сил) ею можно управлять, воздействуя на вызывающие ее. электрическое и магнитное поля. Изменяя величину электромагнитной силы, можно влиять на интенсивность и форму ударных волн, увеличивать критическое значение числа Рейнольдса при переходе ламинарного режима течения в турбулентный, замедлять пли ускорять поток электропроводной жидкости (или газа), вызвать деформацию профиля скорости п отрыв пограничного слоя.  [c.178]

На рис. 5.2 изображено температурное поле в жидкости при теплоотдаче, когда пограничный слой имеет турбулентный характер. Резкое изменение температуры в ламинарном подслое свидетельствует о большом термическом сопротивлении этой части потока. В турбулентной части потока, где решаюш,ую роль играет конвективный перенос теплоты, наблюдается слабое изменение температуры по толщине слоя жидкости.  [c.307]

Интегральные уравнения выводятся без введения каких-либо предпосылок о характере течения жидкости, поэтому они пригодны как для ламинарного, так и для турбулентного пограничного слоя.  [c.325]

Теплоотдачу пластины, омываемой свободным потоком жидкости (градиент давления вдоль пластины равен нулю), при ламинарном пограничном слое можно рассчитать на основе теории динамического пограничного слоя с использованием интегрального соотношения количества движения. Схема такой пластины показана на рис. 5.3. Все теплофизические свойства теплоносителя считаются независящими от температуры.  [c.325]

На поверхности трубы, через которую течет жидкость, образуется динамический пограничный слой, который может иметь ламинарный или турбулентный характер. На рис. 7.1 показана картина формирования турбулентного пограничного слоя. На некотором расстоянии от входа пограничные слои смыкаются и после этого в поперечном сечении устанавливается стабильное распределение скоростей, которое при ламинарном потоке имеет параболический характер, а при турбулентном распределение скоростей зависит от величины критерия Re и характеризуется разными зависимостями в турбулентном ядре и ламинарном подслое.  [c.334]

Основные уравнения движения. 11.2. Уравнения движения и переноса теплоты в пограничном слое. 11.3. Сопротивление движению в ламинарном потоке жидкости. 11.4. Сопротивление движению в турбулентном потоке жидкости.  [c.330]

Предварительные замечания. Рассмотрим стационарное движение несжимаемой жидкости в ламинарном пограничном слое при этом плотность и вязкость жидкости будем предполагать постоянными.  [c.375]

Движение жидкости в пограничном слое является ламинарным, если значение числа Рейнольдса, отнесенного к толщине пограничного слоя Ре (б) = ffi)oS/v, меньше некоторой критической величины  [c.375]

Механизм и интенсивность переноса тепла зависят от характера движения жидкости в пограничном слое. Если движение внутри теплового пограничного слоя ламинарное, то тенло в направлении, перпендикулярном к стенке, иерепосится теплопроводностью. Однако у внешней границы слоя, где температура по нормали к стейке меняется незначительно, преобладает перенос тепла конвекцией вдоль стенки.  [c.405]

Теория пограничного слоя также дает возможность рассчитать точку, где течение отрывается от новерхности, поскольку, как подчеркивал Прандтль, отрыв потока происходит в основном потому, что вязкость рассеивает кинетическую энергию внутри слоя. Как я уже говорил, сопротивление следа вызвано отрывом потока. Поэтому важно спрогнозировать условия, при которых происходит отрыв. До введения в механику жидкостей теории иограпичиого слоя, отрыв можно было предсказать только, если ноток проходил пад острой кромкой. Теория иограпичиого слоя открывает возможность прогнозирования отрыва потока для новерхности без острых кромок, по крайней мере, в случаях, когда известно внешнее течение, а течение в пограничном слое ламинарное.  [c.95]

Ранее указыва.иось., что при рассмотрении взаимодействия потока газа или жидкости с твердой поверхностью все течение пелесообразно разделить на две области тонкого (пристеночного) пограничного слоя и располагающегося над ним внешнего потока. При этом могут реализоваться три режима течения 1) во внеш нем потоке и в пограничном слое — течение ламинарное 2) внешний поток турбулентный, а течение в пограничном слое ламинарное 3) во внешнем потоке и в пограничном слое — течение турбулентное.  [c.392]

При ламинарном течении тен ловой поток от охлаждаюп1енся в пограничном слое жидкости переносится к поверхности пластины только за счет теплопро-  [c.79]


Локальный коэффициент теплоотдачи от трубы к теку[цей в ней жидкости изменяется лишь на начальном участке (рис. 9.4,6), а на участке стабилизированного течения air = onst, поскольку толщина пограничного слоя (6т=г) постоянна. С увеличением скорости течения теплоносителя в трубе аст возрастает из-за уменьшения толщины ламинарного подслоя, а с увеличением диаметра тру-  [c.81]

При малых числах Re преобладают силы вязкости и режим течения жидкости ламинарной (отдельные струи потока не перемешиваются, двигаясь параллельно друг другу, и всякие случайные завихрения быстро затухают под действием сил вязкости). При турбулентном течении в потоке преобладают силы инерции, поэтому завихрения интенсивно развиваются. При продольном обтекании пластины (см. рис. 9,2) ламинарное течение в пограничном слое нарушается на расстоянии Хкр от лобовой точки, на котором Re p = ЮжХкр/v 5 10 .  [c.82]

Необходимо отметить, что и в случае турбулентного гидродинамического пограничного слоя неиосредствеино у стенки имеется очень тонкий слой жидкости, движение в котором имеет ламинарный характер. Этот слой называют вязким, или ламинарным, подслоем 3.  [c.404]

При турбулентном течении в тепловом пограничном слое перенос тепла в нанравлении к стенке в основном обусловлен турбулентным перемешиванием жидкости. Интенсивность такого переноса тепла существешю выше интенсивности переноса тепла теплопроводностью. Однако непосредственно у стенки, в ламинарном подслое, перенос тепла к стенке осуществляется обычной теплопроводностью.  [c.405]

Коэффициент теплоотдачи в процессе испяреипя жидкости со свободной поверхности по сравнению с коэффициентом теплоотдачи при теплообмене, не осложненном массообмепом ( сухой теплообмен ), имеет большее значение. Одной из основных причин интенсификации теплообмена при испарении по сравнению с сухим теплообменом является объемное испарение. Согласно теории объемного испа[)епия, при соприкосновении потока ra.sa с поверхностью жидкости происходят неравномерные процессы очаговой конденсации вдоль ее поверхности. В результате этого имеет место отрыв субмикроскопических частиц жидкости, которые испаряются в пограничном слое. Второй причиной увеличения по сравнениго са,,у является наличие очаговых процессов испарения и конденсации, в результате которых вследствие попеременного изменения объема вещества (пара) в Ю раз происходит нарушение структуры ламинарного пограничного слоя, что и приводит к интенсификации тепло- и массообмепа. Наибольший эфс ект это явление имеет при испарении в вакууме.  [c.514]

Уравнение (6.34) справедливо в случае медленного относительного движения или высокой концентрации твердых частиц. Эти определения становятся более понятными при рассмотрении передачи количества движения от частиц к жидкости. Заметим, что, согласно уравнению (6.34), дискретная фаза считается сплошной средой, т. е. количество движения передается не только от газа к частицам, но и наоборот. Следовательно, в диффузоре, где частицы тормозятся, они также вносят вклад в повышение давления. Очевидно, это не всегда так. Фрёсслинг [686] показал, что даже при ламинарном режиме относительного движения перед отрывом толщина пограничного слоя б потока около сферы (фиг. 2.2) определяется по соотношению  [c.279]

Отсюда можно сделать вывод, что при больших числах Рейнольдса падение скорости до нуля будет происходить почти полностью в тонком пристеночном слое жидкости. Этот слой носит название пограиичиого и характеризуется, следовательно, наличием в нем значительных градиентов скорости. Движение в пограничном слое может быть как ламинарным, так и турбулентным, Здесь мы рассмотрим свойства ламинарного пограиичиого слоя. Граница этого слоя не является, конечно, резкой, и переход между ламинарным движением в нем и в основном потоке жидкости происходит непрерывным образом.  [c.223]

Наконец, остановимся на вопросе о ламинарном пограничном слое, возникающем на стенках трубы вблизи места входа жидкости в нее. Жидкость вступает в трубу обычно с распределением скоростей, почти постоянным по всему поперечному сечению, и падение скорости происходит только в пограничном слое. По мере удаления от входа начинают тормозиться слои жидкости все ближе к оси трубы. Поскольку количество протекающей жидкости должно оставаться постоянным, то наряду с уменьшением диаметра внутренней части течения (с почти постоянным профилем скоростей) происходит одновременное его ускорение. Так продолжается до тех пор, пока асимптотически не устанавливается пуазейлевское распределение скоростей, которое, таким образом, имеет место только на достаточно большом расстоянии от входа трубы. Легко определить порядок величины длины I этого так называемого начального участка течения. Он определяется тем, что на расстоянии I от входа толщина пограничного слоя делается порядка величины радиуса а трубы, так что пограничный слой как бы заполняет собой все ее сечение.  [c.229]

Толш,ина пограничного слоя растет вниз по течению вдоль обтекаемой поверхности (закон этого возрастания будет найден ниже). Это объясняет, почему при течении по трубе логарифмический профиль имеет место вдоль всего сечения трубы. Тол-ш,ина пограничного слоя у стенки трубы растет, начиная от входа в трубу. Уже на некотором конечном расстоянии от входа пограничный слой как бы заполняет собой все сече]1ие трубы. Поэтому если рассматривать трубу как достаточно длинную и не интересоваться ее начальным участком, то течение во всем ее объеме будет того же типа, как н в турбулентном пограничном слое. Напомним, что аналогичное положение имеет место и для ламинарного течения по трубе. Оно всегда описывается формулой (17,9) роль вязкости в нем проявляется на всех расстояниях от стенки и никогда не бывает ограничена тонким пристеночным слоем жидкости.  [c.252]

Существует два способа расчета параметров жидкости в пограничном слое. Первый способ заключается в численном решении системы дифференциальных уравнений пограничного слоя, впервые полученных Прандтлем, и основывается на использева-нии вычислительных машин. В настоящее время разработаны различные математические методы, позволяющие создавать рациональные алгоритмы для решения уравнений параболического типа, к которому относится уравнение пограничного слоя. Такой подход широко используется для определения характеристик ламинарного пограничного слоя. Развиваются приближенные модели турбулентности, применение которых делает возможным проведение расчета конечно-разностными численными методами и для турбулентного потока. Второй способ состоит в нахождении методов приближенного расчета, которые позволяли бы получить необходимую информацию более простым путем. Такие методы можно получпть, если отказаться от нахождения решений, удовлетворяющих дифференциальным уравнениям для каждой частицы, и вместо этого ограничиться отысканием решений, удовлетворяющих некоторым основным уравнениям для всего пограничного слоя и некоторым наиболее важным граничным условиям на стенке и на внешней границе пограничного слоя. Основными уравнениями, которые обычно используются в этих методах, являются уравнения количества движения и энергии для всего пограничного слоя. При этом, однако, необходимо задавать профили скорости и температуры. От того, насколько удачно выбрана форма этих профилей, в значительной степени зависит точность получаемых результатов. Поэтому получили распространение методы расчета параметров пограничного слоя, в которых для нахождения формы профилей скорости и температуры используются дифференциальные уравнения Прандтля или их частные решения. Далее расчет производится с помощью интегрального уравнения количества движения.  [c.283]


Выведем дифференциальные уравнения для ламинарного пограничного слоя при установившемся илоскопараллельном течении вязкого сжимаемого газа, используя отмеченный ранее факт, что для маловязких жидкостей (при больших числах Рейнольдса) влияние вязкости и теплопроводности сосредоточено в тонком слое вблизи обте1 аемой поверхности, т. е.  [c.283]

Прежде чем переходить к нахождению профиля скорости, необходимо отметить следующее обстоятельство. Вблизи обтекаемого тела число Рейнольдса, определенное по местным параметрам жидкости, может быть сколь угодно малым. Поэтому в этой области должно существовать ламинарное течение, где трение п теплообмен определяются молекулярным переносом, т. е. > > р-т, Эта часть пограничного слоя называется ламинар-  [c.323]

Для ламинарного пограничного слоя в несжимаемой жидкости (Мо = 0) величина ф1(0) зависит от предыстории течения. Согласно расчетам, проведенным с использованием профилей скорости в виде полиномов (по методу Польгаузепа), величина ф1 (0) равна 1,92, если за характерный размер принята толщина выте-снения б, и 0,157, если за характерный размер принята толщина потери импульса б . Если использовать автомодельные решеиия уравнений пограничного слоя при постоянном значении параметра р, то величина ф1(0) будет соответственно равна 1,11 и 0,068.  [c.334]

Для ламинарного пограничного слоя как несжимаемой жидкости, так и сжимаемого газа при переменном давлении во внешнем потоке суп] ествуют различные методы расчета. Наиболее точные методы основываются на численном интегрировании дифференциальных уравнений и требуют применения вычислительных машин. Для турбулентного пограничного слоя несжимаемой жидкости разработаны приближенные, полуэмпириче-ские методы расчета. В случае небольшого градиента давления во внешнем потоке расчет турбулентного пограничного слоя сжимаемой жидкости может быть произведен при условии, что влияние градиента давления учитывается лишь в интегральном соотношении количества движения (59). При этом считается, что профили скорости и температуры, а также зависимость напряжения трения от характерной толщины пограничного слоя имеют такой же вид, как и в случае обтекания плоской пластины.  [c.338]

Течение жидкости в каналах различного сечения очень часто встречается на практике. При этом обычно скорость движения в канале значительно меньше скорости звука, и поэтому жидкость считается нв сжимаемой. Рассмотрим установившееся ламинарное осесимметричное течение в круглм цилиндрической трубе диаметра d. Пусть жидко сть втекает в трубу с равпомерной скоростью. На стенках образуется пограничный слой, толщина которого увеличивается вдоль трубы. Так как плотность и расход через каждое сечение остаются постоянными, то сохраяяется и средняя скорость. Поэтому уменьшение скорости вблизи стенки,  [c.348]


Смотреть страницы где упоминается термин Жидкости Пограничный слой ламинарный : [c.408]    [c.265]    [c.480]    [c.159]    [c.100]    [c.240]    [c.79]    [c.440]    [c.307]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.682 ]



ПОИСК



Жидкости Пограничный слой

Жидкости несжимаемые — Движение ламинарном пограничном слое Уравнения

Ламинарное движение газа и жидкости в пограничном слое с поверхностью разрыва. Черный

Ламинарное те—иве

Ламинарные пограничные слои

Ламинарный пограничный слой на пластинке, продольно обтекаемой несжимаемой жидкостью. Неизотермическое движение

Ламинарный пограничный слой несжимаемой жидкости

Обобщение метода К- Польгаузена на ламинарный пограничный слой несжимаемой жидкости с отсасыванием

Обтекание тел жидкостью и газом при больших значениях числа Рейнольдса. Основные уравнения теории ламинарного пограничного слоя

Пограничный слой газа ламинарный жидкости и газа

Пограничный слой газа ламинарный жидкости несжимаемой ламинарны

Пограничный слой газа ламинарный жидкости несжимаемой теплово

Пограничный слой газа ламинарный жидкости несжимаемой турбулентный

Пограничный слой ламинарный

Преобразование уравнений ламинарного пограничного слоя в газе к форме уравнений для несжимаемой жидкости

Приближенные методы расчета трения и теплообмена в ламинарном пограничном слое сжимаемой жидкости

Приближенный метод расчета бинарного ламинарного пограничного слоя в сжимаемой жидкости

Решения уравнений ламинарного пограничного слоя несжимаемой жидкости

Слой ламинарный

Температурный и диффузионный пограничные слои при ламинарном движении несжимаемой жидкости

Теплообмен при ламинарном пограничном слое в несжимаемой жидкости

Точные решения уравнений ламинарного пограничного слоя несжимаемой жидкости без теплообмена

Трение и теплообмен в ламинарном пограничном слое сжимаемой жидкости на непроницаемой поверхности

Ш у л ь м а н, Приближенный расчет ламинарного пограничного слоя в несжимаемой жидкости при наличии тепло- и массообмена



© 2025 Mash-xxl.info Реклама на сайте