Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Датчик оптический

Возможности формирования и измерения волн напряжений в композиционных материалах, в принципе, определяются уровнем техники экспериментальных исследований соответствующих явлений в твердых телах. Для образования волн напряжений используют пневматические пушки, заряды взрывчатого вещества, ударные плиты, ударные трубы и пьезоэлектрические ультразвуковые генераторы, а для их измерения — тензодатчики, пьезоэлектрические кристаллы, емкостные датчики, оптические интерферометры, методы голографии и фотоупругости. Экспериментальные исследования, не столь обширные как теоретические, тем не менее обеспечивают устойчивый поток информации, необходимой для проверки математических моделей. Результаты экспериментальных исследований скорости распространения волн, рассеяния  [c.302]


Система ориентации получает информацию о положении космического аппарата от чувствительных датчиков оптических, ощущающих свет Солнца, Земли, Луны, планет, звезд инфракрасных, улавливающих тепловое излучение как дневной, так и ночной стороны Земли магнитных, измеряющих напряженность хорошо известного земного магнитного поля гироскопических, хранящих в силу механических законов память о неизменном направлении в пространстве (не путать с гироскопическими силовыми стабилизаторами).  [c.87]

Второе важное отличие термометрии излучения от других методов термометрии, которое оказало глубокое влияние на ее развитие, состоит в том, что в термометрии излучения используется естественный датчик — человеческий глаз. До самого последнего времени наиболее широко распространенным инструментом в оптической пирометрии был оптический пиро-  [c.309]

Для измерения концентрации дискретной фазы в смеси применялись различные методы электрический — при исследовании аэрозолей [335] оптический метод регистрации рассеяния света [656] — при суммарных измерениях на больших образцах и при относительно малом числе частиц в единице объема системы регистрации с помощью счетчика соударений частиц [741] и с помощью датчиков в отдельных точках [830] — при сравнительно большом размере частиц, а также при малом содержании твердой фазы. С помощью последних методов исследуется скорее локальный поток массы, чем концентрация.  [c.181]

Для удаления корректирующих масс из тела ротора, изготовленного из любого материала, применяется балансировка с использованием лазера [8, т. 6]. Этот способ стал возможным в связи с появлением и разработкой мощных оптических квантовых генераторов. Для повышения производительности применен лазер непрерывного действия и разработана оптическая система, обеспечивающая синхронное следование луча лазера за тяжелой точкой ротора в плоскости коррекции. Практически это осуществлено, например, в автоматическом лазерном балансировочном станке ЛБС-3, принципиальная схема которого приведена на рис. 6.20. Балансируемый ротор Р опирается на неподвижные чувствительные опоры Л и S и приводится во вращение двигателем Д. От него же подается механический сигнал и в блок УБ, приводящий в синхронное с ротором вращение полый щпиндель с оптической призмой П. Сигналы опорных датчиков (t и р перерабатываются в решающем блоке РБ в фазирующий импульс, также посылаемый в управляющий блок УБ, который обеспечивает требуемое фазовое положение призмы П относительно ротора Р. Луч из оптического квантового генератора ОКГ проходит через полый шпиндель и, отражаясь от вращающей-  [c.224]


С помощью голографических методов стало возможным получать оптические. элементы, по всем свойствам аналогичные волоконно-оптическим устройствам. Такие. элементы имеют все свойства оптического волокна, но отличаются от него простотой. изготовления. Методы голографии позволяют выполнять оптические элементы и придавать им оптические свойства, которые невозможно получить при обычных методах изготовления. Голографические методы находят широкое применение при аттестации качества оптических. элементов и узлов оптических приборов успешно используются при решении задач выделения сигналов из шумов и распознавания образов. Голография позволяет увеличивать изображения во много раз больше, чем это можно сделать с помощью оптических линз, строить принципиально новые датчики положения и формы объектов и многое другое.  [c.6]

Контроль геометрических параметров объектов с необходимыми эффективностью, точностью и быстродействием возможен при использовании методов многомерного оптического кодирования измерительной информации. Такое кодирование осуществляется в оптической схеме датчика, т. е. самого узкого звена системы, каким обычно является фото.электрический преобразователь, что исключает источники потерь измерительной информации и улучшает метрологические характеристики измерительного преобразователя в целом. Под многомерным оптическим кодированием следует понимать преобразование входного оптического изображения или световых полей объекта, переносящих изображение, в другое оптическое изображение или другие световые поля, наилучшим образом соответствующие возможностям измерения и передачи полезной информации.  [c.88]

Рис. 35. Оптическая схема датчика положения с голограммой кодовой маски (для случая диффузно отражающего объекта) Рис. 35. <a href="/info/4760">Оптическая схема</a> <a href="/info/119651">датчика положения</a> с голограммой кодовой маски (для случая диффузно отражающего объекта)
Рассмотрим оптическую схему (см. рис. 36), поясняющую принцип работы датчика в с.лучае измерения объектов с преобладанием зеркальной составляющей  [c.91]

Голографические датчики с корреляционной обработкой измерительной информации. В работе таких датчиков использованы принципы цифрового многомерного кодирования измерительной информации и оптической корреляции, заключающиеся в согласовании голографического фильтра с распознаваемым оптическим сигналом по спектру пространственных частот. В случае обработки измерительной информации, поступающей от объектов, не рассеивающих свет, оптическое кодирование дополняется шумовым кодированием информационного сигнала.  [c.93]

При изучении потоков с большими до- и сверхзвуковыми скоростями широкое применение получили оптические и акустические методы. Их основное преимущество заключается в возможности производить локальные измерения без ввода в поток каких-либо датчиков. В принципе и оптические, и акустические приборы работают либо за счет изменения параметров при прохождении волн через заданную область, либо при их рассеивании на инородных частицах в потоках. Применение лазеров и голографии, а также доплеровского эффекта в оптике и акустике открывает большие перспективы в изучении полей скоростей и турбулентных характеристик.  [c.497]

Для измерения быстро изменяющихся давлений могут быть выбраны пьезокварцевые манометры, где используется явление возникновения электрических зарядов при сжатии кварца. Для этой же цели используются тензометрические манометры в этом случае тензометрический датчик наклеивается на трубку, давление в-которой надо измерить. Применяются емкостные манометры, в которых прогиб мембраны, являющейся одной из обкладок электрического конденсатора, приводит к изменению емкости. Для измерения давления используют и оптические методы, например используется изменение интерференционной картины при деформации специальной мембраны.  [c.70]


Для измерения угловых перемеш,ений применяют также фотоэлектрические датчики, состоящие из оптической системы, преоб-  [c.432]

Основное отличие оптических приборов от электронных — отсутствие металлических проводников. Датчик в этих приборах расположен на конце волоконного световода, с помощью которого информация о температуре передается на оптоэлектронное /устройство с цифровым дисплеем или выходом на самописец.  [c.126]

Использованные в новых приборах оптические датчики и световоды из химически инертных материалов обе-  [c.126]

По расположению датчиков относительно объекта контроля различают три основных варианта одностороннее расположение, двустороннее и под прямым углом оптических оСей друг к другу (способ фиксации параметров рассеянного излучения). Резонансные СВЧ методы делятся по виду резонансного эффекта (электронный парамагнитный, ядерный магнитный, ферромагнитный и др.).  [c.217]

Дефектоскопы на основе геометрического метода целесообразно использовать для обнаружения и локализации дефектов. На рис. 33 показана схема реализации указанного метода с применением согласующих пластин, устраняющих отражения от границ раздела объекта контроля. Сигнал от дефекта будет выделяться в чистом виде, давая наиболее точную информацию о его геометрии, пространственном положении и глубине залегания. Суть метода в том, что если оптические оси передающей и приемной антенн направить под одинаковым углом к поверхности объекта контроля и датчик сканировать по поверхности, то максимум сигнала при наличии дефекта будет при таком положении датчика и антенн, когда их оптические оси (после преломления лучей) сходятся на дефекте. Здесь обнаружение дефекта сочетается с определением глубины его залегания и формы путем сканирования. При использовании в антеннах датчика контактных призм из того же материала, что и объект контроля, отпадает необходимость применения согласующей пластины на передней границе раздела.  [c.235]

Установки уровня П1 должны иметь автоматические системы слежения за положением шва. Слежение проводят с помощью оптических, индукционных, механических и других датчиков. В последнее время для этой цели успешно применяют систему технического зрения, позволяющую преобразовывать плоское оптическое изображение в цифровой код, который с помощью  [c.375]

Для наводки фотоаппарата производилось поворачивание всей станции посредством системы ориентации. Эта система по получен ИЮ команды с Земли сначала стабилизировала станцию, ориентируя ее с помощью солнечных датчиков так, чтобы ось фотоаппарата была направлена на Луну. Затем поступивший с оптического устройства сигнал присутствия Луны разрешал проведение фотографирования [1, 2].  [c.431]

В процессе сборки трансформаторов контролируются поступление деталей на исходные позиции (оптическими датчиками) собираемость деталей и узлов (датчиками положения) электрические параметры магнитопро-вода (датчиками тока). После формовки и сушки трансформатора осуществляется контроль электрических параметров. В случае невыполнения одного из условий работы детали и узлы бракуют и сбрасывают их в браковочную тару.  [c.450]

Датчики. Оптические датчики характерны тем, что при их использовании на образце не устанавливаются никакие механические детали, кроме реперов либо отражающих пластин. Отраженные от двух реперов, отличающихся от материала образца другой степенью черноты, лучи попадают в следящую оптическую систему. С помощью специальных устройств сигнал передается на самопишущий прибор. Такие системы позволяют проводить исследования при температуре превышающей 1300 К, отличаются бесконтакшостью и безынерционностью, что особецно важно при измерении свойств размягчающихся материалов.  [c.267]

Фоторезисторы предназначены для примеиеиия в качестве приемников и датчиков оптического излучения в составе оптико-электронной аппаратуры, систем фотоэлектрической автоматики и телемеханики, счетно-измерительных и эксионометрпческих приборов, работающих в диапазоне длин волн от 0,3 до 0,9 мкм Могут использоваться в цепях постоянного, переменного и импульсного токов Фоторезисторы СФ2-1.8 и СФ2-19 применяются в качестве датчиков ультрафиолетового излучения  [c.30]

Фоторезисторы предназначены для применения в качестве приемников я датчиков оптического излучения в составе оптико-электронной аппаратуры, систем фотоэлектрической автоматики и телемеханики, счетпо-измерительных приборов, работающих в диапазоне длин волн от 0,35 до 1,1 мкм Могут использоваться в цепях постоянного, переменного и импульсного токов.  [c.43]

Рис. 3.12. Акустический интерферометр НФЛ для интервала температур от 2 до 20 К [20]. А — смазка стайкаст В — постоянный магнит С и О — электрические экраны Е— пьезоэлектрический датчик ускорения Е — диафрагма О — акустический канал Я — поршень, на котором крепится уголковый отражатель / — германиевые термометры сопротивления / — уголковый отражатель J( — стержень, который толкает поршень Е — разделитель лучей М — подвес Я — оптическое окно О — опора Р — верхняя камера Q — подвижная труба Р — радиационный экран 5 — термометр сопротивления Т— тепловой якорь (с нагревателем) и — тепловой якорь при Т=4,2 К V — вакуумная полость W — центральная несущая труба У — лазерные лучи 2 — ванна с жидким гелием. Рис. 3.12. <a href="/info/373900">Акустический интерферометр</a> НФЛ для интервала температур от 2 до 20 К [20]. А — смазка стайкаст В — <a href="/info/38894">постоянный магнит</a> С и О — электрические экраны Е— <a href="/info/128731">пьезоэлектрический датчик</a> ускорения Е — диафрагма О — акустический канал Я — поршень, на котором крепится <a href="/info/362781">уголковый отражатель</a> / — <a href="/info/425226">германиевые термометры сопротивления</a> / — <a href="/info/362781">уголковый отражатель</a> J( — стержень, который толкает поршень Е — разделитель лучей М — подвес Я — оптическое окно О — опора Р — верхняя камера Q — подвижная труба Р — <a href="/info/251815">радиационный экран</a> 5 — <a href="/info/3942">термометр сопротивления</a> Т— тепловой якорь (с нагревателем) и — тепловой якорь при Т=4,2 К V — вакуумная полость W — центральная несущая труба У — лазерные лучи 2 — ванна с жидким гелием.
Для измерения постоянных тт медленно меняющихся параметров преимущественно используют более простые методы - механические или оптические. Пневматические методы применяют как бесконтактные. Для измерения быстро-мепяющихся параметров, а также для автоматического контроля размеров преимущественно применяют электрические методы, достоинствами которых являются малая инерционность, малое влияние на объект измерения благодаря малым массам и размерам датчиков, дистанцион-ность, удобная регистрация результатов с  [c.475]


Голот рафические методы обработки измерительной информации находят широкое применение при построении измерительных преобразователей (датчиков) положения, линейных размеров, формы, а также деформации и скорости перемещения объектов. Перспективность применения этих методов объясняется тем, что информация о геометрических параметрах и физическом состоянии объекта непосредственно и полно выражается в световых полях, рассеянных. этим объектом. Измерительная информация заключена во всех характеристиках отраженной объектом световой волны амплитуде, фазе, длине волны, а также ее поляризации. Существенной особенностью задачи контроля геометрических параметров объектов при этом является необходимость регистрации и обработки многомерных входных сообщений, содержащихся в световых полях или изображениях объектов. Эти сообщения отличаются высокой информативностью, причем повышение требований к точности и быстродействию измерительной системы приводит к необходимости увеличения количества принимаемой и обрабатываемой информации. Поэтому применение обычных оптических методов обработки измерительной информации с одномерным кодированием. электрических сигналов, вырабатываемых фотоэлектрическим преобразователем датчика в процессе сканирования изображения контролируемого объекта, либо недостаточно. эффективно, либо вообще не решает поставленной задачи.  [c.87]

Оптическое кодирование может быть непрерывным (аналоговым) или дискретным (цифровым). В последнем случае в дополнение к уже перечисленным операциям оптическое кодирование должно включать квантование изображения или световых полей объекта, т. е. разделение на ряд отличных друг от друга в ггространстве по яркости или по иному признаку дискретных элементов, каждому из которых может быть приписан соответствующий кодовый знак. Таким образом, под цифровым многомерным кодированием надо понимать квантование входного изображения или световых полей объекта и последовательное пространственное перераспределение. элементов квантования по определенному закону (коду). Цифровое оптическое кодирование дает возможность получить результат измерения в сжатой цифровой помехоустойчивой форме и исключить процесс развертки изо(5ражения или световых полей с целью преобразования их в одномерный электрический сигнал. При этом роль фото.элект-рического преобразователя датчика сводится лишь к считыванию результатов измерения, полученных в оптике датчика в виде пятен светового кода. Рассмотрение свойств голографического процесса показывает, что голограмма может быть идеальным элементом для создания кодирую-  [c.88]

Оптическая схема измерения переме1цений с испо.ль-зованием датчика с корреляционной обработкой измерительной информации приведена на рис.. 37. Она содержит лазер 2, блок / оптических. элементов для формирования опорного и объектного лучей при получении голограммы  [c.93]

Значительно большие надежность и универсальность измерений, не требующие оформления оптически прозрачного опытного участка могут быть достигнуты с помощью импульсного ионизационного -датчика скорости (расхода). Принцип действия этого датчика основан на измерении времени переноса пакета ионов, образованного внешним источником ионизации. Этот метод аналогичен оптическому времяпролетному методу с той лишь разницей, что меткой в потоке является пакет ионов.  [c.249]

КВ — коллектор элек онов ОС — оптическая система МХ — монохроматор МЛ — манометрическая лампа СХ, СУ, С2 сельсинные датчики ФС -  [c.353]

Германий применяется для и,чгоговления диодов различных типов, транзисторов, датчиков ЭДС Холла, тензодатчиков, Оптиче-ческие свойства германия позволяют его использовать для изготовления фотодиодов и фототранзисторов, модуляторов света, оптических фильтров, а также счетчиков ядерных частиц. Рабочий диапазон температур германиевых приборов от - 60 до 4-70 °С,  [c.285]

В электрических отсчетных устройствах перемещение датчика воздействует на электрическое устройство, преобразующее его в цифровой код. В зависимости от способа преобразования перемещения датчика в цифровой код они делятся на оптические, в которых цифровой код проектируется на экран или освещается на счетчике, и электронные, у которых имеется газоразрядная лампа с набором цифр, подсвечиваемых в зависимости от цифрового кода. Эти устройства позволяют вести измерение на расстоянии и использовать непосредственно результаты измерения при автоматизации технологических процессов. В связи с тем, что вопросы конструирования электрических цифровых отсчетных устройств связаны с конструированием электрических специальных устройств, выходящих за пределы настоящего курса, они здесь не рассматриваются.  [c.511]

ЛА Дания, ДИЗЛ 0,001 — 100 . Лазерный анемометр. Выпускается модель с волоконно-оптическим датчиком для контроля скорости частиц в потоках газа и жидкости  [c.113]

Датчик состоит из кристалла LiTa толщиной 0,1 мм, поляризующей пленки, приклеенной с одной стороны кристалла, и диэлектрического зеркала, расположенного с другой стороны. Поток излучения по оптическому волоконному световоду через поляри-  [c.127]

Действие абсорбционных оптических датчиков основано на функциональной зависимости поглощенного пучка света от температуры. Это свойственно полупроводниковым материалам, в частности арсениду галлия (GaA.s). Датчик на основе арсенида галлия имеет форму призмы небольших размеров. На входе и выходе датчика расположено по одному или по два оптических световода, обеспечивающих минимальные потери в диапазоне длин волн, соответствующем спектру поглощения QaAs. Разрешающая способность такого датчика 0,2 °С в диапазоне температур 33—47 °С.  [c.127]

Люминофорный датчик на основе La.202S имеет диапазон измерений 9— 250 °С. В качестве источника излучения может быть использована вольф-рамогалогеиная лампа, а для передачи сигнала — волоконный оптический световод диаметром 0,4, ,, 1,0 мм. Отличительными особенностями люмино-форных датчиков являются возможность использования одного и того же световода для передачи входного и выходного сигналов, имеющих разные длины волн, а также возможность калибровки люминофоров, содержащих редкоземельные элементы в процессе производства в отличие от других датчиков, которые калибруют в готовом виде. Люминофорные датчики с широким диапазоном измерений могут применяться для работы с вращающимся электрическим оборудованием.  [c.127]

Антимонид индия применяют для изготовления фотоэлементов высокой чувствительности (основанных на использовании различных видов фотоэффекта), датчиков ЭДС Холла и оптических фильтров. Кроме того, InSb используют для термоэлектрических генераторов и холодильников.  [c.263]

Настоящая книга написана в полном соответствии с программой курса, утвержденной Минвузом СССР 05.09.74 г., и представляет собой краткое введение в теорию широкого круга явлений, с которыми приходится непосредственно иметь дело конструктору и технологу радиоэлектронной и электронно-вычислительной аппаратуры. Цель книги — помочь читателю понять физическую природу механических, тепловых, магнитных и электрических свойств твердых тел, контактных и - поверхностных явлений в полупроводниках, наиболее широко используемых в современной радиоэлектронике. В книге освещены также термоэлектрические, гальваномагнитные, оптические и фотоэлектрические явления в полупроводниках и механизмы переноса зарядов в тонких пленках. На этих явлениях основана работа широкого класса электронных приборов датчиков температуры, индукции магнитного поля, фотоэлектрических приборов, лазеров, тонкопленочных элементов и т. п.  [c.3]



Смотреть страницы где упоминается термин Датчик оптический : [c.192]    [c.651]    [c.243]    [c.90]    [c.249]    [c.9]    [c.63]    [c.126]    [c.127]    [c.374]    [c.29]    [c.53]   
Машиностроение Энциклопедия Т I-3 Кн 2 (1995) -- [ c.267 ]



ПОИСК



Датчик

Датчик локационный компоновка оптических преобразователей

Датчик локационный оптический

Датчик локационный с оптическими чувствительными элементами

Датчики волоконно-оптические

Датчики волоконно-оптические акустические

Датчики волоконно-оптические амплитудные

Датчики волоконно-оптические виброметры

Датчики волоконно-оптические влажности

Датчики волоконно-оптические голографические

Датчики волоконно-оптические давления

Датчики волоконно-оптические дифференциальные

Датчики волоконно-оптические ионизирующих излучений

Датчики волоконно-оптические когерентные

Датчики волоконно-оптические концентрации веществ

Датчики волоконно-оптические магнитного поля

Датчики волоконно-оптические механических величин

Датчики волоконно-оптические микроизгибные

Датчики волоконно-оптические микрофоны

Датчики волоконно-оптические некогерентные

Датчики волоконно-оптические перемещения

Датчики волоконно-оптические пирометры

Датчики волоконно-оптические показателя преломления

Датчики волоконно-оптические поляризационные

Датчики волоконно-оптические радиометры

Датчики волоконно-оптические расходные

Датчики волоконно-оптические рефлектометры

Датчики волоконно-оптические рефрактометры

Датчики волоконно-оптические скорости линейной

Датчики волоконно-оптические скорости угловой

Датчики волоконно-оптические температуры

Датчики волоконно-оптические уровня жидкости

Датчики волоконно-оптические ускорения

Датчики волоконно-оптические фазовые



© 2025 Mash-xxl.info Реклама на сайте