Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основы гидродинамики и ее уравнения . 12. Задачи гидродинамики

Из-за большого числа переменных величин, определяюш их движение жидкости, сложности наблюдаемых при этом явлений и трудности математического исследования действительное движение жидкости обычно заменяется некоторой условной, упрощенной схемой, расчленяющей движение на отдельные составные части. Такой схемой, лежащей в основе гидродинамики и логически наиболее хорошо отвечающей естественным представлениям о движении жидкости, является схема, рассматривающая поток жидкости состоящим из отдельных элементарных струек Иногда для упрощения жидкость полагают идеальной — лишенной вязкости и имеющей постоянную во всех точках плотность. Полученные таким образом уравнения движения идеальной жидкости затем исправляются введением соответствующих поправок и опытных коэффициентов, переносятся на реальные жидкости и применяются для решения конкретных практических задач.  [c.57]


Обратившись к общим уравнениям магнитной гидродинамики, можно убедиться в том, что сделанные предположения непротиворечивы (положенные в их основу соображения тесно связаны с условиями существования полностью развитых течений [1]) и приводят к следующей краевой задаче относительно г , -г, и 1  [c.629]

Книга посвящена описанию метода конечных элементов и его приложений к широкому классу нелинейных задач механики сплошных сред и строительной механики. Особое внимание уделено решению задач механики твердого тела, однако основы метода изложены с достаточной степенью общности, допускающей применение, например, к нелинейным задачам гидродинамики, электродинамики, теории дифференциальных уравнений в частных производных. Рассмотрены также различные численные методы решения больших систем нелинейных уравнений.  [c.6]

В рамках феноменологического подхода для нахождения закономерностей изменения неизвестных наблюдаемых величин в пространстве и во времени используются общие физические законы (такие, например, как законы сохранения, постулаты термодинамики и др.) в сочетании с соотношениями между наблюдаемыми величинами, вид которых получен в результате обработки экспериментальных данных. Основу феноменологического подхода для описания гидродинамики систем газ—жидкость составляют законы классической гидромеханики, которая строго описывает движение каждой фазы (см. разд. 1.3). Однако применение строгих результатов, полученных из фундаментальных соотношений гидромеханики (таких, как уравнение Навье—Стокса), к расчету газожидкостных течений является практически невыполнимой задачей, за исключением ряда простых примеров, рассмотренных во второй и третьей главах книги.  [c.184]

Целью данного изложения не было описание точных теорий, содержащих хорошо известные и выверенные уравнения. В этих классических теориях требуется лишь проинтегрировать уравнения, и механическая задача сводится к задаче чисто математической, где можно пользоваться наиболее изящными методами, привлекать в полной мере функциональный анализ, теорию распределений и т. п. Что касается основ, т. е. законов баланса и уравнений состояния, то они предполагаются раз навсегда принятыми. В классических теориях уравнения состояния берутся насколько можно более простыми несжимаемость и закон Паскаля для идеальной жидкости, закон Гука для линейной упругой среды. (Например, в нелинейной упругости разве много есть задач, решенных в элементарном, замкнутом виде ) На этой относительно примитивной основе можно построить огромные здания гидродинамики и теории упругости.  [c.68]


Практическое применение уравнения Бернулли. Уравнение Бернулли — основное уравнение гидродинамики — применяют для решения многих теоретических и практических задач при гидравлическом расчете трубопроводов, насосных установок, гидравлических турбин и т. д. Уравнение Бернулли лежит также в основе принципа расчета различных измерительных приборов, в частности приборов для измерения скоростного напора и расхода жидкости.  [c.34]

Уравнение движения жидкости и моментов количества движения были получены в 1755 г. академиком Российской Академии Наук Эйлером (1707—1783 гг.). Эти уравнения лежат в основе возникшей тогда новой науки—гидродинамики со строгими математическими методами решения ее задач.  [c.60]

В прикладной магнитной гидродинамике с самого начала одной из самых важных явилась проблема осреднения течений в каналах и переход к квазиодномерным "каноническим" задачам. Основой для решения этой проблемы стала известная статья Л.И. Седова и Г.Г. Черного, но применение ее идей для течений в МГД-каналах оказалось более трудным делом, нежели можно было ожидать как и в проблеме пограничного слоя, "дополнительные степени свободы" (обусловленные направлением магнитного и электрического полей, замыканием токов, различной проводимостью стенок канала и т.д.) потребовали немалой изобретательности, прежде чем Григорию Александровичу удалось в принципе справиться с задачей. Было предложено характеризовать течение в каналах некоторым набором параметров, зависящих от координаты по оси канала. Набор параметров и связывающие их уравнения выбирались в зависимости от поставленной задачи по-разному, в том числе и путем деления области течения на части. Эффективность этого способа описания МГД-течений была продемонстрирована им в ряде работ и с успехом использовалась другими исследователями.  [c.8]

Система дифференциальных уравнений (14.3) — (14.6) совместно с условиями однозначности (14.7) — (14.9) представляет собой формулировку краевой задачи конвективного теплообмена. Следует отметить, что вследствие больщих математических трудностей общее решение системы дифференциальных уравнений конвективного теплообмена получить не удается. Поэтому с целью поиска возможных путей решения поставленной задачи проанализируем структуру предполагаемой функциональной зависимости для температурного поля. На основе постановки краевой задачи можно утверждать, что поле скорости и поле давления есть результат решения уравнений гидродинамики — уравнений (14.4) — (14.6), ибо рассматривается несжимаемая жидкость, физические свойства которой не зависят от температуры. Например, значение вектора скорости в какой-либо точке рассматриваемой области определяется координатами этой точки, коэффициентами дифференциальных уравнений и параметрами, входящими в граничные условия  [c.319]

Исследования С. Г. Телетова [46—52], Ф. И. Франкля [54, 55], X. А. Рахматулина [41], термогидродинамической лаборатории Энергетического института АН СССР и ряда отраслевых институтов страны создали теоретические основы гидродинамики смесей — обш,ие уравнения гидродинамики и энергии и позволили обоснованно подойти к решению сложных экспериментальных задач гидродинамики двухфазных систем.  [c.11]

Систематическое и последовательное применение методов анализа бесконечно малых к задачам механики было осуществлено впервые великим математиком и механиком Леонардом Эйлером (1707—1783), который большую часть своей творческой жизни провел в России, будучи членом открытой по указу Петра I в 1725 г. в Петербурге Российской Академии наук. В России механика начала развиваться со времен Эйлера. Творческая сила Эйлера и разносторонность его научной деятельности были поразительны. В работе Теория двилщния твердых тел Эйлер вывел в общем виде дифференциальные уравнения движения твердого тела вокруг неподвижной точки. В гидродинамике ему принадлежит вывод дифференциальных уравнений движения идеальной жидкости. Применяя метод анализа бесконечно малых, Эйлер развивает полную теорию свободного и несвободного движения точки и впервые дает дифференциальные уравнения движения точки в естественной форме. Им дана формулировка теоремы об изменении кинетической энергии, близкая к современной. Эйлером было положено начало понятию потенциальной энергии. Ему принадлелщт первые работы по основам теории корабля, по исследованию реактивного действия струи жидкости, что послужило основанием для развития теории турбин.  [c.15]


Для расчета потерь давления при конденсации в трубе используются различные методики, основанные на разных моделях процесса. Так как расчетные уравнения i[6.22, 6.23 и др.] составляются на основе корреляции опытных данных, то они справедливы для условий опыта и не могут распространяться на другие условия и тем более на теплоносители с иными физическими свойствами без дополнительной экспериментальной проверки. Сравнение опытных данных по перепаду давления при конденсации Б трубе N264 с расчетными по известным рекомендациям, так же как и по теплообмену, не дало положительных результатов. Аналитическое рассмотрение данной задачи [6.25, 6.46, 6.50, 6.51] обычш) или не завершается конкретными рекомендациями дА расчета, или при их составлении принимаются допущения, требующие введения эмпирических поправок. Применение для расчетов формул, полученных при адиабатном гомогенном или раздельном течении без учета рсо-бенностей гидродинамики течений с конденсацией, как указывалось выше, допустимо лишь в отдельных случаях, когда влияние массообмена незначительное.  [c.168]

Несколько выделяющийся раздел гидродинамики вязкой жидкости представляет собой теория движения грунтовых вод, т. е. гидродинамика пористых сред. В ее основе лежит установленный в 50-х годах французским инженером А. Дарси линейный закон фильтрации (закон Дарси), утверждающий пропорциональность скорости фильтрации градиенту напора Гидравлическая теория установившегося движения грунтовых вод, эквивалентная обычной гидравлике труб и каналов, была развита французским инженером Ж. Дюпюи . Дальнейший прогресс теории фильтрации в XIX в. связан с трудами Ф. Форхгеймера, перенесшего закон Дарси на пространственные течения и сведшего плановые задачи теории напорного и безнапорного движения грунтовых вод в однородной среде к интегрированию двумерного уравнения Лапласа. Обобщение гидравлической теории на неустаповивтие-ся течения было осуществлено в самом начале XX в. Ж. Буссинеском .  [c.73]

В заключение остановимся на общей проблеме установления подобия гидродинамических процессов с помощью уравнений Навье — Стокса. Как известно, вопросы подобия в простейших задачах прочности рассматривал в своих Беседах еще Г. Галилей (1638), а более общий критерий динамического подобия сформулирован в Началах И. Ньютона (1687). В теории теплоты принципом подобия широко пользовался Ж. Фурье. Однако анализ обпщх уравнений гидродинамики с точки зрения подобия не производился сколь бы то ни было систематически, по-видимому, вплоть до середины XIX в., когда Дж. Г. Стокс (1851) попытался сформулировать обпще принципы динамического подобия течений. Более подробно такой анализ был проведен в 1873 г. Гельмгольцем, который использовал некоторые свои результаты и для непосредственного пересчета различных экспериментов. Но и эта работа не определила, по существу, всестороннего внедрения методов подобия в гидродинамику. Этот процесс проходил весьма медленно, теоретические дискуссии об основах метода подобия и размерности развернулись в начале XX в., а практическое внедрение, например числа Рейнольдса, в инженерные расчеты завершилось лишь в конце первой четверти XX в.  [c.73]

Наиболее замечате-ньные результаты были получены в XIX в. в области исследования плоских установившихся потенциальных течений несжимаемой жидкости. Еще Ж. Лагранж (1781) ввел функцию тока для плоских течений удовлетворяющую для безвихревых течений, как и потенциал скорости, уравнению Лапласа. Кинематическое истолкование функции тока было дано В. Ренкином Разработка аппарата теории функций комплексного переменного дала возможность широко развить методы исследования плоских задач движения несжимаемой жидкости, которые в самом начале развивались совместно со смежными исследованиями задач электростатики. Первые работы, в которых при помощи теории аналитических функций исследуются простейшие задачи электростатики и гидродинамики, относятся к 60-м годам. Существенное развитие области применения теории функций в гидродинамике связано с изучением открытого Г. Гельмгольцем класса так называемых струйных течений жидкости — течений со свободными ли-78 ниями тока, на которых давление сохраняется постоянным. Интерес к этим течениям возник в связи с попытками получить на основе модели идеальной жидкости реальные картины обтекания тел с образованием силы лобового сопротивления и без бесконечных скоростей.  [c.78]

Замыкание осредненных по Рейнольдсу уравнений гидродинамики смеси обычно проводится с помощью тех или иных полуэмпирических моделей турбулентности (чему посвящена данная монография). Вместе с тем, важно уже здесь указать на принципиальный недостаток подобного подхода, который заключается в том, что осреднение Рейнольдса осуществляется по всем масштабам турбулентности, т.е. моделирование на основе полуэмпирических гипотез замыкания по необходимости проводится одновременно по всему спектру разномасштабных вихревых структур. Если учесть, что в отличие от практически универсального (для различных случаев течений) спектра мелкомасштабных пульсаций, крупномасштабные структуры существенно различны для разных течений (см. Рис. 1.1.3), то становится очевидной бесперспективность создания универсальных полуэмпирических моделей турбулентности, пригодных для описания разнотипных турбулентных течений смеси (поэтому задача состоит главным образом в установлении границ применимости той или иной модели турбулентности). Тем не менее есть основание надеяться, что привлечение многопараметрических аппроксимаций, основанных на эволюционных уравнениях переноса для старших моментов пульсирующих в многокомпонентном потоке термогидродинамических параметров, позволигг до некоторой степени продвинуться на пути построения универсальных моделей турбулентности смеси, описывающих достаточно большое число разнообразных турбулентных течений.  [c.17]


Метод конечных элементов для описания сплошных сред впервые был применен в середине 50-х годов XX столетия и с тех пор завоевал известность исключительно полезного инженерного метода. Он широко применяется в гидродинамике, теории поля, при расчете сложных напряженных состояний и в других областях. О распространенности метода конечных элементов можно судить, например, по работе Норри и де Ври [9], в которой приведено более 7 тыс. ссылок, содержащих указания на его применение в различных областях науки и техники. Хотя метод конечных элементов применяется для решения тех же задач, что и метод конечных разностей, основаны они на разных идеях. В методе конечных разностей проводится разностная аппроксимация производных, входящих в дифференциальные уравнения. Математическая основа метода конечных элементов — вариационное исчисление. Дифференциальное уравнение, описывающее задачу, и соответствующие граничные условия используются для постановки вариационной задачи, которая затем решается непосредственно. С этой точки зрения метод конечных элементов представляет собой неявное применение метода Ритца на отдельных отрезках. В методе конечных элементов физическая задача заменяется кусочно-гладкой моделью. В этом смысле метод конечных элементов позволяет инженеру использовать свое интуитивное понимание задачи. Чтобы изложить метод конечных элементов во всех подробностях, пришлось бы написать специальный учебник. Здесь мы ограничимся изложением лишь основ этого метода, практическое значение которого трудно переоценить. Более подробное описание метода конечных элементов можно найти в работах Кука [21 и Зенкевича и Чен-  [c.125]

Книга американских специалистов посвящена теории бифуркаций, которую советские читатели связывают с именами А. М. Ляпунова и А. А. Андронова и которая в последние юды находит широкое поле приложений. Эта теория изучает резкие скачкообразные переходы прн потерях устойчивости движения, она интересна как с чисто математической сторо-ны, так и в связи с самыми разнообразными применениями, В кЕЗИге рассматриваются основы теории бифуркаций и се применения к решению уравнений с частными производными, гидродинамике, биологическим моделям и другим конкретным задачам.  [c.247]


Смотреть страницы где упоминается термин Основы гидродинамики и ее уравнения . 12. Задачи гидродинамики : [c.22]    [c.679]    [c.467]    [c.23]    [c.143]    [c.671]    [c.218]   
Смотреть главы в:

Гидравлика  -> Основы гидродинамики и ее уравнения . 12. Задачи гидродинамики



ПОИСК



Гидродинамика

Задачи гидродинамики

Основы гидродинамики

Основы гидродинамики Задачи гидродинамики

Уравнения гидродинамики



© 2025 Mash-xxl.info Реклама на сайте