Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Квантовые свойства частиц

В квазиклассическом приближении, когда все величины медленно изменяются на расстояниях порядка длины волны частицы (т. е. когда состояние частицы определяется координатой и импульсом, но ее импульс и энергия дискретны, частицы квантово неразличимы и удовлетворяют принципу Паули), можно пользоваться кинетическим уравнением Больцмана. Как мы увидим в следующей главе, учет квантовых свойств частиц в этом случае состоит в использовании для приближенного вычисления члена столкновений равновесной функции распределения Ферми — Дирака или Бозе — Эйнштейна.  [c.135]


S 3J КВАНТОВЫЕ СВОЙСТВА ЧАСТИЦ ,  [c.15]

Квантовые свойства частиц  [c.15]

КВАНТОВЫЕ СВОЙСТВА ЧАСТИЦ 17  [c.17]

КВАНТОВЫЕ СВОЙСТВА ЧАСТИЦ 19  [c.19]

КВАНТОВЫЕ СВОЙСТВА ЧАСТИЦ 21  [c.21]

КВАНТОВЫЕ СВОЙСТВА ЧАСТИЦ 23  [c.23]

КВАНТОВЫЕ СВОЙСТВА ЧАСТИЦ 25  [c.25]

В данном курсе изложение основ статистической теории велось с учетом квантовых свойств частиц. Например, дискретность уровней энергии отражена в формуле канонического распределения (7.16). Другие стороны квантового описания скрыты в общем понятии числа состояний системы. В частности, для расчета этой величины необходимо учитывать тождественность частиц.  [c.143]

Характерными размерами системы k являются линейные размеры системы, длина свободного пробега частиц, среднее расстояние между частицами, характерные размеры потенциала взаимодействия, размеры самих частиц и др. При этом система в некоторых отношениях может проявлять квантовые свойства и в то же время в других отношениях — классические.  [c.220]

То, что минимальная энергия осциллятора не равна нулю, обусловлено специфическими квантовыми свойствами системы и связано с соотношением неопределенности. Если бы энергия частицы была равна нулю, то частица покоилась бы и ее импульс и координата имели бы одновременно определенные значения, что противоречит требованиям соотношения неопределенности.  [c.169]

На малых расстояниях ньютоновская механика перестает быть справедливой за счет проявления квантовых закономерностей. Квантовые свойства проявляются тем резче, чем меньше массы частиц и расстояния между ними. Для последовательного и полного учета квантовых свойств вместо классической ньютоновской механики надо пользоваться квантовой механикой.  [c.15]

Квантовые процессы характерны существенным проявлением и волновых, и корпускулярных (т. е. присущих частицам) свойств. Для частиц квантовыми являются волновые свойства. Для волновых процессов, таких как электромагнитные или звуковые волны, квантовыми свойствами будут, наоборот, корпускулярные. Поэтому волновые процессы носят неквантовый характер в тех случаях, когда энергии и импульсы, вычисленные по формулам (1.20), (1.21), ничтожно малы по сравнению с энергией и импульсом всей волны. Таким образом, в этом случае волна образована громадным количеством частиц.  [c.17]

Перечисленные нами квантовые свойства выглядят отрывочными. Они могут показаться не связанными друг с другом и противоречащими здравому смыслу. Однако все эти свойства удивительным образом согласуются со всей совокупностью опытных сведений о микромире. А здравый смысл — вещь субъективная. Он порождается подсознательной экстраполяцией закономерностей привычного жизненного опыта на области явлений, находящихся вне пределов применимости этих закономерностей. При достаточно длительном Изучении явлений микромира можно выработать квантовый здравый смысл . Некоторые специалисты по физике элементарных частиц говорят, что им привычнее мыслить квантовыми образами, чем классическими. Так что надо не бояться противоречия здравому смыслу , а спокойно и терпеливо привыкать к особенностям микромира. Что же касается отрывочности квантовомеханических представлений, то ее просто не существует. Квантовая механика — такая же последовательная и полная теория, как и механика классическая.  [c.21]


Человек — существо макроскопическое. Разрешающая способность его органов чувств на много порядков ниже той, которая нужна для непосредственного познавания элементарных частиц, атомных ядер и даже гораздо более крупных агрегатов — атомов и молекул. Поэтому все наблюдения над событиями микромира — косвенные. Непосредственно мы не видим, не слышим и не ощущаем, как устроено атомное ядро. Но этим трудности опытного изучения микромира далеко не исчерпываются. Не видим мы и магнитного поля. Но изучать атомное ядро гораздо труднее, чем магнитное поле, из-за влияния квантовых свойств. Видим мы через посредство электромагнитных волн. Но с помощью волн можно увидеть лишь предмет, не меньший длины волны. Поэтому для изучения очень малых предметов надо брать очень короткие волны. Но чем короче волна, тем сильнее сказываются ее корпускулярные свойства, т. е. тем больше импульсы и энергии отдельных частиц — квантов излучения. При переходе к микромиру энергии и импульсы этих квантов настолько возрастают, что они становятся снарядами, расшвыривающими и разрушающими изучаемые объекты.  [c.27]

Учет квантовых свойств не меняет вида законов сохранения энергии и импульса. Что же касается момента количества движения, то тут учет квантовых закономерностей проявляется в двух отношениях. Во-первых, в том, что момент квантуется, и, во-вторых, в том, что частица может иметь собственный момент — спин. Интересным свойством спинового момента количества движения является то, что в релятивистской теории он поворачивается при преобразовании Лоренца. Ось этого поворота спина перпендикулярна импульсу частицы и относительной скорости систем отсчета. Спин свободной частицы не меняется при ее свободном движении.  [c.287]

Проблемой исследования свойств макроскопических систем, находящихся в состоянии равновесия, на основании известных свойств образующих такие системы частиц занимается статистическая физика. Основная задача заключается в том, чтобы описать поведение системы, содержащей весьма большое число частиц (например, 1 кг или 1 кмоль реального газа), по свойствам и законам движения отдельных молекул, которые считаются заданными. Поведение макроскопических систем определяется закономерностями особого рода — статистическими закономерностями. Общие равновесные свойства системы (например, термодинамические параметры, характеризующие ее состояние) сравнительно мало зависят от конкретных свойств частиц и законов их взаимодействия. Это обстоятельство позволяет установить общие законы поведения систем и, в частности, законы теплового поведения макроскопических тел в состоянии равновесия например, методами статистической физики можно теоретическим путем получить уравнение состояния (разумеется, в ограниченном числе случаев). Следует отметить, что последовательное применение статистических методов нельзя осуществить на основе классической механики движения частиц. Даже для описания движения сравнительно тяжелых частиц (молекул) в объеме макроскопической системы, когда, казалось бы, справедливы положения ньютоновской механики, приходится использовать теорию движения микрочастиц— квантовую механику. Таким образом, получение уравнения состояния реальных газов теоретическим путем в принципе возможно, но для большинства практически важных случаев связано с непреодолимыми трудностями. Однако теория позволяет обосновать общий вид уравнения состояния.  [c.100]

Теория Бора, объяснявшая спектр атома водорода на основе квантовой механики, была не в состоянии сделать то же самое по отношению к спектрам других атомов. Квантовая механика должна была объяснить волновые свойства частиц, и тут француз-  [c.18]

Итак, понятие В. охватывает чрезвычайно разнообразные движении в системах любой природы. В известном смысле это понятие первичное. Даже общепринятое разделение объектов на В. и частицы не имеет абс. характера. Так, в квантовой физике микрообъекты объединяют в себе свойства частиц и В., что означает возможность двоякого описания их поведения (см. Корпускулярно-волновой дуализм). Такого рода дуализм встречается и в макроскопич. масштабах уединённые волновые возмущения см. Уединённая волна), локализованные в огранич, области пространства, проявляют свойства дискретных объектов (частиц или квазичастиц) в частности, они способны сохранять неизменной свою структуру при столкновениях (взаимодействиях) друг с другом.  [c.316]


Квантовая статистика. Подобно тому как на основе классич. законов движения отд. частиц была построена теория поведения большой их совокупности — классич. статистика, на основе квантовых законов движения частиц была построена квантовая статистика. Последняя описывает поведение макроскопич. объектов в том случае, когда классич. механика неприменима для описания движения слагающих их частиц. В этом случае квантовые свойства микрообъектов отчётливо проявляются в свойствах обычных макроскопич. тел.  [c.317]

Матем. аппарат квантовой статистики существенно отличается от аппарата классич. статистики, т. к. нек-рые параметры микрообъектов могут принимать дискретные значения. Однако содержание самой статистич. теории равновесных состояний не претерпело глубоких изменений. Был выдвинут лишь один новый фундам, квантово-меха-нич. принцип — принцип тождественности одинаковых частиц. В классич. статистике перестановка двух одинаковых частиц меняет состояние системы в квантовой статистике при перестановке одинаковых, т. е. имеющих одинаковые физ. свойства, частиц состояние системы не меняется. Если частицы имеют целый спин (кратный постоянной Планка ti = h/2n), то в одном и том же квантовом состоянии может находиться любое число частиц. Системы таких частиц описываются Бозе—Эйнштейна статистикой. Для любых частиц с полуцелым спином выполняется принцип Паули (согласно к-рому в данном квантовом состоянии не может находиться более одной частицы), и системы этих частиц описываются Ферми—Дирака статистикой.  [c.317]

Ранее говорилось, что функция статистического распределения играет фундаментальную роль для статистических задач. Существует несколько общих положений, ограничивающих вид функции распределения. К их изучению мы и приступаем. Но предварительно необходимо отметить важную особенность статистической физики ее основные закономерности сравнительно мало зависят от конкретных свойств частиц и от характера их взаимодействия, в частности от того, классический или квантовый характер имеет движение микрочастиц. Это свидетельствует о наличии особого рода закономерностей, появляющихся в системах из большого числа частиц, которые и называются статистическими, о качественном их своеобразии. В то же время возникает возможность параллельного использования классического и квантового подхода в ряде случаев (чем мы и будем пользоваться в дальнейшем, оговаривая специфику и особенности классического и квантового распределений, когда в этом будет необходимость).  [c.38]

Эта трудность была преодолена только после создания в 1926 г. Гейзенбергом и Шредингером последовательной теории — квантовой механики, основывающейся на более общих законах материи, которые в макромире сводятся к законам классической физики, но в микромире соответствуют совершенно новым свойствам частиц.  [c.7]

В таких условиях, когда отличие законов квантовой механики от законов классической физики становится существенным, например, для электрона в атоме, состояние его уже нельзя представлять как движение по определенной траектории — физические свойства частицы делают такое описание неадекватным. Вместо этого состояние следует описывать так называемой волновой функцией.  [c.7]

Квантовое число 5 называют обычно спином частицы. Спин — столь же фундаментальный параметр частицы, как масса и заряд. Наличие спина можно связать с вращением частицы вокруг собственной оси однако это лишь грубая аналогия с классическим волчком. В отличие от волчка частицу нельзя удержать от вращения и ее вращение нельзя ускорить. Спин — это неотъемлемое свойство частицы.  [c.23]

Одним ИЗ ОСНОВНЫХ СВОЙСТВ частиц является их сини, характеризуемый соответствующим квантовым числом. Это число выражает величину спина  [c.76]

В современной физике лучистая энергия рассматривается как поток материальных частиц, обладающих одновременно волновыми и квантовыми свойствами. Волновые свойства обусловлены тем, что лучистая энергия представляет собой электромагнитные волны, квантовые свойства характеризуются изменением лучистой энергии определенными порциями — квантами.  [c.243]

В квантовую механику спин был введен в 1927 г. В. Паули. В 1928 г. П. Дирак показал, что существование спина и магнитного момента электрона автоматически вытекает из релятивистского квантовомеханического уравнения Дирака для электрона. Спин является чисто квантовым свойством, и при переходе к классической механике (ft ->- 0) спин обращается в нуль. Поэтому спин не имеет классических аналогов. Были сделаны попытки интерпретировать спин как проявление механического вращения частицы вокруг своей оси (само название собственного механического момента электрона — спин — происходит от английского слова to spin — вращаться). Однако такое классическое истолкование спина оказалось несостоятельным. Спин электрона (и других микрочастиц) обладает общими свойствами квантовомехапического момента.  [c.107]

ОПТИКА [ асферическая содержит элементы, поверхности которых, не имеют сферической формы просветленная обладает уменьшенными коэффициентами отражения света у отдельных ее элементов путем нанесения на них специальных покрытий) как оптическая система (волновая изучает явления, в которых проявляется волновая природа света волоконная рассматривает передачу света и изображений по световодам и пучкам гибких оптических волокон геометрическая изучает законы распространения света в прозрачных средах на основе представлений о световых лучах интегральная изучает методы создания и объединения оптических и оптоэлектронных элементов, предназначенных для управления световыми потоками квантовая изучает явления, в которых при взаимодействии света и вещества существенны квантовые свойства света и атомов вещества когерентная изучает методы создания узконаправленных когерентных пучков света и управления ими нелинейная изучает распространение мощных световых пучков в оптически нелинейных средах (твердые тела, жидкости, газы) и их взаимодействие с веществом силовая изучает воздействие на твердые тела интенсивного светового излучения, в результате которого может нарушаться механическая цельность этих тел статистическая изучает статистические свойства световых полей и особенности их взаимодействия с веществом тонких слоев изучает прохождение света через прозрачные слои вещества, толщина которых соизмерима с длиной световой волны физическая изучает природу света и световых явлений) как раздел оптики электронная занимается вопросами формирования, фокусировки и отклонения пучков электронов и получения с их помощью изображений под воздействием электрических и магнитных полей корпускулярная изучает законы движения заряженных частиц в электрическом и магнитном полях нейтронная изучае взаимодейс вие медленных нейтронов со средой) как раздел физики]  [c.255]


Впервые квантовые свойства были открыты у эл.- [ магн. поля. После исследования М. Планком (М. Plan k) законов теплового излучения тел (1900) i в пауку вошло представление о световых порциях — i квантах эл.-магн, иоля. Эти кванты — фотоны—во многом похожи на частицы (корпускулы) ни обладают i определёнными энергией и импульсом, взаимодейству- ют с веществом как целое. В то же время давно изве- стны волновые свойства эл.-магн, излучения, к-рые j проявляются, напр,, в явлениях дифракции и интерфе- 1 ренции света. Т. о., можно говорить о двойственной природе, или О корнускулярно-волновом дуализме, фотона.  [c.330]

В то жо время следует отметить, что наиб, существенный прогресс, достигнутый в основном в СО—80-х гг., относится именно к пониманию механизма взаимодействия полей (и частиц). Успехи в наблюдении свойств частиц и резонансных состояний да.ли обильный материал, к-ры11 привёл к обнаружению новых квантовых чисел (странности, очарования и т. п.) и к построению отвечающих им т. и. нарушенных симметрий и соЛт-ветствующих систематик частиц. Это, в свою очередь, дало толчок поискам субструктуры многочисл. адронов и в конечном счёте — созданию КХД. В итоге такие элементарные частицы 50-х гг. , как нуклоны и пионы, перестали быть элементарными и появилась возможность определения их свойств (значений масс, аномаль-  [c.307]

КВАНТОВЫЙ ГИРОСКОП — собирательный термин длн приборов квантовой электроники, служащих для обнаружения и определепия величины и знака, угловой скорости вращения или угла поворота относительно инерциальной системы отсчёта. В основу действия К. г. положены гиросконич. свойства, частиц или волп — ато.миых ядер, электронов, фотонов, фоноиов и т. д. Эти свойства могут быть обусловлены как спиновыми и орбитальными моментами микрочастиц, так и зависимостью времени отхода замкнутого контура (интерферометра или резонатора), встречными световыми или поверхностными акустическими, магнитными волнами от скорости и направления враще1П1я контура. Полезный сигна.ч, пропорциональный скорости вращения, возникает или за счёт прецессии механич. и магнитных моментов микрочастиц, или за счет возникновения разности фаз или частот ме кду встречными волнами во вращающемся контуре.  [c.330]

На более глубоком уровне выяснилось, что элементарные частицы, участвующие в сильных взаимодействиях, состоят из более фундам. частиц — кварков. Материя представилась в совр. физике лептонами и кварками (частицами с полуцелым спином) и квантами полей (фотонами, векторными бозонами, глюонами и гипотетич. гравитонами), обладающими целым спином и осуществляющими четыре типа фундам. взаимодействий. В квантовой теории поля уже на ранних стадиях ее развития выяснилась связь между свойствами частиц (значениями спинов) и квантовыми законами их движения. Построение калибровочных теорий электрослабых и сильных взаимодействий впервые в явной форме обнаружило связи между уравнениями движения фундам. частиц и их взаимодействиями.  [c.67]

Квантовая механика ставит в соотвегствие каждой частице поле её волновой ф-цин, дающее распределение различных, относящихся к частице физ, величин. Концепция поля является основной для описания свойств элементарных частиц в их взаимодействий. Конечная цель в этом случае — нахождение свойств частиц из ур-ний поля и перестановочных соотношений, определяющих квантовые свойства материи. Возможный вид ур-ний поля ограничен принципами симметрии и инвариантности, являющимися обобщением эксперим. данных. Лоренц-ковариантность, напр., требует, чтобы волновые ф-ции частиц преобразовались по неприводимым представлениям группы Лоренца. Таких представлений бесконечно иного, однако только часть пз них реализована в природе и соответствует тем или иным элементарным частицам. Реально используются наиб, простые ур-вин полей, являющиеся локальными и не-ревормвруемыми. Попытки построения теорий, не удовлетворяющих этим требованиям,— нелинейной, нелокальной и т. п. теорий поля — влекут за собой пересмотр ряда важнейших принципов, существенных при физ. интерпретации теории (принцип суперпозиции, положительность нормы волновой ф-цив н т. Д.).  [c.56]

Наиб, важное квантовое свойство всех Э. ч.—их способность рождаться и уничтожаться (испускаться и поглощаться) при взаимодействии с др. частицами. В этом отношении они полностью аналогичны фотонам. Э. ч.— это специфич. кванты материи, более точно—кванты соответствующих полей физических. Все процессы с Э. ч. протекают через последовательность актов их поглощения и испускания. Только на этой основе можно понять, напр., процесс рождения я -мезона при столкновении двух протонов (р+р->р+п+тс ) или процесс аннигилящси электрона и позитрона, когда взамен исчезнувших частиц возникают, напр., два у-квакта (е -f-e - у-(-у). Но и процессы упругого рассеяния частиц, напр. е +р->е +р, также связаны с поглощением нач. частиц и рождением конечных частиц. Распад нестабильных Э. ч. на более лёгкие частицы, сопровождаемый выделением энергии, отвечает той же закономерности и является процессом, в к-ром продукты распада рождаются в момент самого распада и до этого момента не существуют, В этом отношении распад Э, ч. подобен распаду возбуждённого атома на осн. состояние и фотон. Примерами распадов Э. ч. могут служить  [c.598]

Уже первые исследования обычных адронов выявили наличие среди них семейств частиц, близких по массе и с очень сходными свойствами по отношению к сильному взаимодействию, но с разл. значениями электрич. заряда. Протон и нейтрон (нуклоны) были первым примером такого семейства. Такие семейства позже были обнаружены среди странных, очарованных и прелестных адронов. Общность свойств частиц, входящих в такие семейства, является отражением существования у них одинакового значения квантового числа—изотопического спина /, принимающего, как и обычный спин, целые и полуцелые значения. Сами семейства обычно наз. изотопическими муАьтиплетами. Число частиц в мультиплете и связано с / соотношением п = 21+. Частицы одного изотопич, мультиплета отличаются друг от друга значением проекции изотопич. спина /з, и соответствующие значения Q даются выражением  [c.602]

Согласно принципам квантовой механики частицы одного сорта (элементарные частицы, атомы, молекулы) не просто одинаковы по своим свойствам, они совершенно не отличимы друг от друга. Как следствие, два состояния системы, различающиеся только перестановкой частиц по допустимым для них (одночастичным) состояниям, тоже оказываются не отличимыми одно от другого. Их необходимо принимать за одно состояние системы в целом. Принципиально неверно было бы утверждать, что в системе тождественных частиц частица А имеет набор квантовых чисел а, а частица В — набор р. Можно говорить лишь о таком состоянии системы, в котором одна из общего числа частиц имеет состояние а, а другая 6, без всякой конкретизации, к какой из частиц квантовые числа аир относятся.  [c.143]

Точно так же благодаря волновым свойствам частиц существует определенная вероятность прохождения сквозь потенциальный барьер конечной толщины частиц, величина энергии которых меньше высоты этого барьера. Это свойство частиц, подчиняющихся законам квантовой механики, было впервые замечено М. А. Леонтовичем и Л. И. Мандельштамом и с успехом использовано Г. А. Гамовым для построения теории а-распада.  [c.105]

Состояние системы из п частиц согласно квантовой теории описывается имеющей смысл амплитуды вероятности волновой функцией Фш1Ш2...т ( Ь-чГп), где Г1,. ..,Гп — координаты, Ш1,. ..,ГПп — проекции спинов частиц. При перестановке любых двух одинаковых частиц волновая функция остается либо неизменной (симметричной), либо меняет знак (антисимметричной). Это свойство частиц в отношении перестановок как раз и называется статистикой.  [c.494]


Проникновение в тайны устройства мира и его основных принципов и законов, понимание природы вещей , к которому с древпих времен стремились лучшие умы, не просто развивает, но и революционизирует человеческое мышление (нанример, делает возможным понимание явлений, которые мы не можем не только непосредственно наблюдать, но и просто себе представить — таких как волновые свойства частиц в квантовой механике или парадокс близнецов в теории относительности).  [c.249]

Подобным же образом мы можем рассматривать волновую природу нейтронов. И здесь также была разработана огромная область нейтронной оптики. В качестве примера на рис. 1.18 показана картина дифракции нейтронов на двух щелях, которая ясно подтверждает волновые свойства частиц. Нейтронные интерферометры широко применялись, в том числе, для изучения фундаментальных вопросов квантовой механики. Так, методом нейтронной интерферометрии была установлена строгая верхняя граница для величины возможных нелинейных вкладов в уравнение Шрёдингера. Кроме того, с помощью нейтронной интерферометрии было продемонстрировано, что для полного поворота  [c.39]


Смотреть страницы где упоминается термин Квантовые свойства частиц : [c.202]    [c.18]    [c.190]    [c.36]    [c.331]    [c.488]    [c.171]    [c.459]    [c.60]   
Смотреть главы в:

Ядерная физика  -> Квантовые свойства частиц



ПОИСК



Свойства частиц

Частицы, классификация по их свойствам симметрии квантовое число четности

Шум квантовый



© 2025 Mash-xxl.info Реклама на сайте