Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Контактная периодическая

Значительно продлить срок службы морских судов и сооружений можно рациональным конструированием например, равномерным распределением в конструкции напряжений, применением средств защиты, удалением ответственных элементов из зоны периодического смачивания, устранением контактной коррозии и т. д.  [c.404]

По режиму работы различают отстойники периодического действия, или контактные, в которые сточная жидкость поступает периодически, причем отстаивание ее происходит в покое и отстойники непрерывного действия, или проточные, в которых отстаивание происходит при медленном движении жидкости.  [c.351]


Отстойники периодического действия (контактные) применяют главным образом для обработки небольших количеств сточных вод, поступающих периодически (например, для обработки сточных вод бань и прачечных).  [c.351]

При вращении деталей под нагрузкой каждая точка их сопряженных поверхностей периодически нагружается только во время прохождения зоны контакта, а контактные напряжения в этих точках изменяются по прерывистому отнулевому циклу (рис. 0.7).  [c.20]

Работоспособность деталей подшипников зависит от контактной выносливости материала, из которого они изготовлены, величины периодических напряжений, возникаюш,их в материале, и числа циклов нагружений, которое зависит от частоты вращения и конструкции подшипников.  [c.420]

Итак, помимо накладок могут быть использованы стяжные элементы, обеспечивающие доступ к зоне трещины для периодического эксплуатационного контроля за ее поведением. С помощью таких элементов можно менять напряженное состояние материала в зоне трещины и создавать условия для действия сдвиговых компонентов нагрузок, вызывающих контактное взаимодей-  [c.452]

Генерируемый в электролизе кислород находится в контактном устройстве под давлением несколько больше атмосферного за счет наличия гидрозатворов, через которые избыток кислорода периодически сбрасывается в атмосферу, тем самым поддерживается некоторое постоянство давления в контактном устройстве.  [c.23]

При контактных давлениях, превышающих предел текучести исследуемого материала, периодический характер накопления пластической деформации, связанный с упрочнением и разрушением поверхностного слоя, -сохраняется в широком диапазоне условий трения. Начальная стадия процесса изнашивания связана с образованием микротрещин. По мере роста числа воздействий инден-тора число микротрещин увеличивается, в результате чего отделяются частицы износа. Микротрещины образуются тем быстрее, чем больше контактное давление. Таким образом, установлена общность механизма разрушения при трении в условиях пластического контакта и при объемной малоцикловой усталости.  [c.8]

Выводы, сделанные в [37], неприменимы, когда длина трещины или протяженность зоны разрушения а сравнима с шагом упаковки или диаметром волокон. В этих случаях единственный практический способ расчета длины трещины на основании реальных свойств материала, по-видимому, заключается в применении прямого численного подхода. Для выполнения подобных расчетов весьма полезным методом является алгоритм FFT. Решение контактной задачи в случае вязкоупругости требует анализа подобного типа. Этот вопрос изложен в [38], поэтому здесь подробно не рассматривается. Ограничимся лишь некоторыми результатами, полученными на упругих материалах, чтобы продемонстрировать возможную точность метода. Остальные результаты для упругих и вязкоупругих материалов и теоретическое обоснование их точности будут приведены в следующем сообщении. Рассмотрим частную задачу о вычислении коэффициента интенсивности напряжения для бесконечно длинного массива трещин, периодически расположенных вдоль оси х.  [c.215]


Для получения сравнительных данных изучали контактную коррозию в морской атмосфере и в морской воде как отдельных цветных металлов в контакте со сталью, так и контактов двух разных цветных металлов со сталью. Стенды помещали на высоте 2 м от зеркала воды, так что образцы периодически смачивались и высыхали. Вторую серию опытов проводили в бухте Батумского порта на глубине 2 л в течение 6 месяцев осенне-зимнего периода [81]. Образцы снимали со стенда и обрабатывали через 10, 20, 50, 70, 80, 90 и 180 сут..  [c.83]

Уменьшение толщины образцов до 0,4 мм дает возможность надежно определить среднее увеличение AR/R в процессе трения для нагрузок 14 и 12 кгс. И в этом случае большему контактному давлению соответствует большее среднее значение AR/R, что может быть связано как со степенью развития пластической деформации в материале, так и с толщиной зоны, подвергающейся пластическому деформированию (рис. 30, б). Следует отметить, что во всех случаях фиксируется периодическое изменение электро сопротивления, соответствующее периодическому характеру накопления пластической деформации, зафиксированному методом рентгеновского анализа. С уменьшением толпщны образцов амплитуда обратимой составляющей электросопротивления увеличивается, так как увеличивается вклад зоны разрушения в общий характер его изменения (рис. 30, в). Зависимость амплитуды обратимой составляющей электросопротивления от толщины образца приводит к тому, что при больших значениях последней выявляются не все максимумы пластической деформации. Так,  [c.56]

Влияние исходной шероховатости поверхиостя. Изменение исходной шероховатости поверхности (вместо полированной по И — 12-му классу — шлифованная) в выбранном интервале контактных давлений не нарушает общего характера структурных изменений (рис. 43). Как и при трении полированных поверхностей, наблюдается периодическое изменение относительной упругой деформации решетки при постоянном значении величины блоков (рис. 44). Однако амплитуда колебания ширины линии (220) a-Fe и ее максимальное значение при трении шлифованных поверхностей меньше, чем при трении полированных. Меньшему значению ширины линии j (220) a-Fe при одинаковом значении ширины  [c.64]

Общность представления об усталостном разрушении поверхностей трения, которое в последнее время распространяется и на такие виды изнашивания, как адгезионный износ [53] или износ под действием абразивных частиц [52], дает основание полагать, что имеет место и определенная общность характера структурных изменений при фрикционно-контактном воздействии. Это, например, подтверждается работой [122], где выявлено периодическое изменение микротвердости стальных поверхностей в процессе гидроабразивной обработки, которое авторы связывают с периодическим упрочнением и разрушением поверхностного слоя. Ниже приведены результаты исследования закономерностей структурных изменений при изнашивании металла в струе твердых сферических частиц. Теоретический анализ, выполненный в работе [123], свидетельствует об усталостной природе разрушения в этих условиях.  [c.76]

Независимо от условий фрикционно-контактного нагружения периодический характер изменения структуры свидетельствует о том, что разрушение происходит в результате многократного воз-  [c.104]

Релаксационные колебания представляют собой периодически повторяющийся процесс возникновения и последующего исчезновения упругих напряжений, происходящий вследствие существенной разницы между величинами сил трения покоя и скольжения. В процессе трения упругие напряжения возникают в контактных точках трущихся поверхностей.  [c.353]

Если припуск неравномерен, а площадь обработки велика, зазор должен быть 1 мм и более, скорость обработки при этом составляет 0,1—0,2 мм/мин. При прошивании отверстий зазор можно уменьшить (0,1—0,3 мм), тогда скорость обработки может составить 0,5—2 мм/мин. По мере углубления электрода величина зазора постепенно выравнивается и форма электрода копируется на заготовке. Однако этот процесс длительный и чем больше величина и колебание зазора, тем больше его влияние на точность обработки. Чтобы поддерживать межэлектродный зазор в определенных пределах применяют различные регуляторы. Наиболее распространены следящие устройства, основанные на контактной системе регулирования. Электроды в них при выключенном питании периодически сближаются до контакта, затем разводятся до получения необходимого зазора, после чего включается источник питания. Все это сказывается на производительности процесса потери компенсируются повышением стабильности процесса.  [c.162]


Маховик / под действием гири 2 поворачивается против часовой стрелки. При этом собачка 3 поворачивает вокруг неподвижной оси А храповое колесо жестко насаженное на вал Ь, и закручивает пружину 5, один конец которой закреплен на валу Ь. Другим своим концом пружина 5 прикреплена к приемному валу прибора. Эта пружина аккумулирует в себе незначительный запас энергии и играет роль буфера, обеспечивая более плавное вращение приемного вала прибора. При соприкосновении контактного штифта 6 маховика 1 с контактным рычагом 7 цепь электромагнита 10 замыкается, и якорь 8 поворачивается против часовой стрелки. При этом рычаг 7 сообщает импульс маховику 1 через контактный штифт 6, и маховик вместе с диском 9 поворачивается по часовой стрелке, поднимая гирю 2. Во время этого движения храповое колесо 4 и вал Ь остаются неподвижными. Таким образом, пружина 5 периодически получает подзавод.  [c.159]

Пресс-бак регулирует давление в системе. Давление воздуха в нем всегда равно давлению масла в нагнетательной трубе, к которой он присоединен (после фильтра). Расход масла в системе может колебаться и не быть равным производительности насоса (последний обычно выбирается с запасом). Если производительность насоса больше расхода, то уровень масла в пресс-баке повышается, давление увеличивается, насос при помощи одного из контактных манометров выключается и масло начинает вытесняться из пресс-бака в трубопровод уровень масла в пресс-баке понижается, и при определенном понижении давления рабочий насос снова включается тем же контактным манометром. Таким образом, рабочий насос периодически включается и выключается, а пресс-бак выполняет  [c.45]

При вращении цилиндров под нагрузкой отдельные точки их поверхностей периодически нагружаются и разгружаются, а контактные напряжения в этих точках изменяются по прерывистому отнуле-вому циклу (рис. 8.8, г). Каждая точка нагружается только в период  [c.103]

При контактном подводе тока (рис. 8.83, а) необходимость смены контактов I вследствие их износа заставляет периодически останавливать стаи. Более перспективен индукционный подвод. энергии кольцевым индуктором 2 (рис. 8,8r-f, б). В этом случае для уменьшения потерь энергии в результате прохождения тока по телу заготовки внутрь трубы 1 вводят магнитный сердечник 3, который изменяет сопротивление так, что почти весь вapoчF ый ток 4 направляется по свариваемым кромкам. Высокие скорости процесса при сварке труб ТВЧ затрудняют разрезку непрерый - ой трубы на мерные длины  [c.304]

Особые разделы теории уста сти составляют усталость при ударном циклическом нагружении (динамическая усталость), при контактном циклическом нагружении (контактная усталость), при повыщен-ных температурах и при периодических колебаниях темпе))атур (терм и-ческая усталость). Закономерности циклической прочности в этих условиях находятся в стадии изучения.  [c.288]

Наблюдаемые иногда в соединениях с натягом явления сползания при осевой нагрузке, существенно меньше расчетной статической, но действующей в сочетании с циркуляционной радиальной или изгибающей, связывается с касательной контактной податливостью деталей и дискретностью пятен контакта. При вращении часть пятен в периодически разгружаемой стороне стыка выходит из контакта и вновь начинает передавать нагрузку только после накопления соответствующих касательных контактных упругих перемещений. При этом возможны микросмещения.  [c.82]

Контактные машины включают и выключают со стороны первичной обмоТки трансформатора. В процессе сварки необходимо периодически включать и выключать ток. Для этого применяют прерыватели нескольких типов простые механические контакторы, электромагнитные (синхронные и асинхронные), электронные приборы (ти-ратронные и игнитронные).  [c.113]

Обезжелезиваемую воду фильтруют последовательно через контактный фильтр, загруженный катализатором (слоем высотой не менее 0,9 м), со скоростью фильтрования 15 м/ч и через обычный песочный фильтр. Должна быть предус.мотрена возможность периодического введения в воду перманганата калия (2...3 мг/л).  [c.267]

В случае применения ЛБТ из алюминиевых сплавов возможно развитие контактной коррозии за счет соединения их со стальными замками. В зазорах резьбовых соединений происходят процессы щелевой коррозии. При нагружении таких соединений переменными нагрузками возникают процессы фреттинг-корро-зии. При проведении спуско-подъемных работ наблюдается периодическое смачивание при чередовании атмосферной коррозии и коррозпи погружением в электролит, что стимулирует увеличение скорости коррозионного разрушения.  [c.107]

При вращении цилиндров под нагрузкой отдельные точки их поверхностей периодически нагружаются и разгружаются, а контактные напряжения в этих точках изменяются по прерывистому отнулево-му циклу (рис. 1.12, й). Каждая точка нагружается только в период прохождения зоны контакта и свободна от напряжений в остальное время оборота цилиндра. Длительное действие переменных контактных напряжений всегда вызывает усталость рабочих поверхгюстей деталей. В поверхностном слое возникают усталостные микротрещины. Если детали работают в масле , то оно проникает в трещины  [c.28]

Иллюстрацию синтеза систем управления дискретного действия приведем на следующих простейших примерах, которые могут встретиться в автоматических траспортирующих устройствах периодического действия, бункерных устройствах с питателями или многооперационных и многошпиндельных металлообрабатывающих станках. Функциональные схемы построим на основе указанного предположения в виде контактных схем. Предполагаем использование в системах управления релейно-контактных устройств.  [c.495]

Наиболее трудные условия работы для контактных материалов создают размыкаемые контакты, служащие для периодических размыканий и замыканий электрических цепей. По мощности цепей, в которых работают контактные материалы, их делят на слабонагруженные и среднена-груженные, предельные токи для которых, как правило, не превышают  [c.266]


К выходной трубке подключен образцовый манометр. Входная трубка соединяется со стандартным баллоном с двуокисью углерода. Последняя из баллона предварительно пропускается через силикагелевый фильтр, а затем запирается в системе. Термостат имеет два нагревателя, холодильник и мешалку. Один из нагревателей включается через лабораторный автотрансформатор постоянно. Энергия, потребляемая им, подбирается так, чтобы термостат медленно остывал. Второй нагреватель включается через реостат и регулируется так, что при одновременной работе обоих нагревателей температура в термостате медленно повышается. При помощи контактного термометра второй нагреватель периодически включается и выключается, чем обеспечивается изменение температуры, в термостате в заданных границах. Некоторое повышение температуры среды в термостате после выключения второго нагревателя, обусловленное тепловой инерцией, снима( тся с помощью змсевиково-го холодильника, через который протекает охлаждающая вода. Температура среды измеряется образцовым ртутным термометром, а изменение температуры — термометром Бекмана с ценой деления 0,01 град.  [c.272]

Например, на станах холодной прокатки листов до недавнего временл применяли контактные микрометры и проводили периодический контроль толщины при скорости прокатки до 5 м/с. С помощью бесконтак1ных рентгеновских н изотопных толщиномеров осуществляют непрерывный контроль на оптимальных технологических скоростях прокатки 20—30 м/с).. Это позволило на 7—8 % повысить производительность станов и увеличить выпуск холоднокатаного листа при техл4е производственных мощностях.  [c.42]

Золочение медных и латунных изделий в результате контактного золота может быть осуществлено в растворе следующего состава (г/л) золотохлористоводородиая кислота (кристаллогидрат) 0,6, цианистый калий 10 0, фосфат натрия двухзамещенный (кристаллогидрат) 6,0, гидроксид натрия 1,0, сульфат натрия 3,0, температура ванны 90 °С, концентрация золота в этом растворе поддерживается на заданном уровне периодическим добавлением в раствор золотохлористоводородной кислоты  [c.86]

Термомеханическая /сгалосгб — разновидность термической усталости, отличающаяся тем, что в процессе теплосмен контртело-нагреватель с заданным давлением периодически контактирует с участком образца, обеспечивая циклическое температурное нагружение исследуемой зоны при контактном трении, или без него.  [c.263]

Периодически (не реже 1 раза в неделю) водородомер с помощью электролизера градуируется. Процедура градуировки следующая. Пробковым вентилем перекрывают подачу пробы в контактное устройство, снимают гидрозатвор и через 25-30 мин потенциометром КЗ ( установка нуля )( выведенным на лицевую панель промежуточного преобразователя, устанавливают нулевой отсчет по показывающему прибору. Затем ставят на место гидрозатвор и подают пробу в контактное устройство.  [c.26]

Отмеченные особенности конструкции и свойств сварных соединений определяют различные методические решения их дефектоскопии. Поэтому ниже рассмотрены методические приемы при контроле сварных соединений разных типов, на дефектоско-пичность которых влияют один или несколько факторов. Разная кривизна поверхности сосудов (практически плоские поверхности) и труб малого и среднего диаметра (менее 500 мм) в определенной мере обусловливает различия в методиках их контроля. Ограниченная площадь сечения шва, большая кривизна поверхности и неровностей периодического профиля арматуры железобетона предопределяют нетрадиционную методику их контроля. Крупный размер зерна и высокая анизотропия механических свойств ау-стенитных швов существенно затрудняют проведение УЗ К, поэтому для повышения достоверности контроля таких швов применяют специальные преобразователи и дефектоскопы, обеспечивающие повышение амплитуды полезного сигнала. Трудность УЗК сварных швов, выполненных контактной, диффузионной сваркой и сваркой трением, заключается в различии дефекта типа слипания, прозрачного для ультразвука. Особую группу конструкций составляют угловые, тавровые и нахлесточные соединения, в которых иногда ограничен доступ к месту контроля, а возможное расположение опасных дефектов в шве затрудняют их обнаружение.  [c.316]

В качестве возможных катализаторов для очистки выхлопных газов автомобилей испробованы практически все элементы периодической таблицы. В типовых устройствах катализатор состоит из пористых гранул опорного материала, которые покрыты тонким слоем активного вещества. В качестве опорного материала используются термостойкие неорганические окислы, например окись алюминия, двуокись кремния или кальцинированная глина. Активное вещество, как правило, металл или окисел металла, наносится на гранулы опорного материала в виде пленки толщиной в несколько молекулярных слоев. Столь малая толщина покрытия необходима для того, чтобы исключить забивание пор поверхности опорного материала. Высокая пористость играет полезную роль, поскольку она увеличивает контактную поверхность катализатора, однако необходимо найти оптимум между яористостью и механической прочностью. У каталитической засыпки массой 20 кг эффективная площадь составляет около 10 м (около 100 га).  [c.66]

Исследование закономерностей структурныхГизменений поверхностного слоя стали 45, испытанной на модели фрикционного контакта в интервале контактных давлений Oj < < НВ, выявило периодический характер накопления пластической деформации. Такой характер зависимости свидетельствует о периодическом упрочнении и разрушении поверхностного слоя путем образования микротреш,ин. По мере роста числа воздействий индентора количество микротрещин увеличивается, приводя в дальнейшем к отделению частиц износа. Из полученных результатов следует, что разрушение происходит при небольшом (единицы и десятки) числе воздействий индентора в условиях малоцикловой усталости. Как уже отмечалось, при циклической деформации все стадии процесса разрушения (пластическая, нластически-деструкцион-пая и стадия образования магистральной трещины) наглядно проявляются при построении зависимости типа (см. рис. 16).  [c.67]

Периодическое изменение структуры наблюдается и при таких видах фрикционно-контактного воздействия, как гидро- и газоабразивный износ [122]. И в этих случаях также прослеживается зависимость времени разрушения поверхностного слоя от условий воздействия, например скорости вылета частиц при газоабразивпом износе.  [c.104]

Исследования контактной коррозии пары алюминиевый сплав — сталь СтЗ, проведенные путем периодического погружения в 0,1%-ный раствор хлорида натрия на 10 мин с последующей выдержкой на воздухе в течение 50 мин, показывают, что скорость коррозии составляет 0,08—0,12 мм/год для сплавов В92, В93, 01915 и 0,02—0,04 мм/год для сплавов АМг5, АМгб, АДЗЗ.  [c.130]

В производствах дивинила и изопрена методом двухстадийного дегидрирования бутана и изопентана уходящие газы регенерации имеют температуру 600—650°С. В котле-утилизаторе уходящие газы охлаждаются до 200—250°С и после очистки от унесенного катализатора выбрасываются в атмосферу. Если катализатор регенерируется периодически в реакторе, то газы регенерации охлаждаются в том же котле-утилизаторе, что и контактные газы. При непрерывной регенерации в отдельном аппарате для охлаждения уходящих газов устанав-дивдется самостоятельный котел-утилизатор.  [c.63]


При перемещении в продольном направлении валика /, на котором укреплены контактные кольца а, замыкаются контакты 2, 3, 4. Контакты 2 включают сигнал с номером станка, причем на сигнальной панели происходит периодическая сигнализация лампочкой, начинающаяся за некоторое время до окончания операции благодаря наличию нескольких близко расположенных друг от друга контактных колец а на валике 1. Замыканием контактов 4 сигнализируется конец операции. Контакты 3 предназначены для выключения подачи и мотора. Пружина 5 предназначена для возвращения валика в исходное положение.  [c.33]

Подлежащая регулированию температура объекта ре-гастрируется магнитоэлектрическим механизмом, не показанным на рнсунке, положение указателя которого периодически фиксируется. При вращении кулачка / дужка 2 поднимается и опускается. Поднимаясь, дужка 2 поднимает стрелку 3, перемещающуюся по шкале а под действием магнитоэлектрического измерительного устройства 8. Если стрелка 3 стоит на заданном значении регулируемой величины, т. е. под установочной стрелкой 4, то контактное коромысло 5 нажимной пластинкой 6 устанавливается в горизонтальное положение. При этом ртутный выключатель 7 включает нагревающее устройство. Пока дужка 2 поднимается, стрелка 3 устанавливается на новое значение измеряемой величины, и процесс повторяется сначала. Таким образом, регулятор осуществляет кратковременное замыкание контактов, включающих устройства, позволяющие поддерживать температуру заданной величины. Продолжительность и частота импульсов зависят от промежутка между подъемами дужки 2. Если регулируемая температура станет выше заданной, то стрелка, 3, поднимаясь вместе с дужкой 2. не встретится со стрелкой 4, ртутный выключатель 7 не включит нагревающее устройство.  [c.52]

Пружииа 2, сокращаясь, поворачивает якорь I против часовой стрелки вокруг неподвижной оси А. При этом собачка 3 поворачивает храповое колесо 4, которое жестко насажено на вал Ь, передающий движение ведомому механизму. Палец а якоря I, упираясь в диск 5, поворачивает его, и контактная пластинка 6 замыкает цепь электромагнита. При этом якорь /, срабатывая, поворачивается по часовой стрелке, осуществляя завод пружины, а диск 5, поворачиваясь против часовой стрелки вокруг неподвижной оси В, размыкает контакт. Так как якорь I свободно насажен на вал Ь колесной системы, то в период поворота якоря I по часовой стрелке движущий момент на валу Ь обращается в нуль. Таким образом, якорь / периодически заводит пружину 2 после того, как она сокращается на определенную величину.  [c.155]

Контактная поверхность ролика должна использоваться не более друх-трех оборотов, после чего она зачищается мелкозернистой наждачной шкуркой. Периодически рабочая поверхность роликов восстанавливается на токарном станке.  [c.154]


Смотреть страницы где упоминается термин Контактная периодическая : [c.235]    [c.214]    [c.47]    [c.51]    [c.456]    [c.46]    [c.278]   
Трение износ и смазка Трибология и триботехника (2003) -- [ c.36 ]



ПОИСК



Динамическая контактная задача для полосы периодической структуры

Динамическая контактная задача для цилиндра периодической структуры

Контактные задачи для тел периодической структуры

Периодические контактные задачи и метод локализации

Плоская периодическая контактная задача



© 2025 Mash-xxl.info Реклама на сайте