Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Асимптотические решения первого рода

Асимптотические решения Первого рода 161  [c.161]

Асимптотические решения первого рода  [c.161]

Теперь мы дадим подробную теорию асимптотических решений первого рода, которые могут служить решениями для задач о собственных значениях класса I (стр. 147). Выводы, к которым мы придем, подтверждают результаты, полученные описанными выше эвристическими методами, дальнейшие же сведения относительно этих решений можно получить в результате применения точных методов.  [c.161]


Предлагаемая схема опирается на работы [80, 81]. Решение исходной задачи представляется в виде суперпозиции решений более простых задач для кольца, которые эквивалентны соответствующим задачам для сектора кольца с одним или несколькими штампами с известными условиями на торцах и могут быть сведены к парным (тройным и т.д.) рядам-уравнениям и далее к бесконечным системам линейных алгебраических уравнений первого рода с сингулярной матрицей. Последние урезаются специальным образом с учетом асимптотического поведения их решения [305, 319] и решаются любым прямым методом. Приводятся результаты численной реализации решения задачи с четырьмя штампами, когда три штампа неподвижны, а перемещение четвертого задано. Исследована зависимость величин контактных напряжении, сил и моментов для каждого штампа в зависимости от параметров задачи. Периодические контактные задачи для кольца рассматривались в работах [66, 98, 187, 280] и др.  [c.131]

Задачи приведены к сингулярным интегральным уравнениям первого рода относительно контактного давления р(х). Для построения их приближенных решений использованы асимптотические методы и метод ортогональных многочленов.  [c.462]

Продемонстрируем основные идеи асимптотических методов б. Я и м. Я на примере интегрального уравнения первого рода с разностным нерегулярным ядром, к решению которого приводятся многие плоские и пространственные смешанные задачи теории упругости  [c.98]

Как уже отмечалось при изложении теории пограничного слоя в потоке несжимаемой жидкости, путь непосредственного интегрирования уравнений Навье — Стокса при тех значениях числа Рейнольдса, которые характерны для теории пограничного слоя первого приближения (уравнения Прандтля), в рассматриваемых случаях оказывается недоступным, причем не только для аналитического, но и для численного, машинного решения. На помощь приходят асимптотические методы (методы малых возмущений). Мы уже познакомились с частным случаем применения такого рода методов, когда рассматривали основной для теории пограничного слоя прием сшивания решений уравнений Прандтля с внешним невязким потоком ( 86).  [c.700]

Ниже методом больших Л исследуются некоторые типы интегральных уравнений первого и второго рода, для которых предлагается методика построения всех членов асимптотического разложения. Коэффициенты в разложении искомого решения по отрицательным степеням Л представлены в виде многочленов основного аргумента и для  [c.36]


Плоское движение Пуазейля. Если в примере 1 /3 = О, то мы имеем симметричное параболическое распределение скоростей в неподвижном канале. Хотя возможно, что экспериментальное осуществление такого рода течения более сложно, чем в первых двух случаях, может показаться, что это более простая задача с теоретической точки зрения. Тем не менее теоретические выводы оказались весьма спорными. Хотя Гейзенберг (1924) сделал заключение, что течение неустойчиво, ряд последующих исследователей пришел к выводу, что оно устойчиво. Налицо две причины, из-за которых вывод Гейзенберга трудно принять без возражений. Во-первых, асимптотические методы, использованные при решении  [c.22]

Глава 3 посвяшена исследованию контактных задач для упругих тел канонической формы, имеющих в сечении форму четырехугольников в декартовой или полярной системах координат. Для решения этих задач будут использованы метод сведения парных рядов-уравнений к БСЛАУ первого рода с сингулярной матрицей коэффициентов, метод однородных решений и асимптотический метод больших Л.  [c.15]

В 3.1 в декартовой системе координат рассмотрены контактные задачи Q, Q2 и Q3 для прямоугольника о вертикальном воздействии штампа без трения на одну из его граней, смежные грани находятся в условиях скользящей заделки. В задачах Q и Q2 противоположная грань соответственно лежит без трения на жестком основании или жестко защемлена, а штамп расположен симметрично. Эти задачи исследуются с помощью методов сведения парных рядов-уравне-ний к БСЛАУ первого рода с сингулярной матрицей коэффициентов и асимптотическим методом больших Л. В задаче Q3 штамп расположен несимметрично и для исследования использован метод однородных решений. Произведен расчет контактных напряжений и жесткости системы штамп-прямоугольник. Здесь также как и для задачи Сз обнаружена аналогичная немонотонная зависимость жесткости системы штамп-прямоугольник относительного расстояния боковой грани от края штампа, при этом немонотонность более ярко выражена при больших значениях коэффициента Пуассона. Также показано, что влияние боковой грани затухает обратно пропорционально величине этого расстояния для задачи Q и по экспоненциальному закону для задачи Q2.  [c.15]

В 4.2 рассматривается задача теории упругости 5з о взаимодействии шара с внутренней поверхностью сферического упругого слоя, внешняя поверхность которого жестко закреплена. Такая задача достаточно хорошо моделирует работу сферического самосмазывающего подшипника, особенно при нагрузках, когда размер площадки контакта соизмерим с шириной подшипника. Для решения используется метод сведения парного ряда-уравнения к БСЛАУ первого рода с сингулярной матрицей коэффициентов. Предполагая, что толщина слоя мала, а радиусы шара и внутренней сферы слоя близки, получено асимптотическое решение БСЛАУ. В результате получены простые удобные для инженерных расчетов формулы для контактных напряжений, размера области контакта и жесткости системы штамп-сферический слой.  [c.17]

При исследовании задачи о вдавливании узкого, прямоугольного в плане штампа в упругое полупространство В. М. Александров и М. А. Сумбатян [7] развили асимптотический подход, основанный на методе малых Л , который позволил построить эффективное приближенное решение исходного уравнения. Показано, что для данной задачи трансформанта ядра соответствующего интегрального уравнения Фредгольма первого рода имеет в нуле логарифмическую особенность. Посредством приближенной факторизации трансформанты ядра решение таких уравнений получены в простой аналитической форме. При исследовании аналогичной задачи некоторыми другими авторами [40,41] оказалось, что уравнение, анализируемое в этих работах, соответствует вырожденному решению задачи, описывающему распределение давления в удалении от границ штампа и не улавливающему характер его поведения вблизи острых кромок.  [c.140]


Предложенная схема опирается на работу [23]. Решение исходной задачи представляется в виде суперпозиции решений более простых задач для кольца, которые эквивалентны некоторым задачам для сектора кольца типа рассмотренных выше. Здесь эти задачи также сводятся к парным (тройным и т.д.) рядам-уравнениям и далее к БСЛАУ первого рода с сингулярной матрицей. Последние урезаются специальным образом с учетом асимптотического поведения их решения [53] и решаются любым прямым методом. Приводятся результаты численной реализации задачи с четырьмя штампами, когда три штампа неподвижны, а перемещение четвертого известно.  [c.174]

Для исследования этих задач был использован метод однородных решений (см. п. 1.З.). Решение задач разыскивается в виде суперпозиции решения родственной неоднородной задачи для сферического слоя и соответствующих однородных решений. Для отыскания функций распределения контактных напряжений задачи сведены к решению БСЛАУ высокого качества типа нормальных систем Пуанкаре-Коха и ряда интегральных уравнений первого рода с одинаковыми ядрами для каждой из задач. Решения систем могут быть получены методом редукции при любых значениях параметров задач. Интегральные уравнения соответствуют хорошо изученным уравнениям аналогичных смешанных задач для шарового слоя и для их решения могут быть использованы известные эффективные методы, например, асимптотические.  [c.175]

Б. И. Сметаниным изучен ряд задач для неклассических упругих областей. Симметричное расклинивание упругой полосы гладкой вставкой рассмотрено при различных условиях закрепления ее граней [23]. Проблема сведена к решению интегрального уравнения первого рода. Асимптотически точное решение построено с помощью метода больших Л . Как и ранее, длина образующейся трещины определяется из критерия разрушения Ирвина Орована.  [c.655]

Причина этого явления может быть объяснена с двух различных точек зрения. Во-первых, подобные неэкспоненциальные асимптотические решения лежат на центральных многообразиях, которые в большинстве случаев не аналитичны. Во-вторых, вводя некоторый малый параметр (соответствующий квазиоднородной шкале, ассоциированной с первыми нетривиальными членами построенных рядов) в рассматриваемую систему, мы можем получить сингулярно возмущенную систему, теряющую некоторые производные при обнулении малого параметра. В любом случае явление подобного рода связано с взаимодействием переменных, отвечающих 13 нулевым и ненулевым корням характеристического уравнения. Получаемые ряды являются асимптотическими рядами для требуемых частных решений, но прямое использование техники абстрактной теоремы о неявной функции в данной ситуации невозможно. Для доказательства факта асимптотичности построенных рядов необходимо применять теорию, принадлежащую А.П. Кузнецову [14, 15]. Грубо говоря, эта теория утверждает, что если гладкая система дифференциальных уравнений обладает формальным решением в виде рядов (10), то она обладает настоящим гладким решением для которого (10) дает асимптотическое разложение.  [c.102]

Теория ламинарных движений вязкой жидкости уже в первой четверти двадцатого века достигла значительного совершенства. Были найдены разнообразные точные решения уравнений Навье — Стокса, разработаны методы приближенного интегрирования этих уравнений путем линеаризации при малых значениях числа Рейнольдса и разыскания асимптотических решений при больших значениях этого числа. К решениям наиболее трудных, атносящихся к средним значениям рейнольдсовых чисел задач исследователи приближались как со стороны малых, так и со стороны больших рейнольдсовых чисел. В первом случае шли по пути увеличения числа членов в разложениях по положительны у1 степеням рейнольдсова числа, являющегося в задачах этого рода характерным малым параметром, а в последнее время стали непосредственно пользоваться численными (машинными) методами интегрирования точных,, иногда несколько зшрощенных уравнений Навье — Стокса. Во втором случае, исходя из известного факта, что прандтлевы уравнения пограничного слоя являются лишь первым приближением в методе разложения решений уравнений Навье — Стокса по степеням величины, обратной корню квадратному из рейнольдсова числа, начали учитывать следующие члены разложения. Современному состоянию этой области динамики вязкой жидкости посвящены 2 и 3.  [c.508]

При изучении вопроса о концентрации напряжений около щелей и трещин значительный интерес представляет решение смешанных задач теории упругости для неклассических областей типа полосы (слоя). В математическом отношении эти задачи очень трудны. Однако начатое около десяти лет назад систематическое исследование этого вопроса привело к созданию эффективных методов решения задач такого класса (В. М. Александров, И. И. Ворович, Н. Н. Лебедев, Я. С. Уфлянд и др.). Методами операционного исчисления эти задачи довольно легко сводятся к решению интегральных уравнений первого рода с нерегулярным ядром. Наибольший эффект в нахождении удобных для практического использования решений этих уравнений был достигнут при использовании специфичных асимптотических методов. Начало исследований вопроса равновесия трещин в полосе было положено И. А. Маркузоном (1963). В. М. Александров (1965) исследовал равновесные трещины вдоль полосы или слоя, где интегральное уравнение строится для функции, определяющей форму трещины. Им получено приближенное решение путем разложения ядра уравнения в ряд при больших отношениях толщины к размеру трещины и получены зависимости нагрузки от размеров трещины. Используя этот метод и решения уравнений Винера — Хопфа, В. М. Александров и Б. И. Сметанин (1965, 1966) получили выражение для коэффициента интенсивности напряжений на краях равновесной трещины в слое малой толщины. Для случая постоянной нагрузки определяется связь размера равновесной трещины с действующей нагрузкой. Аналогичное решение получено для дискообразной трещины в слое конечной толщины. В. М. Ентов и Р. Л. Салганик (1965) рассмотрели в балочном приближении задачу Ь полубесконечной трещине, проходящей по средней линии полосы, причем для нагрузок, приложенных к берегам трещины, задача сводится к рассмотрению расслаивания под действием нормальной или тангенциальной силы. В этой работе с помощью метода Винера — Хопфа получено выражение для коэффициента интенсивности напряжений для достаточно больших и достаточно малых значений отношения расстояния от конца трещины до точки приложения силы к полуширине полосы. Используя аналитический метод, развитый В. М. Александровым и И. И. Воровичем (1960) при исследовании контактных задач для слоя большой относительной толщины, Б. И. Сметанин (1968) рассмотрел задачу о продольной щели в клине, а также плоскую и осесимметричную задачи о продольной щели в слое при различных условиях на гранях клина и слоя. Для щели, расположенной симметрично относительно граней клина (слоя), и нормальной нагрузки, приложенной к поверхности щели, получены формулы для определения поверхности щели. Коэффициент интенсивности напряжений выражается в виде асимптотического ряда по степеням безразмерного параметра.  [c.383]


Асимптотический тип течения в профилируемом сопле (функция тока ограничена) определяется тем, что разрывное граничное условие (с разрывом первого рода) задается на лучах /3 = 0, г = г. Главный член асимптотики описывается решением (2.20) уравнения Трикоми. Считая решение сформулированной задачи Дирихле единственным (в классе ограниченных функций), можно свести его построение к задаче Дирихле с непрерывным граничным условием, выделяя сингулярные компоненты решения. Так, если 2 — решения уравнения Чаплыгина, удовлетворяющие разрывным граничным условиям  [c.116]

В. М. Александровым, Ю. Н. Пошовкиным [24] и Н. В. Генераловой, Е. В. Коваленко [32] решены соответственно плоская и пространственная контактные задачи о вдавливании без трения полосового в плане штампа в поверхность линейно-деформируемого основания, армированную тонким упругим покрытием переменной толщины, жесткость которого соизмерима или меньше жесткости основного упругого тела. Обе задачи сведены к исследованию интегрального уравнения Фредгольма второго рода с коэффициентом при старшем члене, являющимся достаточно произвольной функцией поперечной координаты. Для его решения в первом случае использовался метод сплайн-функций в сочетании с методом ортогональных многочленов, когда толщина покрытия постоянна. Во втором варианте применялся проекционный метод Бубнова-Г алеркина с выбором в качестве координатных элементов систем ортогональных полиномов или дельтаобразных функций (вариационно-разностный метод), а также алгоритм сращиваемых асимптотических разложений, когда упомянутый выше коэффициент мал. Доказано, что неравномерность толщины покрытия существенно влияет на закон распределения контактных давлений.  [c.463]

Линейно нюависимыми. решениями этого уравнения являются функции Ганкеля Я ( ) и ( ) первого и второго рода. Отличиф их друг от друга видно из асимптотических формул, справедливш при больших значшиях аргумента , -.  [c.180]


Смотреть страницы где упоминается термин Асимптотические решения первого рода : [c.74]    [c.321]    [c.314]    [c.14]    [c.158]   
Смотреть главы в:

Теория гидродинамической устойчивости  -> Асимптотические решения первого рода



ПОИСК



I рода

I рода II рода

Асимптотические решения

В первого рода

Родан

Родиан

Родий

Родит

Ряд асимптотический



© 2025 Mash-xxl.info Реклама на сайте