Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон первой волны

Закон первой волны  [c.150]

На рис. 1.37, б показаны зависимости амплитуды принятого сигнала поперечных волн от расстояния между преобразователями для четырех валков, полученные при различных частотах и углах ввода ультразвуковых волн. Отметим, что кривые для поперечных и продольных волн существенно различаются. В первом случае нет левой снижающейся ветви. Это следует из законов образования волн дифракции третьего типа, поскольку при излучении под вторым критическим углом головная волна и боковая в верхней среде, являясь поперечными волнами, не фиксируется приемным преобразователем. Кроме того, максимумы для поперечных волн выражены более значительно, чем для продольных волн, что делает предпочтительным их применение при измерении толщины закаленных слоев валков.  [c.53]


Тогда под второй сопряженной глубиной волнистого прыжка следует понимать не максимальную глубину под гребнем первой волны йг, а глубину й" в сечении, проведенном через точку перегиба Л, в котором закон распределения давления достаточно близок к гидростатическому. При такой трактовке второй сопряженной глубины Н" уравнение (11-5) можно также применить и к волнистому прыжку.  [c.311]

В последнее время изучается влияние искривления струек на распределение давления в сечении потока под первой волной. Отклонение распределения давления от гидростатического закона для струйки на высоте г над дном русла можно выразить зависимостью  [c.340]

Постоянной скорости Wj отвечает закон дисперсии волн (n==uji. В диспергирующей среде этот закон представляет собой лишь первый член разложения функции аз( ) по степеням малого к. С учетом следующего члена имеем )  [c.192]

Перенос тепла излучением и оптическая термометрия тесно связаны, поскольку в обоих случаях необходимо иметь соотношение между термодинамической температурой и количеством и качеством тепловой энергии, излученной поверхностью. В конце 19 в. на основе только классической термодинамики и электромагнитной теории были получены два важных результата. Первый — закон Стефана (1879 г.), согласно которому плотность энергии внутри полости пропорциональна четвертой степени температуры стенок полости. Второй —закон смещения Вина (1893 г.), который устанавливал, что, когда температура черного тела увеличивается, длина волны максимума излучения Хт уменьшается, так что произведение ХтТ сохраняется постоянным. Доказательство закона Стефана основано на трактовке теплового излучения как рабочей жидкости в тепловой машине, имеющей в качестве поршня подвижное зеркало, и использовании электромагнитной теории Максвелла, чтобы показать, что действующее на поверхность давление изотропного излучения пропорционально плотности энергии. Закон Вина вытекает из рассмотрения эффекта Доплера, возникающего при движении зеркала. В обоих законах появляется постоянный коэффициент пропорциональности, относительно которого классическая термодинамика не могла дать информации.  [c.312]

Поверхностные волны обусловлены колебанием частиц со значительной амплитудой на поверхности тела и постепенным ее уменьшением при удалении частиц от поверхности. Если продольная волна падает перпендикулярно на плоскую границу раздела двух сред, обладающих различным акустическим сопротивлением, то одна часть ее энергии переходит во вторую среду, а другая отражается в первую. Доля отраженной энергии тем больше, чем больше разность акустических сопротивлений сред. Если продольная волна попадает на границу раздела двух твердых сред под углом, то отраженная и прошедшая волны преломляются и трансформируются в продольные и сдвиговые, распространяющиеся в первой и второй средах под различными углами. Законы отражения и преломления волн аналогичны законам геометрической оптики.  [c.194]


Полное внутреннее отражение. В предыдущем параграфе мы получили закон преломления света, согласно которому отношение синуса угла падения к синусу угла преломления равно показателю преломления второй среды относительно первой. Из этого закона следует, что при прохождении световой волны из оптически менее плотной среды в более плотную преломленный луч приближается к нормали. И обратно, когда свет распространяется из оптически более плотной среды в менее плотную, преломленный луч удаляется  [c.53]

Закон отражения совпадает с законом отражения механических волн, т. е. угол отражения равен углу падения падающий луч, отраженный луч и перпендикуляр к поверхности в точке падения лежат в одной плос-р ости. На границе раздела двух сред происходит преломление электромагнитных воли. Закон преломления отношение синуса угла падения а к синусу угла преломления р является величиной постоянной для двух данных сред. Это отношение равно отношению скорости V электромагнитных волн в первой среде к скорости V2 во второй среде sin а VI  [c.249]

Экспериментально установленный закон преломления света получает объяснение на основании принципа Гюйгенса. Согласно волновым представлениям преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую, а физический смысл показателя преломления — это отношение скорости распространения волн в первой среде к скорости их распространения во второй среде V2.  [c.265]

При ответе на первый вопрос целесообразно провести сравнение экспериментального способа разложения излучения на сумму монохроматических волн и известной математической операции получения спектра произвольной функции ( ) — операции, законность которой обоснована теоремой Фурье.  [c.68]

В такой первоначальной форме принцип Гюйгенса говорит лишь о направлении распространения волнового фронта, который формально отождествляется с геометрической поверхностью, огибающей вторичные волны. Таким образом, речь идет собственно о распространении этой поверхности, а не о распространении волн, и выводы Гюйгенса относятся лишь к вопросу о направлении распространения света. В таком виде принцип Гюйгенса является, по существу, принципом геометрической оптики и, строго говоря, может применяться лишь в условиях пригодности геометрической оптики, т. е. когда длина световой волны бесконечно мала по сравнению с протяженностью волнового фронта. В этих условиях он позволяет вывести основные законы геометрической оптики (законы преломления и отражения). Рассмотрим для примера преломление плоской волны на границе двух сред, причем скорость волны в первой среде обозначим через 01, во второй — через  [c.19]

Указанное явление очень легко осуществить в акустическом опыте, где мы имеем дело с небольшими частотами. Если взять камертон с частотой 100 Гц, то достаточно модулировать по указанному закону силу его звука два раза в секунду, для того чтобы получить сложную волну, эквивалентную трем волнам с частотами 98, 100 и 102 Гц. В этом легко убедиться простым опытом. Поставим друг против друга два камертона (рис. 2.5), имеющих частоты 100 и 98 Гц (или 102 Гц). Они не настроены в унисон, и волны, испускаемые одним камертоном, не вызовут резонанса в другом. Но если, заставив звучать первый камертон, мы будем два раза в секунду вносить и убирать заслонку М, прикрывающую его резонансный ящик, т. е. будем модулировать дважды в секунду силу его звука, то модулированная волна будет эквивалентна (приблизительно) совокупности трех волн с частотами 100, 98 и 102 Гц и второй камертон будет отзываться на одну из них. Опыт этого рода удается без всяких затруднений.  [c.36]

Закон независимости световых пучков, упомянутый в 1, означает, что световые пучки, встречаясь, не воздействуют друг на друга. Зто положение было ясно сформулировано Гюйгенсом, который писал в своем Трактате Одно из чудеснейших свойств света состоит в том, что, когда он приходит из разных н даже противоположных сторон, лучи его производят свое действие, проходя один сквозь другой без всякой помехи. Этим вызывается то, что несколько зрителей могут одновременно видеть через одно и то же отверстие различные предметы Сам Гюйгенс прибавляет, что этот вывод нетрудно понять с точки зрения волновых представлений. Он является следствием принципа суперпозиции (см. 4), в силу которого световой вектор одной световой волны просто складывается с вектором другой волны, не испытывая никакого искажения. При этом, однако, возникает следующий вопрос. В силу принципа суперпозиции при сложении векторов отдельных волн может получиться волна, амплитуда которой равна, например, сумме амплитуд складывающихся волн. А так как интенсивность волны пропорциональна квадрату амплитуды, то интенсивность результирующей волны не будет, вообще говоря, равна сумме интенсивностей складывающихся волн, ибо квадрат суммы нескольких величин не равен сумме их квадратов. Обычный же опыт показывает, что освещенность, создаваемая двумя или несколькими световыми пучками, представляется простой суммой освещенностей, создаваемых отдельными пучками. Таким образом, обычные экспериментальные факты кажутся на первый взгляд противоречащими волновым представлениям.  [c.62]


Исторически первая волновая трактовка дифракции была дана Т. Юнгом (1800 г.), который исходил из представлений, внешне сильно отличающихся от френелевских. Помимо закона распространения волнового фронта в направлении лучей, выводимого из построения огибающей вторичных волн Гюйгенса, Юнг ввел принцип передачи или диффузии амплитуды колебаний вдоль волнового фронта (поперек лучей). Скорость такой передачи пропорциональна, по Юнгу, длине волны и растет с увеличением различия амплитуд в соседних точках волнового фронта. Кроме того, диффузия амплитуды сопровождается изменением фазы колебаний. Таким образом, по мере распространения волнового фронта происходит сглаживание, расплывание неоднородного распределения амплитуды на волновом фронте. Полосы, наблюдающиеся при дифракции на экране с отверстиями (см. рис. 9.13, 9.14 и 9.18), возникают, по Юнгу, в результате сдвига фазы между колебаниями в падающей волне и колебаниями, диффундирующими в данную точку из соседних областей волнового фронта. В области геометрической тени падающая волна отсутствует, наблюдается чистый эффект диффузии, и полосы появиться не могут, что находится в соответствии с наблюдениями.  [c.171]

Установленная формальная аналогия, разумеется, не случайна. Как при голографировании, так и при отображении в линзовой либо зеркальной оптической системе речь идет о преобразовании одной сферической волны (предмета) в другую, также сферическую волну (изображения). Формальный вид закона такого преобразования (линейное преобразование кривизны волновых фронтов) предопределен самой постановкой задачи и никак не связан с конкретным способом его реализации. Любой способ, голографический или линзовый, может только изменить кривизну исходного волнового фронта в определенное число раз и добавить к ней новое слагаемое ), но не более того. Анализ физического явления, призванного осуществить эту процедуру, конкретизирует физический смысл соответствующего множителя и слагаемого и их зависимость от характеристик явления и конструктивных особенностей системы. Последнее оказывается очень существенным при сравнительном рассмотрении разных способов. Как уже упоминалось, применение разных длин волн на первом и втором этапе предоставляет голографии неизмеримо более широкие возможности, чем аналогичный фактор в линзовых и зеркальных системах (различие показателей преломления в пространстве изображений и предметов, иммерсионные объективы микроскопов, см. 97), ибо можно использовать излучение с очень сильно различающимися длинами волн, например, рентгеновское и видимое (когда будет создан рентгеновский лазер).  [c.253]

Первое равенство означает, что (р = ср, т. е. мы приходим к закону отражения. Для преломленной волны имеем цепочку равенств  [c.473]

Исследование этих полей показывает, что по мере углубления во вторую среду они быстро убывают по экспоненциальному закону, и на глубине, сравнимой с длиной волны, амплитуды полей уменьшаются в несколько раз. Такое их ослабление происходит не вследствие поглощения света, ибо мы предполагаем обе среды вполне прозрачными, в соответствии с чем вся падающая энергия полностью отражается, возвращаясь в первую среду.  [c.486]

Нетрудно показать, что построение Гюйгенса дает непосредственно положение волнового фронта и, следовательно, направление нормалей, а не лучей. При этом по отношению к нормалям законы преломления в обычной формулировке сохраняются и для анизотропных сред, а именно 1) нормали к обеим волновым поверхностям лежат в плоскости падения 2) отношение синусов углов, образованных нормалями к волновым фронтам с перпендикуляром к поверхности раздела, равно отношению нормальных скоростей для сред по обе стороны границы раздела. Действительно, пусть плоская волна, фронт которой в первой среде есть MQ (рис. 26.12), падает  [c.509]

Первым этапом, как сказано, явилось нахождение закона, устанавливающего зависимость суммарного или интегрального излучения (т. е. общего излучения всех длин волн) от температуры. Стефан (1879 г.) на основании собственных измерений, а также анализируя данные измерений других исследователей, пришел к заключению, что суммарная энергия, испускаемая с 1 см в течение 1 с, пропорциональна четвертой степени абсолютной температуры излучателя. Стефан формулировал свой закон для излучения любого тела, однако последующие измерения показали неправильность его выводов. В 1884 г. Больцман, основываясь на термодинамических соображениях и исходя из мысли о существовании давления лучистой энергии, пропорционального ее плотности, теоретически показал, что суммарное излучение абсолютно черного тела должно быть пропорционально четвертой степени температуры, т. е.  [c.695]

Тот факт, что закон первой волны спреведлив и для случаи, когда прямой звук подается иа одно ухо. а отражение — на другое, показывает, что  [c.157]

Закон первой волны сохраняет свою силу, как и эфф локализации суммы в звуковом поле нескольких источников. Однако здесь вероятность того. >1то даввое (наблюдаемое) отражение будет услышано, уменьшается еслн между ним и прямым звуком оказываются другие отражения. Это же справедливо и для абсолютного слухового порога, порога восприятня эха, порога равной громкости прямого звука и эха, а также порога эха как помехи. Вопросы абсо.1К<тного слухового порога подробно рассмотрены в работах Бурггорфа (1961) н Серафима (1961. 1963).  [c.186]

Закон преломления волн. Рассмотрим процесс возникновения преломленной волны при падении волны с плоским фронтом на плоскую поверхность раздела двух сред. Если угол падения волны отличен от нуля, то падающая волна достигает различных точек границы раздела двух сред в разные моменты времени. В тот момент времени, когда участок падающей волны, отмеченный лучом AiA (рис. 225), достигает границы раздела двух сред, точка А согласно принципу Гюйгенса становится источником вторичных волн. За то время, пока в первой среде гранип,ы раздела достигнет участок волнового  [c.226]


Так, на рис. 119 показано, что при М (t) = onst колебательный процесс совершается с постоянной частотой и, если не учитывать затухания вследствие внутреннего трения, максимум каждой волны одинаковый по своей величине. При М (i) изменяющейся по наклонной прямой, происходит смещение оси колебаний по закону изменения М (i) (рис. 120). При малых периодах колебаний системы значения М в первой волне для всех значений Л1 (t) почти одинаковы. На основании этого можно сделать вывод, что динамические нагрузки, воспринимаемые механизмом обгона высокочастотных систем, почти не зависят от характера изменения избыточного пускового момента, а следовательно, и от типа привода и определяется главным образом начальным значением пускового момента Мо-  [c.215]

Первая волновая трактовка Д. в, дана Т. Юнгом (Th. Young, 1800), вторая — О. Френелем (А. Fres-не1, 1815). В картине волнового поля, возникающей за препятствием, Ю 1Г усматривал сочетание собственно Д. в. и интерференции. Для объяснения Д. в., помимо обычных законов распространения волн в направлении лучей, он ввёл принцип поперечной передачи амплитуды колебаний непосредственно вдоль волновых фронтов, указав, что скорость этой передачи пропорциональна  [c.664]

Из сравнения формул (4.1) и (4.2) видны трудности их стыковки так, первые содержат лишь один произвольный параметр О, тогда как во втором произвольны два параметра - Рт о ято, которые, таким образом, должны быть связаны параметрами взрыва. Более важно то обстоятельство, что различны законы затухания волны соответственно и г (1пг) . Тем не менее, если, следуя работе [Фридман, 1980], сшить решения (4 Л и (4.7) на некотором рапиусе чначения р оказываются весьма близкими (с разницей не более 10%) 1И весьма широком (несколько порядков) интервале расстояний (рис. 3.5). Это заставляет думать, что на деле закон есть лишь аппроксимация логариф-  [c.85]

Первый игаг на ну ги отхода от теории упругого эфира был сделан Мак-калахом [33], постулировавшим существование среды со свойствами, кото-рыдщ обычные тела ие обладают. Последние накапливают энергию при деформации элементов объема, при вращении же накопления энергии не происходит. В эфире Маккалаха имеет место обратная ситуация. Законы распространений волн в такой среде весьма сходны с законами, вытекающими из уравнения Максвелла (для электромагнитных волн), которые являются основой современной оптики.  [c.19]

Как и законы первой группы, законы второй группы локальны. В самом деле, направление отраженного и преломленного лучей определяется только локальными характер-нгстикам-и фронта падающей волны и поверхности тела направлением нормали к поверхности фро нта (т. е. направлением луча) и направлением нормали к поверхности тела. Направления отраженного и преломленного лучей не зависят, наиример , от значений кривизн фронта и границы раздела. Аналогично амплитуда отраженного и преломленного полей связана только со значением алИ1Л1Н[туды падающей волны в точке выхода отраженного и преломленного лучей и не зависит от характера изменения амплитуды вдоль фронта падающей волны.  [c.14]

Перейдем от законов геометрической оптики к законам геометрической теории дифракции. Отличие их состоит в том, что в ГТД наряду с отражением и преломлением постулируются еще другие способы образования лучей. Во всех случаях, когда при падении первичного поля на тело (или граиицу раздела) возникает граница тень—свет для геометрооптических волн, т. е. когда геометрооптическое решение претерпевает разрыв, постулируется образование дополнительных дифракционных полей, компенсирующих эти разрывы. Лучи этих полей порождаются лучами первичного поля, касающимися тела или попадающими на изломы поверхности тела (ребра, острия). Иным словами, в ГТД по сравнению с ГО расширяется вторая группа законов первая группа сохраняется в ГТД лолностью без изменений и дополнений. Дополнительные специфические для ГТД законы во многом схожи с перечисленными законами ГО второй группы. Всего имеется четыре дополнительных закона два первых определяют направления дифракционных лучей, а два других — их амплитуды. Запишем сначала два первых закона,  [c.14]

В тесной связи с этим находится и упоминавшаяся выше проблема вычисления переноса излученного тепла между близко расположенными высокоотражающими поверхностями при очень низких температурах. При этих условиях длины волн, посредством которых передается основная часть тепловой энергии, становятся сравнимыми с расстояниями между поверхностями. Экспериментально было найдено [34], что если средняя длина волны превышает половину расстояния между отдельными поверхностями, го наблюдаемый перенос тепла превышает перенос, вычисленный по закону Стефана — Больцмана. Величина этого аномального переноса была точно предсказана в недавней теоретической работе [17]. Расчет основан на предположении, что поле низкотемпературного излучения вблизи металлической поверхности обусловлено тепловыми колебаниями электронов в двумерном слое у поверхности металла. Эти колебания вызывают как бегущие, так и квазистационарные волны. Первые формируют классическое поле излучения, наблюдаемое на больших расстояниях от поверхности, тогда как вторые ограничены областью вблизи поверхности. При сближении двух таких поверхностей квазистационарные волны становятся преобладающим  [c.317]

Для решения наносим на диаграмме ДА (< ) напор Ад и откладываем в нижней части графика заданный закон изменения коэффициента расхода затвора р = / (О (рис. XII—9, а). При этом за единицу времени принимаем промежуток 1/а. Выбираем на трубе два сечения А — непосредственно у затвора, В — возле резервуара. Отмечаем на диаграмме ДА (д) режимы течения в этих сечениях в начальный момент (точки Лд и Вд,]). Так как и /1ачальный момент расход во всех сечениях трубы одинаков и равен 0, а трением пренебрегаем, то эти точки совпадают. Индекс О—1 у точки В указывает на то, что начальный режим в этом сечении сохраняется в течение времени от нуля до единицы, т. е. до тех пор, пока первая ударная волна дойдет от затвора до резервуара.  [c.349]

Закон Кирхгофа. Для всякого тела излучательная и поглощательная способности зависят от VeMnepaTypbi и длины волны. Различные тела имеют различные значения Е и А. Зависимость между ними устанавливается законом Кирхгофа. Рассмотрим лучистый теплообмен между двумя параллельными пластинами с неодинаковыми температурами, причем первая пластина является абсолютно черной с температурой Т,, вторая — серой с температурой Т. Расстояние между пластинами значительно меньше их размеров, так что излучение каждой из них обязательно попадает на другую.  [c.464]

Закон Стокса — Ломмеля. Первый закон люминесценции был установлен Стоксом в 1852 г. Согласно закону Стокса, длина волны излучения люминесценции всегда больше длины волны света, возбудившего люминесценцию.  [c.363]

О проводится полуокружность радиусом ОС = U2M ( где М — время, которое должна была затратить волна, чтобы пройти путь АВ в первой среде). Очевидно, что АВ = ujAt и ОС = uz/u )AB. Ту же операцию можно повторить для точек 0 , О и т.д. Огибающей всех этих полуокружностей служит прямая BD, перпендикуляр к которой (луч) составляет угол ф2 с нормалью к границе раздела. Отсюда получаются законы отражения и преломления световых волн, и, следовательно, из принципа Гюйгенса можно вывести законы геометрической оптики. Вопрос о том, почему этот принцип (без дополнений, сделанных Френелем) нельзя положить в основу волновой оптики, подробно рассмотрен в гл. 6.  [c.132]


Экспериментальное открытие электрона, радиоактивности, термоэлектронной эмиссии (испускание нагретыми металлами электронов), фотоэффекта (вырывание электронов из металлов под действием света) и других явлений — все это указывало на то, что атом вещества является сложной системой, построенной из более мелких частиц. Перед физикой встала проблема строения атома. Как устроен атом Первая (статическая) модель атома была предложена в 1903 г. Дж. Дж. Томсоном, согласно которой положительный заряд и масса распределены равномерно по всему атому, имеющему форму сферы радиуса 10 м. Отрицательные электроны расположены внутри этой сферы, образуя некоторые конфигурации, и взаимодействуют с отдельными ее элементами по закону Кулона. Электроны в атоме пребывают в некоторых равновесных состояниях. Если электрон получает малое смещение, то возникает квазиупругая сила — и электрон начинает совершать колебания около рав1Ювесного положения и излучать световые волны. Хотя модель Томсона объясняла некоторые явления, все же вскоре выяснилась ее несостоятельность.  [c.10]

Закон преломления, найденный на опыте и вытекающий из теории, гласит, что 8)пг ) = з1пф/ /г. Легко видеть, что если и <С 1, то согласно этому соотношению возможно такое значение угла падения Ф, при котором > 1, что не имеет смысла, ибо подобная формула не определяет никакого реального угла преломления. Подобный случай имеет место для всех значений угла ф, удовлетворяющих условию 51пф > п, что возможно, когда п<, т. е. когда свет идет из более преломляющей среды в среду менее преломляющую (например, из стекла в воздух). Угол ф, соответствующий условию з)пф = п, принято называть критическим или предельным. Как известно, при этих условиях мы не наблюдаем преломленной волны, а весь свет полностью отражается обратно в первую среду, в соответствии с чем явление носит название полного внутреннего отражения.  [c.482]


Смотреть страницы где упоминается термин Закон первой волны : [c.379]    [c.138]    [c.151]    [c.151]    [c.152]    [c.159]    [c.160]    [c.189]    [c.190]    [c.314]    [c.67]    [c.138]    [c.624]   
Смотреть главы в:

Пространственный слух  -> Закон первой волны



ПОИСК



Закон первый



© 2025 Mash-xxl.info Реклама на сайте