Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пограничный слой гидродинамический турбулентный

На внутренней границе турбулентного пограничного слоя температура близка к температуре торможения (числа Прандтля для перегретого и насыщенного пара мало отличаются от единицы). В средних по толщине участках пограничного слоя температура пара ниже температуры торможения, а скорости движения и, следовательно, скорости расширения несколько более низкие, чем в ядре потока. Особенно важным является высокий уровень пристенной гидродинамической турбулентности, способствующий интенсификации фазовых переходов [57]. Напомним, что максимальные локальные значения пульсаций скорости, обусловленных пристенной турбулентностью, достигаются вблизи границы вязкогО подслоя. Однако и на значительных расстояниях от стенки в пограничном слое интенсивность турбулентности значительна и, несомненно, оказывает влияние на возникновение и развитие конденсационного процесса. В таких условиях возможна конденсация в пограничном слое при минимальном переохлаждении, и не исключено, что именно здесь впервые появляются зародыши жидкой фазы, являющиеся центрами последующей конденсации.  [c.81]


В технических приложениях мы чаще всего сталкиваемся с задачами теплообмена, в которых происходит не изолированное развитие теплового пограничного слоя, а совместное развитие гидродинамического и теплового пограничных слоев. В литературе имеется несколько работ, посвященных решению этой задачи. Решения проводились преимущественно интегральными методами, так как в принципе эта задача подобна задаче теплообмена при развитии турбулентного пограничного слоя на наружной поверхности тела. Однако первая задача дополнительно осложняется тем, что на развитие турбулентного пограничного слоя сильно влияют условия на входе в трубу. Если вход в трубу выполнен в виде хорошо спрофилированного сопла, формирующего профиль скорости во входном сечении, близкий к однородному, и если на входе имеется турбулизатор пограничного слоя, то развитие полей скорости и температуры в начальном участке близко к расчетному. Такие условия на входе специально создаются в лаборатории, а на практике встречаются довольно редко. Если не проводить искусственную турбулизацию пограничного слоя, на стенке будет развиваться ламинарный пограничный слой. В зависимости от числа Рейнольдса и степени турбулентности главного потока ламинарный пограничный слой может стать стабилизированным прежде, чем произойдет переход к турбулентному пограничному слою. В промышленных теплообменниках вход в трубу выполнен обычно далеко не в виде сопла. Значительно чаще вход представляет собой внезапное сужение. Во многих теплообменниках перед входом в трубки имеются колена. В любом случае на входе происходят отрыв потока и интенсивное образование вихрей, распространяющихся вниз по течению. Это значительно интенсифицирует теплоотдачу по сравнению с теплоотдачей к развивающемуся турбулентному пограничному слою, когда турбулентные вихри образуются только на стенке трубы.  [c.235]

При поперечном обтекании круглого цилиндра и при обтекании шара на передней части этих тел образуется ламинарный пограничный слой (по крайней мере, при достаточно низких числах Рейнольдса, когда переход к турбулентному пограничному слою не происходит). Расчет местной плотности теплового потока в окрестности критической точки и на лобовой поверхности тел выполняется рассмотренными методами. Однако в сечении цилиндра или шара, расположенном несколько выше по потоку, чем миделево, происходит отрыв ламинарного пограничного слоя (отрыв турбулентного пограничного слоя происходит несколько ниже миделева сечения). После отрыва пограничного слоя на поверхности тела наблюдаются колебания местного коэффициента теплоотдачи, соответствующие сложному вихревому характеру течения с уносом вихрей от поверхности в гидродинамический след.  [c.274]


При сублимации с незначительной интенсивностью в условиях свободной конвекции в результате взаимодействия твердого тела с газовой средой возле сублимируемой поверхности образуются два пограничных слоя диффузионный и термический, а при вынужденной конвекции образуется еще третий пограничный слой — гидродинамический. Эти пограничные слои накладываются друг на друга, а толщина их зависит от условий протекающего процесса. Гидродинамический и диффузионный пограничные слои могут быть как ламинарными, так и турбулентными.  [c.215]

Гидродинамические процессы, протекаюш ие при поперечном омывании цилиндра, включают в себя практически все классические задачи гидродинамики. Здесь и развитие ламинарного пограничного слоя в условиях отрицательного градиента давления (в лобовой части цилиндра), особенности течения в критических точках (<р=0, 180°), влияние внешней турбулентности на развитие и. характеристики пограничных слоев, переход ламинарного пограничного слоя в турбулентный, отрыв ламинарного и турбулентного пограничных слоев (при ср=80°, а также 135° — для сверхкритического обтекания), течение в зонах отрыва и циркуляционных зонах, возникновение возвратных пограничных слоев в задней части цилиндра и т. д. По указанным вопросам выполнено большое количество теоретических и экспериментальных работ [1]. Ниже приводятся основные расчетные зависимости для различных участков цилиндра.  [c.4]

Течение в гидродинамическом пограничном слое может быть как турбулентным 1, так и ламинарным 2 (рис. 26-2). Характер течения и толщина в нем (5 , и 5т) определяются в основном величиной критерия Re.  [c.404]

Переход ламинарного режима в турбулентный кратко описан в п. 6.6 для течения в круглых трубах. Он наблюдается и при течениях в каналах разной формы, конфузорах, диффузорах, в пограничном слое при обтекании тел, в свободных струях. Хотя переходные явления для каждого класса потоков имеют некоторую специфику, но в основе любого из них лежит потеря устойчивости ламинарного течения, которая наступает при достижении определенных значений гидродинамических параметров.  [c.359]

О. Рейнольдс установили принципы и критерии гидродинамического подобия и многие другие. Результаты экспериментов позволили уточнить теоретические уравнения гидродинамики введением поправочных коэффициентов. Долгое время развитие гидравлики и гидродинамики шло различными путями. Сближение между этими направлениями в науке произошло в начале XX в. благодаря работам Л. Прандтля (1875—1953). Им исследованы гидравлические сопротивления в трубах, создана теория турбулентности, разработана теория пограничного слоя. В настоящее время в гидравлике как науке опыт и теория тесно связаны и взаимно дополняют друг друга.  [c.259]

После прохождения сечения в трубе, где смыкается гидродинамический пограничный слой, устанавливается постоянное параболическое распределение скоростей для ламинарного пограничного слоя и в виде выпуклой кривой для турбулентного (рис. 19.8).  [c.299]

Теплоотдача. Выясним, можно ли применять гидродинамическую теорию теплообмена для исследования теплоотдачи при турбулентном течении в трубе. Для этого исследуем теплоотдачу в трубе при турбулентном течении жидкости с помощью уравнений для турбулентного пограничного слоя. При стабилизованном тече-  [c.147]

Используя закон трения на стенке в турбулентном пограничном слое (7.93), выражение из гидродинамической теории теплообмена (7.91) (аналогия Рейнольдса) можно получить  [c.180]

Гидродинамическая теория теплообмена. В настоящем параграфе, как уже говорилось выше, искомая величина для расчета теплоотдачи а (18.4) будет определяться по известной величине коэффициента трения f (24.19) (определяется из решения уравнения движения). Покажем, как находят связь между коэффициентами теплоотдачи а и трения f в турбулентном пограничном слое.  [c.283]

Изучение процессов движения жидкости и теплоотдачи в трубах представляет собой большой практический интерес, так как трубы являются элементами различных теплообменных аппаратов. Наибольшие трудности возникают при исследовании движения и теплоотдачи на начальном участке трубы. Участок в трубе, на протяжении которого поле основной переменной величины (скорости или температуры) зависит от условий на входе и на котором происходит нарастание пограничного слоя до заполнения поперечного сечения трубы, называют начальным участком. В зависимости от природы процесса переноса различают гидродинамический начальный участок и тепловой начальный участок. На начальном участке может быть ламинарное и турбулентное движение жидкости во входном сечении трубы (х = 0) профиль скорости плоский (имеет прямоугольную форму).  [c.293]


Формула (14.66) есть решение гидродинамической части задачи о переносе теплоты в турбулентном пограничном слое. Подставив бт из формулы (14.66) в выражение (14.64), можно рассчитать трение на стенке, а при использовании формулы (14.65)—поле скорости. Для расчета коэффициента теплоотдачи необходимо воспользоваться аналогией Рейнольдса, которая выражается формулой (14.61), замыкающей, как указано выше, систему уравнений (14.62). Из формулы (14.64) имеем  [c.366]

Течение жидкости в трубах отличается рядом особенностей. Понятия гидродинамического и теплового пограничного слоев в том смысле, в каком они были использованы для расчета теплообмена при плоском течении, сохраняют силу лишь для начального участка трубы, пока пограничные слои, утолщаясь по течению, не сомкнутся, заполняя поперечное сечение трубы. Начиная с этого момента влияние трения распространяется на все поле движения. Различают два режима движения в трубах — ламинарный и турбулентный. Критическое значение числа Рейнольдса Re p = 2300. В чисто ламинарной области течения при  [c.131]

Аналогично начальному участку гидродинамической стабилизации существует начальный участок тепловой стабилизации 1 . Качественный характер деформации эпюры температур на начальном участке тепловой стабилизации показан на рис. 2.39. Коэффициент теплоотдачи на начальных участках трубы уменьшается, так как вследствие увеличения толщины пограничного слоя растет его термическое сопротивление и падает градиент температуры. При турбулентном режиме течения ламинарный пограничный слой разрушается и коэффициент теплоотдачи увеличивается, затем стабилизируется при установившемся турбулентном режиме (рис. 2.40). На участках тепловой стабилизации коэффициент теплоотдачи принимает постоянное значение. Длина участка тепловой стабилизации при постоянной температуре стенки, при постоянных физических параметрах жидкости, при ламинарном режиме движения равна = 0,055 Ре и при турбулентном режиме / т = 50 d.  [c.133]

В теплогенераторах, работающих на высокотемпературных теплоносителях, циркуляция теплоносителя принудительная, а температура нагрева ниже температуры насыщения при данном давлении. Теплоносители в процессе эксплуатации подвергаются термическому разложению, которое происходит на границе теплоносителя с греющей стенкой, т. е. в пограничном слое. По этой причине у термостойких ВОТ (ДФС, ДТМ и КТ-2) на греющей стенке образуется кокс, у термически малостойких (масла АМТ-200 и ИС-40А) образуются пузырьки газообразных продуктов разложения, которые с увеличением плотности теплового потока сливаются между собой, образуя сплошную пленку. Образование на поверхности нагрева кокса или газовой пленки резко ухудшает теплообмен между ВОТ и поверхностью нагрева. Во избежание этого для всех ВОТ при турбулентном течении их в трубах максимальная температура стенки не может превышать более чем на 20 °С предельную температуру применения данного теплоносителя, так как при температуре на 30...40°С выше наступает период интенсивного разложения теплоносителя с образованием на греющей поверхности слоя кокса либо газовой пленки. В современных теплогенераторах ВОТ, радиационная поверхность нагрева которых выполнена в виде змеевика с плотной навивкой, теплопередача осуществляется через поверхность, обращенную внутрь, к вертикальной оси змеевика. Во всех гидродинамических режимах течения ВОТ наименьшие значения коэффициента теплоотдачи наблюдаются на поверхности, обращенной внутрь змеевика, а следовательно, эта область является наиболее теплонапряженной. В связи с этим предельную плотность теплового потока для теплогенератора ВОТ змеевикового типа подсчитываю по формуле  [c.292]

Длина гидродинамического начального участка и его доли, занятые соответственно ламинарным и турбулентным пограничным слоями, зависят от числа Re, степени турбулентности потока на входе и ряда других факторов. Многие факторы взаимосвязаны.  [c.201]

При турбулентном течении в пограничном слое или в трубах приближенный расчет коэффициента восстановления может быть проведен, например, на основе представлений гидродинамической теории теплообмена (см. 10-1) путем ее обобщения на условия течения потока с высокими скоростями. Рассмотрим этот метод расчета теплообмена на основе аналогии Рейнольдса подробнее.  [c.270]

Связь аэро- и гидродинамического сопротивлений с неровностями поверхности. При обтекании поверхности потоком жидкости или газа ее неровности создают сопротивление и, следовательно, вызывают потери, определяющиеся в основном вихре-образованием при отрыве потока на неровностях. Влияние неровностей на сопротивление зависит от соотношения высоты неровностей и толщины ламинарного слоя или подслоя (если пограничный слой турбулентный), а также от формы неровностей и, в частности, от угла наклона боковых сторон профиля выступов неровностей. Это явление наблюдается при взаимодействии газа или жидкости с разнообразными техническими устройствами, например при протекании газа через решетки осевого компрессора и решетки турбины газотурбинного двигателя, при протекании жидкости через трубы, при обтекании водой корпуса судна и т. п.  [c.52]

Особенность жидких металлов, обладающих более высокой теплопроводностью по сравнению с обычными жидкостями и как следствие этого низкими числами Прандтля, состоит в том, что даже при развитом турбулентном течении молекулярный перенос тепла играет важную роль не только в пристенном слое, но н в турбулентном ядре потока. Толщина теплового пограничного слоя для жидких металлов оказывается значительно большей, чем толщина гидродинамического пограничного слоя.  [c.90]


Естественная конвекция. При естественной (свободной) конвекции движение жидкости полностью определяется процессом теплообмена. В жидких металлах влияние молекулярной теплопроводности распространяется далеко за область гидродинамического пограничного слоя, где поле скорости определяется не молекулярной вязкостью, а турбулентной (V v, ). В таком случае N11 = == / (Сг Рг°-).  [c.98]

К первой группе относятся жидкометаллические теплоносители натрий, калий, сплав натрий-калий, литий, свинец, ртуть, висмут и др. Для этих теплоносителей число Рг изменяется в пределах приблизительно от 0,005 до 0,05. Столь низкие значения числа Рг для жидких металлов связаны с их высокой теплопроводностью и сравнительно малой теплоемкостью. Тепловой пограничный слой у жидких металлов намного превышает гидродинамический пограничный слой (6т > бр), поэтому влияние теплопроводности далеко распространяется в турбулентное ядро потока.  [c.8]

Распределение касательных напряжений в пограничном слое на пластине показано на рис. 6.1. Практически турбулентной вязкостью на внешней границе гидродинамического пограничного слоя можно пренебречь, а в области, близкой к поверхности пластины, т =  [c.169]

Когда Яг<с1, то приходится рассматривать теплопроводность и вне гидродинамического турбулентного пограничного слоя. При этом турбулентность пограничного  [c.169]

В соответствии с гидродинамической картиной обтекания цилиндра меняется и местный коэффициент теплоотдачи вдоль контура поперечного сечения. Наименьшую толщину ламинарный пограничный слой имеет в лобовой точке (ср=0), это соответствует максимальному значению коэффициента теплоотдачи. По мере нарастания толщины ламинарного пограничного слоя коэффициент теплоотдачи уменьшается (рис. 12-26). После отрыва ламинарного пограничного слоя происходит рост теплоотдачи в связи с интенсивным вихреобразованием. Кривая местного коэффициента теплоотдачи при Ке<г> >Несгкр имеет два минимума один из них соответствует переходу ламинарного пограничного слоя в турбулентный, а второй—-отрыву турбулентного пограничного слоя (рис. 12-28).  [c.289]

M Tiiyio толщину турбулентного гидродинамического пограничного слоя можно вычислить но формуле [27]  [c.63]

Необходимо отметить, что и в случае турбулентного гидродинамического пограничного слоя неиосредствеино у стенки имеется очень тонкий слой жидкости, движение в котором имеет ламинарный характер. Этот слой называют вязким, или ламинарным, подслоем 3.  [c.404]

В конце XIX и начале XX века существенный вклад в развитие гидравлики внесли русские ученые и инженеры Н. П. Петров (1836—1920) разработал гидродинамическую теорию смазки и теоретически обосновал гипотезу Ньютона Н. Е. Жуковский (1849— 1921) создал теорию гидравлического удара, теорию крыла и исследовал многие другие вопросы механики жидкости, он же явился основателем известного всему миру Центрального аэрогидродина-мического института (ЦАРИ), носящего его имя Д. И. Менделеев (1834—1907) опубликовал в 1880 г. работу О сопротивлении жидкостей и о воздухоплавании , в которой были высказаны важные положения о механизме сопротивления движению тела в жидкости и даны основные представления о пограничном слое. Теория пограничного слоя, являющаяся одной из основополагающей при изучении турбулентных потоков в трубах и обтекании тела жидкостью, в XX веке получила большое развитие в трудах многих ученых (Л. Прандтль, Л. Г. Лойцянский).  [c.5]

На начальном участке (при малых значениях х) гидродинамический слой очень тонок (в лобовой точке х=0 6г=0) и течение в нем ламинарное, упорядоченное. По мере удаления от лобовой точки толщина пограничного олоя растет. Постепенно ламинарный режим течения переходит в турбулентный. При турбулентном пограничном слое около поверхности сохраняется тонкий ламинарный поделай 5л.п, где скорость невелика и силы вязкости гасят турбулентные вихри.  [c.41]

Гидродинамический начальный участок наблюдается как при ламинарном, так и при турбулентном течении. Однако при Ке > Кекргтечение в начальном участке может развиваться своеобразно. В передней части трубы может существовать ламинарная форма течения. Образующийся ламинарный пограничный слой при достижении критической толщины переходит в турбулентный. Толщина последнего быстро растет, пока це заполнит все течение трубы. Зона начального участка в месте изменения режима течения характеризуется перемежаемостью движения. Изменение, режима течения может произойти и за пределами начального гидродинамического участка.  [c.201]

Гидродинамические условия развития процесса. При продольном течении жидкости вдоль плоской поверхности происходит образование гидродинамического пограничного слоя, в пределах которого вследствие сил вязкого трения скорость изменяется от значения скорости невозмущенного потока Шо на внешней границе слоя до нуля на самой поверхности пластины. По мере движения потока вдоль поверхности толщина пограничного слоя посте-ленно возрастает тормозящее воздействие стенки распространяется на все более далекие слои жидкости. На небольших расстояниях от передней кромки пластины пограничный слой весьма тонкий и течение жидкости в нем носит струйный ламинарный характер. Далее, на некотором расстоянии дгкр в пограничном слое начинают возникать вихри и течение принимает турбулентный характер. Вихри обеспечивают интенсивное перемешивание жидкости в пограничном слое, однако в непосредственной близости от поверхности они затухают, и здесь сохраняется очень тонкий вязкий подслой. Описанная картина развития процесса показана на рис. 3-1.  [c.64]

Тогда даже при турбулентном течении всего потока газожидкостной смеси относительно стенок аппарата в рассматриваемом случае (стационарный тепло- и массообмен при ламинарном, слоистом, течении газа вдоль оси х), когда в других направлениях (по оси у и z) согласно принятому представлению слои не перемешиваются и пульсации отсутствуют, поперечные составляющие скорости равны нулю Wy = Wz 0. Также равны нулю соответствующие члены субстанциональной производной, кроме одного Wxdpn,o/dx. Однако мы рассматриваем насыщенный паром слой газа, который всегда имеется на поверхности жидкости независимо от режима течения (ламинарного или турбулентного) в ядре потока и гидродинамическом пограничном слое и который тоже является пограничным слоем между газом и жидкостью. Вследствие малой толщины этого слоя по сравнению с его про-тял<енностью продольные конвективные составляющие по сравнению с поперечными можно считать равными нулю [49], т. е. (9рп. о/5л = 0. Вот теперь уравнение (1-14) принимает вид (1-15).  [c.29]

Известно, что при конвективной теплопередаче к сферической частице в случае стационарного теплового состояния и малых значений чисел Рейиольдса Nu = 2. В реальных условиях взвешенного слоя частицы нагреваются в нестационарных тепловых условиях. Кроме того, скорости частиц меняются во времени, т. е. гидродинамический режим также не является стационарным. Взвешенные частицы, перемещаясь в газовом потоке, двигаются не только поступательно, но и вращаются, вследствие чего пограничный слой переходит из ламинарного состояния в турбулентное уже при сравнительно небольших значениях критерия Рейнольдса.  [c.382]

Изложенные соображения позволяют предположить, что возникновение жидкой фазы порождает некоторый особый механизм конденсационной турбулентности. Термин конденсационная тур- булентность является условным и призван подчеркнуть особый физический механизм рассматриваемого явления возрастания амплитуд пульсаций в конденсационном процессе. При этом необходимо иметь в виду, что здесь не рассматривается периодическая конденсационная нестационарность, возникающая в соплах Лаваля при небольших сверхзвуковых скоростях и обусловленная перемещениями скачков конденсации 67, 124]. Следует отметить, что зона максимума гидродинамической турбулентности не может совпадать с зоной зарождения конденсационной турбулентности, расположенной в более холодных участках пограничного слоя, смещенных в направлении его внешней границы. Малая вероятность появления жидкой фазы в зоне максимальных турбулентных пульсаций скоростей в пограничном слое объясняется тем, что эта зона расположена вблизи стенки, где температура паровой фазы близка к температуре торможения. Не подлежит сомнению существование тесной связи и взаимодействия конденсационной и гидродинамической турбулентности (см. 6.1).  [c.82]


Процесс возникновения дискретной фазы в межлопаточных каналах решетки носит флуктуационный характер и сопровождается появлением конденсационной турбулентности, интенсивность которой значительна. Хорошо известно, что в суживающихся каналах большой конфузорности происходит частичное или полное вырождение гидродинамической турбулентности в пограничных слоях, т. е. имеет место ламинаризация слоя. Процесс ламннари-зации ( обратного перехода) в пограничных слоях особенно интенсивен при околозвуковых скоростях, когда продольные отрицательные градиенты давления достигают максимальных значений. Ламинаризированный слой отрывается местными адиабатными скачками, и этот процесс сопровождается появлением жидкой фазы и турбулизацией слоя (генерируется конденсационная турбулентность). В результате отрыв слоя ликвидируется, вновь происходит ламинаризация слоя, появляется отрыв и т. д. Б соответствии с перемещениями зоны отрыва происходят перемещения скачка уплотнения по спинке профиля в косом срезе, что вызывает пульсацию термодинамических параметров — давления и температуры 48, 52, 53, 124]. Механизм генерации пульсаций параметров при конденсации в сопловых и рабочих решетках действует и при дозвуковых скоростях и вызывает опасные возмущающие силы. Таким образом, переход в зону Вильсона сопровождается специфическими нестационарными явлениями, в основе которых лежат флуктуационный механизм возникновения жидкой фазы и генерации конденсационной нестационарности, периодические отрывы пограничного слоя. В тех случаях, когда частота процесса конденсационной нестационарности близка или кратна частоте волн, возникающих при взаимодействии решеток, амплитуда пульсаций давлений (и температур) резко возрастает—имеет место резонанс и дополнительные возмущающие силы достигают опасного предела.  [c.192]

С целью углубления и расширения сведений о механизме конденсационной турбулентности проведены эксперименты, результаты которых показывают влияние чисел Маха и Рейнольдса и уровня гидродинамической турбулентности на интенсивность пульсаций в пограничном слое вблизи состояния насыщения. Увеличение числа Miградиентов давления в суживающемся сопле увеличивается газодинамическая конфузорность сопла. Хорошо известно, что при этом снижается интенсивность пристенной турбулентности, происходит ее частичное или полное вырождение, совершается ламинаризация пограничного слоя (обратный переход). Очевидно, что уменьшение числа Рейнольдса приводит к аналогичному результату. Снижение  [c.200]


Смотреть страницы где упоминается термин Пограничный слой гидродинамический турбулентный : [c.190]    [c.79]    [c.90]    [c.175]    [c.46]    [c.387]    [c.288]    [c.80]    [c.170]    [c.165]   
Теплопередача (1965) -- [ c.0 ]



ПОИСК



Гидродинамический пограничной сло

Да гидродинамическое

Пограничный слой гидродинамически

Пограничный слой гидродинамический

Пограничный слой турбулентный

Пограничный турбулентный

Слой гидродинамический

Слой турбулентный

Турбулентность (см. Пограничный

Турбулентность гидродинамическая

Турбулентные пограничные слои



© 2025 Mash-xxl.info Реклама на сайте