Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обыкновенные дифференциальные операторы

Предложенный В. П. Терских (1930, 1955) метод цепных дробей оказался эффективным средством решения задач о колебаниях линейных систем, упругое состояние которых описывается обыкновенными дифференциальными операторами второго порядка (крутильные и продольные колебания многомассовых систем).  [c.168]

Обыкновенные дифференциальные операторы  [c.204]

Результаты п. 8 1 для эллиптических операторов высокого порядка могут быть уточнены для обыкновенных дифференциальных операторов. Приведем здесь некоторые теоремы в этом направлении.  [c.204]


УСРЕДНЕНИЕ СОБСТВЕННЫХ ЗНАЧЕНИЙ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ  [c.283]

Если оператор Т является нелинейным, то и соответствующая динамическая система называется нелинейной. Кроме того, оператор Т может быть непрерывным или дискретным. Форма задания оператора Т может быть дифференциальной, интегральной, матричной, табличной и т. д. В этой книге речь пойдет о дискретных математических моделях динамических систем, состояние которых определяется конечным числом переменных, с непрерывным фазовым пространством и непрерывным дифференциальным оператором Т, в общем случае.нелинейным. Таким образом, мы будем рассматривать динамические системы, описываемые нелинейными дифференциальными уравнениями в обыкновенных производных.  [c.10]

Подействовав оператором Фурье (по переменным х и у), придем к обыкновенным дифференциальным уравнениям для трансформант  [c.458]

Операторы, задаваемые обыкновенными дифференциальными уравнениями. Операторы этого вида, наряду с операторами, задаваемыми системами уравнений в частных производных, наиболее часто встречаются в технических приложениях, поскольку большинство технологических объектов описывается именно обыкновенными дифференциальными уравнениями или уравнениями в частных производных.  [c.43]

Наиболее простым оператором рассматриваемого типа является оператор, задаваемый с помощью одного обыкновенного дифференциального уравнения первого порядка с постоянными коэффициентами  [c.43]

Аналогично можно определить оператор объекта, описываемого обыкновенным дифференциальным уравнением п-го порядка. Этот оператор каждой функции u(t) ставит в соответствие функцию v(t), являющуюся решением дифференциального уравнения  [c.44]

Аналогично доказывается линейность оператора, задаваемого обыкновенным дифференциальным уравнением вида  [c.51]

Другой Причиной нелинейности оператора, задаваемого дифференциальными уравнениями, является наличие ненулевых начальных условий. Рассмотрим оператор А и(/)—у(/), задаваемый линейным обыкновенным дифференциальным уравнением  [c.53]

Доказанное свойство передаточной функции очень часто используется при исследовании технологических объектов. Большинство таких объектов описывается системами обыкновенных дифференциальных уравнений или уравнений в частных производных. Как правило, получить точное аналитическое решение этих систем уравнений невозможно. Однако можно упростить дифференциальные уравнения, если применить к ним преобразование Лапласа по времени. При этом обыкновенные дифференциальные уравнения превращаются в алгебраические уравнения для функций й р) и v p), а уравнения в частных производных — в обыкновенные дифференциальные уравнения, содержащие производные только по пространственной координате. Решая преобразованную систему уравнений можно получить выражение v p) через й р). Используя затем соотношение (2.2.77), найдем передаточную функцию W p), с помощью которой удобно описывать оператор объекта. После того как найдена функция W p), можно определить весовую функцию g t) и переходную функцию h(t). Для этого достаточно по таблицам преобразований Лапласа определить оригиналы функций  [c.71]


Характеристические функции объектов с сосредоточенными параметрами, описываемых многомерными операторами. Выясним теперь, как можно получить характеристические функции стационарных объектов с сосредоточенными параметрами, которые имеют по несколько входных и выходных параметров, т. е. описываются многомерными функциональными операторами. Эти операторы задаются с помощью систем обыкновенных дифференциальных уравнений, каждое из которых имеет вид (3.1,1). Исследование таких систем в общем виде будет достаточно громоздким, поэтому для простоты  [c.93]

Для операторов, задаваемых обыкновенными дифференциальными уравнениями, весовая и параметрическая передаточная функции являются равноценными характеристиками, причем способы их нахождения весьма похожи. Чтобы найти весовую или параметрическую передаточную функцию оператора, задаваемого общим уравнением (3.1.1), необходимо решать либо уравнение (3.1.15) с начальными условиями (3.1.16), либо уравнение (3.1.31). Эти уравнения имеют одинаковую структуру и в каждом конкретном случае можно определить, какую из функций G t, т) или F i, р) проще искать. Некоторое различие в процедурах нахождения характеристических функций появляется только для стационарных объектов. В этом случае для нахождения весовой функции по-прежнему необходимо решать дифференциальное уравнение (3.1.17), в то время как для отыскания передаточной функции используется тривиальное алгебраическое уравнение (3.1.34), решение которого (3.1.35) имеет очень простой вид.  [c.97]

Как видим, для стационарных объектов, описываемых дифференциальными уравнениями в частных производных, процедура определения передаточной функции U (p) имеет достаточно простой вид и в приведенном примере позволяет до конца решить задачу исследования функционального оператора объекта. Из свойства (2.2.77) следует, что для определения передаточной функции достаточно получить выражение преобразования Лапласа вых(р) выходной функции через й р) — преобразование Лапласа входной функции. Чтобы найти такое выражение Увых(р) через й(р) достаточно применить преобразование Лапласа к уравнению и граничным условиям математической модели, затем решить получившееся обыкновенное дифференциальное уравнение относительно функции х, р) — преобразования Лапласа от внутреннего параметра v x, t), и подставить в решение х = I.  [c.101]

Для того чтобы отыскать весовую функцию стационарного объекта, необходимо, как и в нестационарном случае, решить краевую задачу для уравнений в частных производных, подобную задаче (3.2.5), (3.2.6), хотя и с постоянными во времени коэффициентами. Решить такую задачу, конечно, гораздо сложнее, чем обыкновенное дифференциальное уравнение (3.2.16) с граничным условием (3.2.17). Таким образом, при исследовании стационарных объектов, математическая модель которых включает дифференциальные уравнения в частных производных (объекты с распределенными параметрами), передаточная функция является наиболее простым и эффективным средством описания оператора. Ее отыскание — главная задача при исследовании динамики объекта.  [c.101]

Используя этот оператор, получаем из (4.6) обыкновенное дифференциальное уравнение первого порядка относительно функции р=р(.1) при граничном условии l = k при р = 0. В более общем случае краевые условия можно записать в виде Z = Z, при р = ро, где нагрузка ро, соответствующая началу движения конца трещины, должна задаваться на основании экспериментальных данных. Например, уравнение (28.8) в этом случае примет вид  [c.247]

С сосредоточенными параметрами Оператор преобразования может быть представлен в виде одного или системы обыкновенных дифференциальных уравнений i С распре-1 деленными параметрами Оператор преобразования может быть представлен в виде одного или системы дифференциальных уравнений в частных производных  [c.442]


Подставляя это решение в уравнение (6.10) и разделяя переменные, получим обыкновенные дифференциальные уравнения для функций Фп( ). Вид левой части таких уравнений будет зависеть от оператора D. Для непологих оболочек он определен формулой  [c.263]

Для анализа собственных изгибных и крутильных колебаний лопасти потребуются результаты теории Штурма — Лиувилля. Рассмотрим обыкновенное дифференциальное уравнение вида Ly + %Ry — где L —линейный дифференциальный оператор  [c.351]

Оператор преобразования может быть представлен в виде одного обыкновенного дифференциального уравнения или системы таких уравнений  [c.522]

Если уравнение Е х, у, г, г, 2у,. ..) = О линейное, то, как и в случае обыкновенных дифференциальных уравнений, условия инвариантности уравнения можно сформулировать без использования продолжения операторов, в терминах коммутаторов.  [c.252]

Основываясь на теореме единственности для обыкновенных дифференциальных уравнений, показать, что решение V уравнения (16), ортогональное (т. е. являющееся ортогональным оператором) при < = io, будет ортогональным при всех Л  [c.49]

Естественно встает вопрос об обобщении этих результатов. Именно это и сделано в главе 8, где поверхность эллипсоида заменена произвольным /п+ Л-мерным римановым компактным многообразием. Основным математическим аппаратом здесь является теория гамильтоновых систем линейных обыкновенных дифференциальных уравнений, имеющих периодические коэффициенты, и некоторые дифференциальные операторы, свойства которых во многом аналогичны знаменитым операторам рождения и уничтожения в квантовой теории поля.  [c.16]

Восстанавливая по оператору и систему обыкновенных дифференциальных уравнений, для которой он является ассоциированным оператором, получаем общий вид системы (4.14)  [c.41]

Впервые исследовал поведение собственных чисел и функций, а также сходимость разложений по ним для некоторых пучков, порожденных обыкновенными дифференциальными операторами, по-видимому, Я.Д. Тамаркин [279]. Постановка основных задач и первые важные результаты содержатся в работах М.В. Келдыша [160, 161. Здесь были введены понятия присоединенных векторов, кратность собственного числа, кратной полноты собственных и присоединенных векторов. Для некоторого класса пучков, порожденных обыкновенными дифференциальными операторами были доказаны теоремы о полноте, асимптотике собственных значений и сходимости кратных разложений.  [c.8]

Математические модели на базе конечно-разностной аппроксимации исходных уравнений предусматривают замену процессов в непрерывной среде дискретной моделью, которая дает достаточно подробную и отвечающую практическим требованиям картину распределения поля внутри тела в функции координат и времени. Применение данного численного метода позволяет свести оператор Лапласа У к оператору конечных разностей, а исходные уравнения - к совокупности обыкновенных дифференциальных уравнений, записанных для каждого злементарного объема выделенного в каждом г-м теле [5].  [c.121]

В данном примере выходным параметром системы служит текущая температура нагреваемого тела T t). С помощью уравнения (2.1.12) и начального условия (2.1.13) задается функциональный оператор А, ставящий в соответствие каждой входной функции Тви () выходную функцию Т(t) = AT (t). В рассматриваемом процессе теплообмена, который описывается обыкновенным дифференциальным уравнением (2.1.12), различие между температурой нагревателя Твх(0 как входным параметром и температурой нагреваемого тела Т(t) как выходны,м параметром носит условный характер. Фактически при таком описании пренебрегают реальным распределением всех параметров по пространственной координате, поэтому здесь неприменимы понятия вход и выход, если понимать их в строгом простаатотвенном смысле. Разница между 7 вх(<) и Т ( ) = Гвых(0 состоит в том, что 7 вх(0 может произвольно меняться во времени, а Т (t) зависит от выбора  [c.44]

Любая модель очевидно беднее реального объекта. В усло- виях же указанных ограничений на объем и качество экспериментальной информации для корректной постановки обратной задачи пригодны лишь такие модели, которые, адекватно отражая все наиболее существенные стороны динамического поведения ЯЭУ, были бы как можно более простыми по структуре, как можно более бедными . Этому требованию по большей части удовлетворяют пространственно-независимые (сосредоточенные) модели динамики. Операторы сосредоточенных моделей описывают дифференциальные операции только по временной перемен-floft т. Они могут быть получены путем редукции задач математической физики по пространственым координатам к обыкновенным дифференциальным уравнениям и имеют вид (1.5). Такие модели широко и весьма эффективно используются в различных инженерно-физических приложениях, в том числе и для целей синтеза внешней САУ, которая воспринимает ЯЭУ именно лак сосредоточенный объект (по информации от интегральных датчиков).  [c.173]

Предполагая здесь и в дальнейшем, что оператор преобразования Фурье коммутативен с оператором дифференцирования д/дРо, после умножения всех членов уравнений (4-1-Q)— (4-1-3) на os и интегрирования по X от О до 1, 1исходную систему дифференциальных уравнений в частных производных с учетом (5-2-4)—(5-2-5) можно преобразовать к системе двух обыкновенных дифференциальных уравнений  [c.157]

Оно отличается от уравнения (25) наличием члена с диссипативным оператором В. Используя разложение (26), придем к системе уравнений относительно обобщенных координат. Обычно это обыкновенные дифференциальные уравнения того типа, который был подробно рассмотрен в гл. VII. Исключение составляет случай наследственного оператора В. При этом получается система интегро-дифференциальиых уравнений относительно обобщенных координат с ннтегральнымн операторами наследственного типа. Эти уравнения могут быть исследованы, например, методом обобщенных определителей Хилла.  [c.256]


Анализ корректной разрешимости контактных задач при использовании различных теорий оболочек проведен в [13, 84, 214]. Применительно к осесимметричной контактной задаче для круговых цилиндрических оболочек математические аспекты использования моделей Кирхгофа — Лява, Тимошенко и учета трансверсального обжатия, выяснение условий кор->ектности задач, способы-их регуляризации рассмотрены в 130]. Для строгого изучения этих вопросов применены теория обобш,енных функций и методы решения некорректных задач. Приведены сведения из теории краевых задач для обыкновенных дифференциальных уравнений с постоянными коэ1 )фици-ентами и основные понятия теории обобш,енных функций. С помош,ью фундаментальной системы решений дифференциального оператора построены функции Грина и функции влияния для оболочек Кирхгофа — Лява и Тимошенко. Даны постановки задач о контакте оболочек между собой и с осесимметричными жесткими штампами. Методом сопряжения построены обобщенные решения, поскольку классическое существует только для моделей, учитывающих трансверсальное обжатие. Найдены обобщенные решения интегральных уравнений Фредгольма первого рода, рассмотрены методы их аппроксимации классическими (методы регуляризации).  [c.11]

В последние десять — пятнадцать лет у нас в стране и за рубежом широкое развитие получили два прямых метода исследования задач дифракции. Один основан на приближенном решении строгого интегрального уравнения, полученного методами теории потенциала, а другой — на приближенном решении бесконечной системы обыкновенных дифференциальных уравнений с краевыми условиями на двух концах [47, 52, 206, 257, 258, 263 —265]. По эффективности эти методы эквивалентны методу частичных областей, приближенное решение обычно имеет относительную погрешность 2—5 %, а основные результаты в силу больших затрат машинного времени получены пока при 1/Х < 1,5, где I — характерный размер решетки. Построение строгого и эффективного решения задачи дифракции волн на эшелетте стало возможным благодаря использованию идеи частичного обращения оператора задачи. В [25, 58 при реализации этой идеи обращалась часть матричного оператора, соответствующая решетке из наклонных полуплоскостей [82, 83, 11, 112, 262]. Использование процедуры полуобращения в иной форме явилось предпосылкой для появления другого строгого метода [54, 266]. Ключевым моментом в нем является выделение и аналитическое обращение части решения, обеспечивающей правильное поведение поля вблизи ребер. Эффективности этих методов равнозначны, так как при одинаковых затратах машинного времени обеспечивают одинаковую точность окончательных результатов. Отметим, что применение метода работы [54] ограничено и пока не получило широкого развития на решетках другой геометрии, отличных от 90-градусного эшелетта. В то время как метод, развитый в [25, 58], привел к построению эффективных решений задач дифракции электромагнитных волн на эшелетте с несимметричными прямоугольными и острыми зубцами при произвольном падении первичной волны и любых соотношениях между длиной волны и периодом решетки. Результаты данной главы получены методом, приведенным в [25, 58].  [c.142]

Как и ранее, на эти соотношения можно смотреть двояко задан оператор 1/ — найти инвариантную поверхность, или задана поверхность — найти сохраняющую ее группу. В обыкновенных дифференциальных уравнениях обе задачи эквивалентны по сложности, поскольку обыкновенное дифференциальное уравнение и группа, преобразующая его, — объекты одной и той же природы. В случае уравнений в частных производных это уже не так. Дифференциальные уравнения, определяющие группу, — обыкновенные, а преобразуемое уравнение — в частных производных.  [c.252]

В предыдущем параграфе краевые задачи для векторных ин-тегродифференциальных уравнений сводились к векторным интегральным уравнениям второго рода с помощью матриц, составленных из функций Грина. При этом было достаточно существования функций Грина. Идею сведения краевых задач для векторных ин-тегродифференциальных уравнений к векторным интегральным уравнениям второго рода можно использовать и при приближенном решении краевых задач путем приближенного решения соответствующих интегральных уравнений. Однако при этом необходимо осуществлять построение функций Грина. Вопросы существования и построения функций Гряна для краевых задач, определяемых обыкновенными дифференциальными уравнениями, рассмотрены, например, в работах [5, 12]. Вопрос о построении функций Грина достаточно разработан для краевых задач, определяемых обыкновенными дифференциальными уравнениями с постоянными коэффициентами. В этом случае может оказаться целесообразным переход от краевой задачи для векторного интегродифференциального уравнения к векторному интегральному уравнению второго рода. Например, при приближенном решении задачи этот переход обеспечивает возможность осуществления эффективной аппроксимации. В случае дифференциальных операторов с переменными коэффициентами при построении функций Грина, а следовательно, и при сведении краевых задач к интегральным уравнениям второго рода могут возникать затруднения.  [c.85]

ДОКЛЗЛТЕЛЬСТВО. Уравнение неразрывности (1) с использованием оператора Г>о переписывается в виде обыкновенного дифференциального уравнения для величины р вдоль Со  [c.135]


Смотреть страницы где упоминается термин Обыкновенные дифференциальные операторы : [c.204]    [c.148]    [c.53]    [c.202]    [c.478]    [c.172]    [c.225]    [c.537]    [c.139]    [c.30]    [c.204]    [c.273]    [c.29]   
Смотреть главы в:

Математические задачи теории сильно неоднородных упругих сред  -> Обыкновенные дифференциальные операторы



ПОИСК



Дифференциальный оператор

Луч обыкновенный

Обыкновенные дифференциальные

Оператор

Оператор задаваемые обыкновенными дифференциальными уравнениям

Усреднение собственных значений обыкновенных дифференциальных операторов



© 2025 Mash-xxl.info Реклама на сайте