Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Испытание материалов на сдвиг

Примером системы с тремя степенями свободы с взаимными упругими связями между тремя массами может служить машина для усталостных испытаний материалов на растяжение-сжатие. На фиг. 1. 1 дана схема такой машины и разные виды условных обозначений ее приведенной колебательной системы. Жесткость резиновых амортизаторов, работающих в реальной машине на сдвиг, здесь для удобства представления может быть заменена эквивалентным упругим элементом работающим на растяже-ние-сжатие. Первая масса имеет скользящие опоры по станине. В них при расчете можно учесть сухое трение между поверхно-  [c.25]


Испытание на кручение материалов дает возможность определить их механические характеристики в условиях чистого сдвига. Испытания проводятся на цилиндрических образцах. Нормальным считается образец диаметром 10 мм, длина 1д, на которой замеряется угол закручивания, равна десяти диаметрам. В результате эксперимента получается графическая зависимость между моментом М и углом закручивания ф. Затем диаграмму перестраивают Б координатах т, у (рис. 2.102). Касательные напряжения после площадки текучести непрерывно возрастают. Это объясняется тем, что при кручении форма образца не изменяется, шейка  [c.281]

Наиболее распространенным испытанием материалов является испытание их на растяжение. Объясняется это тем, что механические характеристики, получаемые при испытании на растяжение, позволяют во многих случаях достаточно верно судить о поведении материала и при других видах деформации сжатии, сдвиге, кручении и изгибе. Кроме того испытание на растяжение наиболее легко осуществимо.  [c.29]

Методы определения жесткости при сдвиге. Методы определения свойств композиционных материалов при сдвиге в отличие от испытаний на растяжение и сжатие более разнообразны как  [c.42]

Материалы, армированные только нитевидными кристаллами, обладают также высокими прочностными свойствами. Как следует из табл. 7.1, введение в матрицу даже сравнительно небольшого объема нитевидных кристаллов повышает ее прочностные характеристики в плоскости их укладки в несколько раз, причем прочность при растяжении и межслойном сдвиге линейно зависит от объемного содержания нитевидных кристаллов (рис. 7.4). Разброс значении прочности при растяжении и сдвиге не превышал 10 % (число испытанных образцов на каждую точку — не менее восьми).  [c.207]

Испытание на сдвиг. Для проверки прочности композиционных материалов при сдвиге необходимо определить их сопротивление действию касательных напряжений. Анизотропные композиционные материалы в зависимости от ориентации сдвигающих усилий по отношению к осям упругой симметрии материала различно сопротивляются деформации сдвига. Различают сдвиг в плоскости расположения армирующего материала и сдвиг в плоскостях, параллельных плоскости расположения армирующего материала. Эту деформацию обычно называют межслойным сдвигом, а соответствующее разрушение — скалыванием по слою.  [c.149]

Таким образом, рассмотренные методы механических испытаний на сдвиг не обеспечивают определения действительных показателей прочности материала. В связи с этим для неразрушающего контроля прочности материалов целесообразно использовать косвенный метод определения предельного сопротивления при сдвиге, теоретические предпосылки которого приведены выше.  [c.150]


Механические свойства металлов и других конструкционных материалов, проявляющиеся при действии на них ударных нагрузок и характеризующиеся хрупкостью и вязкостью, оценивают главным образом по испытаниям образцов ка маятниковых копрах. Различают следующие основные методы испытаний образцов на двухопорный ударный изгиб (метод Шар-пи), ударный консольный изгиб (метод Изода), ударное растяжение и ударный сдвиг.  [c.94]

В последние годы большое внимание уделялось разработке приспособлений для испытания на сжатие, которые помогали бы избежать недостатков существующих способов, указанных ранее. При использовании таких приспособлений могут быть получены значения прочности при сжатии композиционного материала, практически равные показателям его прочности при растяжении, что было проиллюстрировано в работе [105] на ряде материалов на основе углеродных волокон (рис. 2.57). По-видимому, механизм разрушения этих материалов при растяжении и сжатии один и тот же и заключается в сдвиге под углом 45°.  [c.119]

Этот закон справедлив не только в случаях равномерного всестороннего давления, когда форма тела изменяется подобно самой себе, не испытывая сдвигов, но и при произвольных напряжениях и деформациях. Опыты Н. Н. Давиденкова, опыты, недавно проведенные в лаборатории испытания материалов МГУ, и другие показали, что влиянием сдвиговых пластических деформаций на связь между а и б можно пренебречь.  [c.150]

Введение в строительную технику стали выдвинуло ряд проблем упругой устойчивости, получивших жизненно важное значение. Инженерам на практике все чаще приходилось иметь дело с подвергающимися сжатию гибкими стержнями, тонкими сжатыми пластинками, разного рода тонкостенными конструкциями, выход из строя которых определялся не чрезмерным напряжением, а потерей упругой устойчивости. Простейшие задачи зтого рода, относящиеся к сжатым колоннам, получили уже к тому времени достаточно тщательную теоретическую разработку. Но ограничения, при которых можно было бы с уверенностью полагаться на теоретические результаты, не были еще вполне ясны. В опытах с колоннами уделялось недостаточно внимания тому влиянию, которое оказывали те или иные способы закрепления концов, точность приложения нагрузки и упругие свойства материала. Поэтому результаты испытаний расходились с теорией, и инженеры в своей проектной работе предпочитали пользоваться различными эмпирическими формулами. Заметный сдвиг в области экспериментального изучения работы сжатых стержней произошел лишь после того, как развилась сеть лабораторий по испытанию материалов и были усовершенствованы измерительные приборы.  [c.352]

Вообще говоря, для изотропных материалов испытания на сдвиг не имеют самостоятельного значения. Как это будет показано в главах 5, 11, деформация сдвига специальным выбором осей координат может быть сведена к суперпозиции деформаций растяжения и сжатия в двух взаимно перпендикулярных направлениях. Это позволяет теоретически построить диаграмму сдвига г (7) по диаграмме (т ) для растяжения и сжатия и установить связь между механическими характеристиками растяжения и сдвига.  [c.62]

В.3.20. Какая диаграмма строится по результатам испытания на сдвиг Какие характеристики материалов при этом снимаются  [c.63]

Теория максимальных нормальных напряжений отражает с современной точки зрения те инженерные подходы к расчету на прочность, которые были предложены еще Г. Галилеем и использовались до конца XIX века преимущественно английскими инженерами, когда недостаточно были еще разработаны вопросы прочности и анализа сложных напряженных состояний. В этой теории учитывается только наибольшее из главных напряжений, а влияние двух остальных главных напряжений полностью игнорируется. Поэтому трудно ожидать от нее хороших результатов в случаях, когда напряженное состояние существенно отличается от одноосного. Это и подтвердили эксперименты. Так, для состояния чистого сдвига, которое реализуется в эксперименте, например при кручении тонкостенных труб, предельное состояние достигается значительно раньше, чем предсказывает первая теория. В испытаниях же на равномерное всестороннее сжатие, когда (Ti = сг2 = (Тз = —р, для большинства материалов не удается достичь предельного состояния даже при очень высоких напряжениях. А первая теория здесь предсказывает, что  [c.350]


Как указывалось, в трехслойных плитах и панелях наружные слои, состоящие из стеклопластика, асбестоцемента или алюминия, воспринимают большую часть нормальных усилий, возникающих при изгибе панелей, а внутренний слой из пенопласта или сотопласта работает в основном на сдвиг. При расчете панелей на прочность могут быть использованы формулы сопротивления материалов, которые при сравнении с более точными расчетными формулами и с результатами испытаний панелей дают мало отличающиеся результаты.  [c.238]

Временное сопротивление раскалыванию определяют по ОСТ 10110—39. Метод испытания относится ко всем слоистым материалам из пластмасс органического происхождения. Он основан на определении предельной нагрузки, при которой образец прямоугольного сечения раскалывается под действием постепенно возрастающей нагрузки, приложенной к испытуемому образцу через металлический клин. В испытуемом образце делается надрез, куда входит острие клина. Испытания проводят на прессе, способном обеспечить правильную передачу давления на образец без сдвига его и клина.  [c.14]

Точная форма импульсов нагрузки в передающем и опорном стержнях регистрируется с помощью установленных на них тензо-датчиков или иными способами. По результатам регистрации определяются усилие, действующее на образец, и смещение его торцов в процессе испытания. Тем самым определяются продольное напряжение, деформация и скорость деформирования образца [121]. Данный метод широко используется при испытаниях разнообразных материалов на динамическое сжатие, растяжение, простой сдвиг и кручение.  [c.133]

Стандартные механические характеристики обрабатываемого материала предел текучести на сдвиг, предел прочности, истинный предел прочности, твердость и др. не соответствуют условиям испытания заданного материала в процессе резания. Обычно скорость и величина дефор мации в зоне стружкообразования значительно больше, чем при стандартных методах испытания. Соответственно сопротивление пластической деформации материала в условиях резания отличается от стандартных характеристик. Ввиду того, что механические характеристики обрабатываемых материалов, полученные в условиях испытания соответствующих резанию, отсутствуют, важно хотя бы сугубо приближенно по стандартным характеристикам определить характеристики материала в зоне стружкообразования. Между твердостью, пределом текучести, пределом текучести на сдвиг существует однозначная связь. Достаточно иметь одну характеристику, чтобы получить другие. Для определения температурной зависимости механических характеристик материала в зоне стружкообразования можно применить несколько способов.  [c.87]

Композиционный характер стекловолокнистых материалов и особенности их структуры определяют некоторые специфические свойства, которые не позволяют в ряде случаев непосредственно использовать методы испытаний, разработанные для исследования металлов. К числу таких свойств относится, например, низкая прочность на сдвиг ориентированных материалов при высоком сопротивлении разрыву в направлении армирования, что вызывает необходимость обеспечивать равномерное распределение напряжений при растяжении и создает известные трудности при закреплении образца.  [c.13]

Характерной особенностью ряда высокомодульных композитов является суш ественная анизотропия упругих свойств самих армирующих волокон. Например, для углепластиков в зависимости от исходного материала, параметров карбонизации, усилия вытяжки и последующей термической обработки отношение модулей вдоль ( д) и поперек (Е г) волокон может достигать 40—50. Наряду с хорошо изученными особенностями волокнистых композитов — плохим сопротив.пением межслойному сдвигу и поперечному отрыву — появляется новый фактор — существенная разница упругих свойств вдоль и поперек волокон. Сопоставление углепластиков со стеклопластиками и боропластиками (см. табл. 1) свидетельствует о том, что при практически одинаковой анизотропии прочности у первых намного выше анизотропия упругих свойств. Это порождает ряд принципиальных особенностей при анализе результатов испытаний для материалов на основе анизотропных волокон и оценке пх несущей способности, связанных с повышенной податливостью композита в поперечном направлении.  [c.11]

В зависимости от схемы приложения усилий к образцу методы экспериментального определения сопротивления материалов действию касате.чьных напряжений разделяются на три группы сдвиг в плоскости укладки арматуры, сдвиг по армирующим слоям (межслойный) и срез. Для серийных испытаний на сдвиг в плоскости укладки арматуры, как правило, рекомендуется перекашивание пластин с вырезами [98, с. 81 ] и кручение стержней с различной формой поперечного сечения [121 ] для определения упругих постоянных — методы перекашивания и кручения квадратных пластин. Характеристики межслойного сдвига рекомендуется определять, пз испытаний на изгиб коротких стержней [121]. Упругие характеристики могут быть определены и при кручении стержней прямоугольного поперечного сечения. Для изучения прочности нри межслойном сдвиге используются об разцы с надрезами.  [c.121]

В.Л. Колмогоров [24] построил диафам-мы пластичности при испытании образцов на растяжение, кручение, сжатие и т.д. в условиях холодной и горячей обработки металлов давлением. На диафаммах, приведенных на рис. 8.14, по оси абсцисс точка О соответствует чистому сдвигу (кручению), положительное направление - испытанию на растяжение, отрицательное - на сжатие. Материалы проявляют свою индивидуальность, в частности цинк показывает сверхпластичность в пределах деформаций, достигнутых в эксперименте.  [c.324]


Трудности испытания полимерных композиционных материалов на сдвиг заключаются в том, что в образцах трудно обеспечить состояние чистого сдвига. Все известные методы испытания на сдвиг отличаются в основном способом и степенью минимизации побочных деформаций и напряжений, вследствие чего всем методам св014ственны некоторые физические и геометрические ограничения. Исключение составляет испытание трубчатых образцов, не вызывающее особых трудностей и позволяющее получать надежные характеристики предела прочности при сдвиге и модуля сдвига в плоскости укладки арматуры. Методика определения указанных характеристик при испытании трубчатых образцов изложена достаточно подробно в работе [78]. Испытание на сдвиг плоских образцов—более трудная задача в части создания необходимых устройств для нагружения. Современные композиционные материалы имеют, как правило, относительно небольшую толщину (1—3 мм). Нагружение на сдвиг пластинок или стержней такой толщины возможно только на установках малой мощности, но обладающих достаточной точностью.  [c.42]

В настоящее время накоплен большой опыт по испытанию композиционных материалов. Созданы различные разрушающие [78] и неразрушающие 46] методы определения механических свойств. При корректной постановке эксперимента и иравилышм выборе геометрических размеров образцов разрушающие м неразрушающие методы позволяют получать весьма близкие ио значениям механические характеристики на некоторых тниах анизотропных материалов 46]. Необоснованный выбор схемы нагружения и параметров образца может привести к несопоставимым значениям характеристик, полученных на одних и тех же материалах одними и темн же разрушающими методами 112, 26, 84, 93]. Это объясняется прежде всего тем, что не все разрушающие методы достаточно изучены . многие методы разработаны для изучения свойств изотропных материалов, позже перенесены на исследования пластмасс, а затем распространены на композиционные материалы. Естественно, они не учитывают особенностей структуры и свойств композиционных материалов, что приводит к результатам, которые невозможно повторить, а часто соио-ставнть даже при таких видах нагружения, как испытание на растяжение, сжатие п изгиб. Испытание на сдвиг композиционных материалов изучено мало [78, 119].  [c.26]

Характер разрушения. Композиционные материалы, изготовленные на основе внекеризованпых волокон, при испытании на растяжение, сжатие, изгиб и сдвиг не обнаруживают расслоения, свойственного обычным стекло-, угле- н боропласти-кам. Растяжение образцов из этих материалов не сопровождается акустической эмиссией, характерной дли испытания композиционных материалов, образованных системой двух и трех нитей разрушение образцов при всех указанных видах нагружения происходит мгновенно. Это свидетельствует о том, что несущие способности матрицы, укрепленной нитевидными кристаллами, и волокон исчерпываются одновременно. Для этих материалов характерен хрупкий вид разрушения как при испытаниях их на растяжение, сжатие, так п при изгибе и сдвиге.  [c.216]

Из ЭТИХ десяти коэффициентов величины Fi, Fa, Fu, F22 и Fee можно определить непосредственно из испытаний композита на растяжение, сжатие и сдвиг, подобно испытаниям слоя в раз. 4.4.4. Остальные компоненты F12, Fn2, F122, F266, lee тензоров прочности уравнения (4.32) характеризуют независимые взаимодействия между различными компонентами напряжения. Чтобы быть уверенным в том, что присущий композиционным материалам разброс свойств не вносит погрешность в вычисление этих коэффициентов, они должны определяться при заданных заранее оптимальных отношениях  [c.160]

Макромеханика композиционных материалов по ключевым характеристикам механических свойств, полученным при испытании на растяжение, сжатие и на сдвиг тонких плоских образцов однонаправленных материалов, позволяет рассчитать прочностные и упругие свойства композитов с перекрестным расположением слоев [3, 4]. Ключевыми свойствами являются упругие константы ц, Е22, V12, G12 и характеристики прочности оц и стгг- В отдельных случаях необходимы характеристики пластичности ец, 622 и Т12 Использованные обозначения ориентировок показаны на рис. 1.  [c.363]

Шине Атз1ег У1Ьгар юге, дающей ПО циклов в секунду (средняя нагрузка равна амплитуде нагрузки плюс 1 тонна). Результаты показывают заметное увеличение прочности с применением прокладок из терилина или РТР Е. Прокладки из РТРЕ дали в результате разрушение по болтовым отверстиям, так как (малый коэффициент трения при этом материале приводил к передаче большей части нагрузки через болты и лишь меньшей ее части через силы сдвига на поверхностях. Однако лучшее распределение нагрузки было достигнуто дробеструйной обработкой поверхностей элементов (замыкающей РТРЕ на элементах) и это привело к наибольшей усталостной прочности, которая была получена для этой серии испытаний. Этот результат показывает, что толстые прокладки нецелесообразны, так как они не передавали бы значительной части нагрузки в результате собственной работы на сдвиг.  [c.296]

В связи с простотой принципов их производства пенонаполненные структуры используются уже больше 25 лет. Несмотря на это, исследователи продолжают изучать проблему их создания, используя различные виды смесей, получая более однородные структуры заполнителя и увеличивая прочность адгезии с металлическим или предварительно отвержденным стеклопластиковым покрытием. Используя систематический входной контроль, автоматическое смешение и оборудование для внесения пен, а в случае производства ответственных деталей в самолетостроении и контрольные испытания (приемочные), можио полностью контролировать всю технологическую схему получения композитов. Как видно из табл. 21.3, не для всех видов пенопластов приведены сдвиговые характеристики. Нет данных по целому ряду параметров, необходимых для конструирования. Эти данные должны быть еще определены для современных видов материалов, чтобы они могли быть надежно использованы. Обычно, когда не существует данных о пределе прочности на сдвиг, он может быть аппроксимирован по уровню 0,7 от известного предела прочности при сжатии.  [c.338]

Например, данные, приведенные на рис. 2.69 показывают, что при изгибе кривые сг—Л/ для карбоиластиков на основе высокомодульных волокон имеют больший наклон, чем при растяжении. В работе [144] также выявлено резкое падение стойкости к циклическим нагрузкам при относительно высоких сдвиговых напряжениях, параллельных оси волокон. В этой же работе показано, что при испытаниях на изгиб материалов на основе коротких волокон при кратковременном разрушении наблюдается межслоевой сдвиг, а при длительном — разрушение при изгибе. Поэтому указывается па необходимость осторожного подхода к интерпретации результатов усталостных испытаний, так как они сильно зависят от формы образца и типа нагружения. Авторы работы [144] предполагают, что наиболее реальное значение усталостной прочности при изгибе до 10 циклов равно примерно 65% статической прочности при однонаправленном изгибе и снижается до 30% при обратимом циклическом изгибе.  [c.138]

Общие принципы характеристики деформационно-прочностных свойств полимеров и типичные диаграммы напряжение — деформация были обсуждены в гл. 1. Оценка деформационнопрочностных свойств материала с помощью диаграмм напряжение — деформация является наиболее распространенным видом механических испытаний материалов. Этот метод очень важен с практической точки зрения и получаемые результаты привычны для инженеров. Однако связь результатов таких испытаний с реальным поведением материала в изделии не так проста, как иногда кажется. Так как вязкоупругость полимеров обусловливает высокую чувствительность их механических свойств к различным факторам, диаграммы напряжение — деформация только приближенно предсказывают поведение полимера в изделии. Обычно диаграммы напряжение — деформация или даже только их характерные точки получают для одной температуры и одной скорости деформации. Для набора информации, необходимой для инженера-конструктора, требуется проведение испытаний при нескольких температурах и скоростях деформации, что занимает много времени и связано со значительным расходом материалов. Обычно имеются данные о деформационно-прочностных свойствах при растяжении или изгибе, хотя часто необходимо знать результаты испытаний при сжатии и сдвиге, в том числе не только при одноосном, но и при двухосном нагружении. Поэтому очевидно, что, используя обычно имеющиеся данные о деформационнопрочностных свойствах полимерных материалов, инженер-конструктор должен в значительной мере полагаться на интуицию и опыт, что часто приводит к перестраховке или к ошибкам при конструировании изделий.  [c.152]


Комплексный эластовискозиметр-3. На приборе возможно исследовать комплекс реологических свойств коллоидных систем. На нем можно проводить испытания материалов как при Q = onst, так и при постоянных напряжениях сдвига (имеется крутильная головка, обеспечивающая различные виды углового смещения внутреннего цилиндра быстрый и медленный его повороты). Пределы задания скоростей деформации от 5-10 до 5-10 секг и напряжений сдвига от 10 до 10 н-м .  [c.160]

Автоматический ротационный вискозиметр Р. Вельтман и П. Кунса [57]. Прибор допускает испытание материалов при Q = onst и по заданной программе автоматического изменения Й за определенные отрезки времени. Кривые течения материала записываются на двухкоординатном регистрирующем устройстве. На нем же воспроизводится при желании запись зависимости напряжений сдвига от времени. Автоматическое управление прибором позволяет записывать кривую течения за 15 сек при изменении скорости деформации от О до 4-10 сек. За столь малые отрезки времени испытания тепловые эффекты не успевают проявиться в такой мере, чтобы оказать существенное влияние на результаты измерений. Автоматический вискозиметр применялся для испытаний смазочных масел и консистентных смазок. Наружный цилиндр приводится во вращение со скоростью от О до 400 или от О до 1,6-10 об мин. Крутящий момент передается на внутренний цилиндр, связанный с измерителем тензометрического типа. Пределы измерения вязкости от 5-10" до 2-10 н-сек-м скоростей деформации до 4-10 сек напряжений сдвига от 5 до 2,5-10 Я 1 — Oi75 0,535 Янз = 1Л  [c.179]

В главе обсуждаются экспериментальные методы оценки меж-слойного разрушения композитов. Кроме классического метода испытания на сдвиг с помощью короткой балки представлен ряд методов, основанных на подходах линейно-упругой механики разрушения методы двойной консольной балки, расслоения кромки при растяжении, изгиба балки с надрезом на конце, растяжения составного образца с одинарной и двойной накладками, растяжения полосы с косоугольным центральным надрезом. Каждый метод обсуждается с позиций сопротивления материалов. Такого рода подход прцемлем ввиду сложной природы композитов. Кроме того, в главе обсуждается взаимосвязь между основными экспериментальными даш1ыми и конструкционными свойствами композитов, в том числе рассматриваются критерий разрушения смешанного типа и параметрический анализ, включающий одномерную модель расслоения при выпучивании для оценки взаимосвязи между характеристиками материала и его конструкционными свойствами. Рассмотрены также соотношения между основными показателями свойств полимерного связующего и поведением материала матрицы in situ в составе композита.  [c.193]

Главное, что нас интересует с точки зрения прочности, это напряжения, при которых в материале наступают качественные изменения механических свойств, т.е. когда в пластичном материале наступает текучесть, а в хрупком — разрушение. Такие напряженные состояния мы будем называть предельными. При внешнем разнообразии наблюдаемых в эксперименте видов предельных состояний все они, по суш еству, могут быть сведены к трем видам. Первый из них наблюдается при испытаниях образцов из хрупких материалов на растяжение. Это разрушение отрыва по плоскости, нормальной по отношению к растя-гиваюш им напряжениям. Будем называть такое предельное состояние хрупким отрывом. Второй вид предельного состояния соответствует разрушению по плоскостям действия максимальных касательных напряжений хрупких образцов при сжатии, т.е. по плоскостям максимальных сдвигов. Это предельное состояние хрупкого сдвига. И, наконец, предельное состояние текучести, которое возникает при испытаниях образцов из пластичного материала и сопровождается пластическими деформациями за счет скольжения но плоскостям действия максимальных касательных напряжений.  [c.347]

Таким образом, в процессе развития усталостной трещины при формировании продуктов фреттинга и значительной анизотропии прочностных свойств материала определяющую роль в разрушении материала играет механизм продольного сдвига (/Сщ). Туннелирование трещины на макро-и микроуровне создает предпосылку для продольного роста ее по отношению к магистральному при соединении перемычек между туннелями. Продольный сдвиг материала в процессе роста трещины является вполне закономерным в про-цесде испытаний образцов на растяжение. Незначительные отклонения в параллельности плоскостей, помещаемых в захваты машины, вызывают появление крутящего момента в плоскости образца. Последнее способствует возникновению продольного сдвига и, как следствие, развитию трещины на отдельных участках в продольном направлении, а также возникновению ротаций в материале и формированию сферических частиц.  [c.187]

Стеновая панель с алюминиевыми обшивками и средним слоем из сотопласта на основе крафт-бумаги, разработанная в ЦНИИСК [14] для экспериментального здания (в городе Куйбышеве), приведена на рис. 84. На том же рисунке показан горизонтальный стык и крепление панелей к железобетонному каркасу здания. Наружные слои панели выполняются из плоских листов толшиной 1 мм из алюминиевого сплава АМг и АМц. В ячейки сот для утепления закладывается мипора или перлит. Для устранения мостиков холода в обрамление панели вводится слой древесноволокнистой плиты. Другие варианты обрамления панелей с обшивками из алюминия показаны на рис. 84, г, д, е. Обрамление, показанное на рис. 84, б, обладает хорошей устойчивостью, о теплотехнические свойства его довольно низки и поэтому оно может быть рекомендовано только для теплых районов ( н = —15°С). Наилучшими в теплотехническом отношении являются варианты, приведенные на рис. 84, г, д, однако недостатком их является приближение к наружным контурам панели напряженных клеевых швов, склеивающих разные материалы. Во избежание этого применяется обрамление из алюминиевых гнутых профилей с разделительным слоем, помещенным внутри панели (рис. 82, е). При теплотехнических испытаниях хорошо показал себя разделитель из ПВХ толщиной 5 см. Значительно более худшие теплотехнические свойства имеет разделитель из древесноволокнистой плиты общей толщиной 2,5 см. Однако на сдвиг пенопласт работает значительно хуже, чем древесноволокнистая плита, поэтому обрамление с разделителем из ПВХ возможно применять лишь для малонапряженных панелей. Поскольку обрамление, выполняемое по типу рис. 82, е, обладает относительно малой устойчивостью, рекомендуется производить усиление алюминиевых профилей путем приклейки к ним жесткого пенопласта.  [c.199]

Машина (рис. 100) представляет собой усовершенствованную модель известной машины Релига и предназначена для определения динамического модуля упругости, угла сдвига фаз между напряжением и деформацией в материале [48], [46]. Машину можно также использовать для испытания полимеров на демпфирование.  [c.159]

В данной главе рассмотрены наиболее перспективные прямые методы кратковременных статических испытаний композитов на растяжение, сжатие, сдвиг и изгиб. Методы апробированы, в основном, на однонаправленных композитах (укладка 0°). Если схема нагружения и расчетные формулы применимы также для ортотропных материалов (укладки 0/90°, 45°). то необходимые пояснения даны  [c.189]

Методы механических испытаний и обработки их результатов различны для разных типов композитов. Свойства этих материалов настолько разнообразны, что единый подход едва ли возможен. Так, техника и обработка результатов испытаний материалов, армированных дискретными частицами, и материалов, армированных непрерывными волокнами, во многом различны, так как первые являются квазиизотропными, а вторые — существенно анизотропными материалами. Щменно поэтому необходимо говорить об испытаниях волокнистых композитов, учитывая их анизотропность. Привычные термины испытания на растяжение, сжатие, сдвиг, изгиб и т. д. становятся бессодержательными без указания направления между нагрузкой и осями упругой симметрии материала. Сказанное йа-ставляет привлечь к описанию свойств изучаемых материалов теорию упругости анизотропных сред [46, 159]. При этом необходимо учитывать особенности строения волокнистых композитов и возможности перехода к сплошной среде.  [c.10]

Как видно из рисунка, параметры анизотропии — отношения типа Е Еу, ЕхЮху, Пд./П и т. д. (характерные области изменения этих параметров заштрихованы) — для боро- и углепластиков могут быть значительно большими, чем для стеклопластиков. Принципиальных различий по прочностной анизотропии между стеклопластиками, боро- и углепластиками практически нет главные особенности связаны с разносонротивляемостью боропластиков при растяжении — сжатии и с низким сопротивлением углепластиков межслойному сдвигу и поперечному отрыву. Вот почему при анализе опубликованных данных по механическим свойствам боро- и углепластиков [106 ] обнаруживается, что приведенные численные оценки в ряде случаев существенно различаются. Это хорошо видно и на рис. 1, на котором приводятся результаты выполненных различными авторами испытаний материалов, близких по структуре и составу.  [c.15]


Из-за сложности всего комплекса вопросов, связанных с экспериментами по определению сдвиговых характеристик материалов, в настоящее время практически отсутствуют стандартизованные методы испытания армированных пластиков на сдвиг. Исключение составляют стандарты ASTM D 2344—67 и ASTM D 2733—70, применяемые для оценки прочности при межслойном сдвиге. Используются также стандарты ГОСТ 1143—41 (для определения модуля сдвига в плоскости листа фанеры) и ГОСТ 17302—71.  [c.119]


Смотреть страницы где упоминается термин Испытание материалов на сдвиг : [c.118]    [c.107]    [c.151]    [c.40]    [c.160]    [c.166]    [c.106]    [c.426]   
Смотреть главы в:

сопротивление материалов  -> Испытание материалов на сдвиг



ПОИСК



Испытание материалов

Испытания на сдвиг

Материал сдвига



© 2025 Mash-xxl.info Реклама на сайте