Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние давления и состава газа

Влияние давления и состава газа  [c.57]

Особенности коррозионно-эрозионного разрушения металлов и сплавов в скоростных газовых потоках. При небольших скоростях газовых потоков влияние динамических эффектов на механизм и кинетику газовой коррозии незначительно. Однако при скоростях потоков, сравнимых со скоростью звука, кинетическая энергия газовых молекул растет пропорционально квадрату М-числа М — число Маха, представляющее собой отношение скорости течения газа к местной скорости звука в газообразной среде) и становится сравнимой с тепловой энергией. Известно, что вблизи поверхности, обтекаемой скоростным газовым потоком, образуется пограничный слой изменения скорости, давления и температуры, в котором и определяют энергетическое воздействие среды на металл. Разрушение металлической поверхности в скоростных газовых потоках происходит вследствие механического, теплового и химического воздействия, интенсивность которых определяется составом газовой среды,  [c.252]


Взаимное влияние химической кинетики и газодинамики для течения продуктов сгорания и других газов, рассмотренное в ряде работ [1, 2], показывает, что при расчете состава газа может быть успешно использован метод последовательных приближений. В первом приближении предполагается распределение газодинамических параметров соответственно квазиравновесному течению и решается система кинетических уравнений, позволяющая определить состав газа при сверхзвуковом расширении. Полученный неравновесный состав далее используется для уточнения газодинамических параметров (давления, температуры, скорости) рассматриваемого течения. При расчетах концентраций электронов необходимо рассматривать систему уравнений кинетики электронных процессов, причем влиянием ионизации газа на состав нейтральных компонент и газодинамику течения можно практически пренебречь.  [c.243]

Электрохимическая коррозия зависит от состава жидкости и газа. В первую очередь это касается состава воды, как наиболее коррозионноактивной фазы в системе нефть — вода. Количество воды, ее состав, природа и количество растворенных газов, давление и температура — все это может меняться в широких пределах и оказывать решающее влияние на интенсивность коррозии.  [c.189]

Основным условием обжига фарфора, как и других видов тонкой керамики, является нагрев изделий по заданной температурной кривой при установленном для каждого периода обжига составе газовой среды. Хотя режим давлений и разрежений в разных частях печи не влияет непосредственно на процесс образования фарфора, однако изменения состава газовой среды в разных частях печного пространства, обусловленные изменениями режима давлений, могут оказать весьма существенное влияние на результаты обжига — цвет и структуру фарфорового изделия. Поэтому в технологических картах отмечают давление газов в разных пунктах печи для отдельных периодов обжига и охлаждения изделий.  [c.590]

Испарение через мембрану. Это процесс разделения жидких смесей, основанный на различной скорости переноса компонентов смеси через полупроницаемую мембрану вследствие различных значений их коэффициентов диффузии. Из исходного раствора через мембрану в токе инертного газа или путем вакуумирования (рис. 24-8) отводятся пары, которые затем концентрируются в конденсаторе. При разделении происходят растворение вещества в материале мембраны (сорбция), диффузия его через мембрану и десорбция в паровую фазу с другой стороны мембраны. Процесс переноса вещества через мембрану описывается законом Фика [уравнение (24.5)]. Состав паров зависит от температуры процесса (влияние давления на его характеристики незначительно), материала мембраны, состава разделяемой смеси и др. Для увеличения скорости процесса раствор нагревают до 30-60 °С, а в паровой зоне создают разрежение.  [c.333]


Наиболее эффективная защита металла шва и зоны термического влияния обеспечивается при сварке в камерах с контролируемой атмосферой. Камеры предварительно продувают или вакуумируют, а затем заполняют защитным (инертным) газом заданного состава под небольшим давлением.  [c.80]

Чтобы понять это очень важное обстоятельство, обратимся к схеме рис. 138. Скорость в отверстии образуется за счет энергии давления в резервуаре. Давление в вытекающей струе равно давлению окружающей среды и управляется им, поскольку влияние среды распространяется на струю (сечение К—К) с местной скоростью звука. Вследствие того, что сами частицы газа движутся из резервуара наружу со скоростью истечения о, скорость распространения влияния окружающей среды против движения относительно отверстия составит а — о. Однако указанное внешнее влияние среды действует на процесс истечения до тех пор, пока скорость истечения меньше а.  [c.248]

С повышением коэффициента избытка воздуха содержание СО2 в газе непрерывно увеличивается, достигая максимума при стехиометрическом соотношении. Однако при минимальном коэффициенте избытка воздуха (а = 0,2.5) п низких температурах Т = 1000° К) концентрация СО2 в составе полученных газов оказывается даже выше стехиометрической, превышая 20%. Повышение давления способствует увеличению образования Oj только в области Я = 1 н- 50 ama (рис. 104). Увеличение давления от 50 до —200 ama не оказывает большого влияния на образование Oj. Повышение температуры процесса при соблюдении всех других условий постоянными и при = = 0,25 -н 0,5 существенно снижает равновесную концентрацию СО2 (рис. 104).  [c.197]

Из растворенных в природных водах газов существенное влияние на их свойства оказывают оксид углерода (IV), кислород, сероводород, метан, азот. Их содержание в воде определяется природой и парциальным давлением газа, составом водной среды, температурой. Рассмотрим более подробно влияние газов и других примесей воды на ее свойства.  [c.18]

При измерении теплопроводности ксенона было установлено, что при давлениях выше 150 мм рт. ст. тепловой поток, передаваемый через слой газа, резко нарастает с увеличением давления. При давлениях ниже 70 мм рт. ст. наблюдалась линейная зависимость HQ от ПР. По-видимому, в первом случае сказывалось влияние свободной конвекции, во втором — начинал проявляться температурный скачок. В связи с этим в обработке использовались измерения, выполненные при давлениях 70, 35 и 17 мм рт. ст., с введением поправки на температурный скачок. Максимальная величина этой поправки составила 10% при 1400 К.  [c.44]

Малые колебания давления, а также некоторое непостоянство уровня сжиженного газа и его состава сказываются на его плотности, а следовательно, на величине выталкивающей силы, действующей на емкость. Для исключения влияния такого эффекта на показания весов на противоположное коромысло подвешена подобная пустая емкость, погруженная в этот же сжиженный газ.  [c.55]

Количество газа, растворяющегося в гликоле, зависит от состава обрабатываемого газа, температуры и давления процесса. Этим определяется состав отработанного раствора абсорбента, в частности существенное влияние оказывает содержание Hg, 1,4,5,б/.  [c.150]

Экспериментальные исследования, проведенные в бомбах при различном давлении газа, с использованием скоростной киносъемки, стробоскопического фотографирования и улавливания распыленных капель топлива на закопченные и покрытые сверху тонким слоем окиси магния пластинки, позволили составить представление о последовательности происходящих процессов и оценить влияние различных факторов на качество распыливания.  [c.317]

В табл. 9 приведены результаты исследования влияния состава и давления остаточных газов на внешний вид алюминиевого покрытия (скорость конденсации 4 мкм/мин, температура 150° С). 54  [c.54]

При отборе газа из линий низкого давления можно использовать трубки из стекла, пластмасс по [92], кварца, фарфора, соединяемых встык резиновыми или пластмассовыми муфтами. Все материалы, применяемые в схемах отбора, не должны оказывать влияния на состав газа. Для предотвращения конденсации пробы температура пробоотборной линии и контейнеров не должна быть ниже температуры газа. При применении каплеуловителя предусматривают установку газового счетчика для определения по объему скопившейся влаги ее доли в объеме газа. После отбора объединенной пробы из линий с давлением газа ниже атмосферного из сборной емкости отбирают три лабораторные пробы в стеклянные пипетки типа Коро вместимостью каждая не менее 500 см . Две из них предназначены для определения влажности газа, удельной плотности, теплоты сгорания и элементного состава, третья хранится в качестве контрольной. При сухом методе отбора баллон  [c.143]


Боттерилл и Десаи [83], с одной стороны, изучали влияние давления на теплообмен псевдоожиженного слоя с поверхностью, а с другой — использовали его как фактор, изменяющий вязкость газа с целью выявления ее роли в механизме теплопереноса. Было найдено, что данные ряды экспериментов в атмосферах гелия, неона, воздуха и углекислого газа могут быть представлены в виде зависимости величины, обратной максимальному коэффициенту теплообмена, 1/ 1пах от комплекса (l/fe)X X (ц/р)[87]. Однако двукратного увеличения максимального коэффициента теплообмена, ожидаемого, в соответствии с приведенным соотношением, при изменении давления от атмосферного до 0,8 МПа в опытах [83] с плотным движущимся слоем не произошло При увеличении рабочего давления до 1 МПа во всех исследованных системах газ — твердые частицы коэффициенты возросли всего на 15%. Это позволило сделать вывод о том, что кинематическая вязкость не является главным фактором, который определяет интенсивность переноса тепла, и оказанное ею коррелирующее воздействие было случайно. В опытах с псевдоожиженным слоем наблюдалось существенное влияние изменения давления в аппарате на величину коэффициентов теплообмена с поверхностью при использовании в качестве сжижаемого материала крупных частиц узкого фракционного состава. Например, для псевдоожиженного воздухом слоя медной  [c.69]

Исследование теплообмена при первой стадии реакции Г. Беером [3.22] выполнено в условиях естественной конвекции и вынужденном обтекании нагреваемого цилиндра (0вн=10 мм, длина 120 мм) при атмосферном и пониженном (до 0,5 бар) давлениях, числах Re=(5— 10) -Ю и Gr 10 Фотометрическим методом было определено поле температур в пограничном слое и показано, что распределение температур у каждой поверхности для химически реагирующего и инертного газов практически одинаково. Отмечено также более сильное влияние неравновесности состава при вынужденной конвекции на теплообмен по сравнению с условиями естественной конвекции. (Неравновесность при 7 с 400°К достигалась снижением давления.)  [c.59]

Исследованиями влияния тепломассоподвода в разных участках поверхности летательного аппарата на его сопротивление установлено [1-3], что вдув высокоэнергетических струй в донную область тела вращения приводит (по сравнению с вдувом инертных газов) к увеличению донного давления и, как следствие, к снижению общего коэффициента сопротивления за счет уменьшения составляющей донного сопротивления. На основе результатов проведенных экспериментальных исследований при числах Маха М = 1.15 3.1 определен диапазон изменения расходных, энергетических и других параметров пиротехнических составов (ПС), обеспечивающих наибольшее снижение донного сопротивления [2, 3].  [c.507]

В настоящей статье изложены результаты изучения влияния глубины вакуума в интервале 1 10 —1 Ю " мм рт. ст. на состояние поверхности никеля и бериллиевой бронзы при различных температурах отжига. В литературе по этому вопросу существуют разноречивые данные [5—7]. Нами были получены сравнительные данные о свойствах и степени окисления никеля и бериллиевой бронзы БрБ2 при отжиге их в воздухе, парах воды и вакууме при величине остаточного давления от 1 10 до 1 10 < мм рт. ст., а также в защитных газовых средах. В качестве защитных сред применяли те.книче-ский водород из баллонов и экзотермический газ следующего состава 8—10% Нг 6—8% СОг,- 6—8%С0 остальное азот н пары воды. Температура точки росы 4-25° С.  [c.54]

Как уже говорилось, за рассматриваемый период, кроме исследований термодинамических свойств воды и водяного пара, были проведены исследования термодинамических свойств ряда других веществ, имеющих большое значение в современной энергетике. Здесь прежде всего следует назвать исследования Вукаловича, Кириллина, Ремизова, Силецкого и Тимофеева, результаты которых были ими изданы в виде большой монографии Термодинамические свойства газов (1953). В предисловии к ней записано в первой части книги даны основные сведения по теории и методам расчета величин, характеризующих термодинамические свойства газов. . . Рассмотрен также вопрос о влиянии давления на термодинамические величины. .. Во второй части книги приведены табличные материалы по теплоемкостям, энтальпиям и энтропиям одно-, двух- и трехатомных газов неорганического состава и большого числа углеводородов. .. Во второй части книги приведены наиболее надежные опытные данные по теплопроводности и вязкости технически важных газов.. . .  [c.315]

На основе исследований двухмерного неравновесного течения для семейства подобных сопел и сопел с различным углом наклона контура сужающейся части показана целесообразность выбора такой формы дозвуковой части, которая обеспечивает прямолинейную звуковую линпю. Получены соотношения геометрических параметров дозвукового II трансзвукового участков сопла, обеспечивающих безотрывность течения и форму звуковой поверхности, близкую к плоской. Проведено параметрическое исследование сверхзвукового участка двух классов плоских сопел газодинамических лазеров, построенных па базе равномерных и симметричных характеристик на выходе. На основе изучения влияния степени расшпреипя, полного давления п температуры, а также состава газа показано, что наименьшие потери полезной колебательной энергии в резопаторпой области обеспечивают сопла, построенные на базе равномерной характеристики. Эффективность преобразования тепловой энергии в энергию когерентного электромагнитного излучения существенно зависит от геометрии сопла, определяющей свойства колебательно-неравновесного течения газовой смеси в рабочей части газодинамического. лазера.  [c.288]


Для газодинамического лазера, работающего на смеси газов СО2 + N2 + Н2О, проведен анализ влияния геометрических параметров исследованных классов сопел на величину коэффициента эффективности сопла [112]. Получено, что для сопел второго класса средний по сечению коэффициент на выходе на 0,04 превышает соответствующее значение для сопел первого класса. Однако в выходном сечении сопел второго класса реализуются существенпо неравномерные распределения газодинамических параметров. Продольная составляющая скорости и число Маха М при удалении от оси уменьшается, а давление и плотность увеличиваются. Так, неравномерность по числу М может составить около 60 %. Наличие такой сильной неравномерности газодинамических параметров на срезе сопла может привести к дополнительным газодинамическим возмущениям, в результате действия которых в колебательно-ре-лаксирующем потоке за срезом сопловой решетки может быть потеряна часть колебательной энергии.  [c.289]

При наличии химических реакций в пограничном слое необходимо учитывать дополнительное выделение и поглощение тепла внутри слоя. В этих случаях кроме совокупности уравнений пограничного слоя нужно рассматривать уравнения, определяющие условия протекания химических реакций. Рассматривая движение смеси газов в целом, нужно иметь в виду, что физические параметры смеси р, fi, %, D, Ср будут зависеть от состава, давления и температуры смеси. Определение этих параметров (особенно характеризующих переносные свойства газовых смесей) связано с некоторыми предположениями, которые делаются заданием потенциалов взаимодействия при столкновении частиц различных типов. Ряд предположений приходится делать при задании кннетики химических реакций. ГТоэтому расчеты (даже в случае ламинарного режима течения в пограничном слое) должны обязательно сопоставляться с экспериментальными данными. Кроме того, при высоких температурах появляется еще выделение и поглощение тепла путем излучения. Влияние излучения в воздухе растет при увеличении температуры и особенно существенно при скоростях полета более 10 км/с. Во многих случаях влияние излучения иа конвективный теплообмен невелико, при этом лучистый и конвективный потоки могут рассчитываться независимо. В главе весь анализ приводится для ламинарного пограничного слоя, одиако полученные выводы могут использоваться и для расчета турбулентного пограничного слоя.  [c.176]

Эту область называют подготовительной или предпламенной зоной. Последующий этап химической активности связан с накоплением в газовой смеси активных центров, которое происходит по всей подготовительной зоне и приводит к возникновению на внеш,ней границе этой зоны светящегося пламени. В зоне светящегося пламени происходит догорание СО и Иг за счет восстановления N0 до N2. При этом выделяется количество тепла, равное примерно половине калорийности топлива, и температура газов возрастает до уровня, соответствующего образованию равновесного состава продуктов сгорания 7о=Гк. При умеренных давлениях ширина подготовительной зоны получается значительной, что ограничивает влияние светящегося пламени на процессы, идущие на поверхности топлива, радиационным воздействием. Подвод тепла к поверхности заряда в первом приближении будет определяться теплопроводностью зоны газификации.  [c.234]

При низких давлениях величина Рц, .Уг в уравнении (12.5.1), включающая плотность паров и их концентрацию, может быть опущена когда это упрощение возможно, уравнение (12.5.1) может быть использована для коррелирования поверхностных натяжений смесей широкого круга органических жидкостей [5, 16, 24, 36, 48] с достаточно хорошими результатами. Большинство авторов не применяют, однако, общие таблицы (такие как табл. 12.1) значений групповых составляющих для вычисления [Р,], а обрабатывают экспериментальные данные методом регрессионного анализа, чтобы получить наилучшее значение [P ] для каждого компонента смеси. Такая же процедура с успехом используется для систем газ—жидкость при высоких давлениях, когда член рр Уг уравнения (12.5.1) существенен. Вайнауг и Кац [65] показали, что уравнение (12.5.1) коррелирует поверхностное натяжение смеси метан — пропан при температурах от —15 до 90 °С и давлениях 2,7—102 атм. Дим и Меттокс [И] также применяли это уравнение для системы метан—нонан при температурах от —34 до 24 °С и давлениях 1 — 100 атм. Некоторые сглаженные результаты представлены на рис. 12.4. При любой температуре поверхностное натяжение смеси уменьшается с увеличением давления, так как большее количество метана растворяется в жидкой фазе. Влияние давления необычно вместо уменьшения с ростом температуры поверхностное натяжение смеси увеличивается, кроме случаев наиболее низких давлений. Это явление иллюстрирует тот факт, что при невысоких температурах метан более растворим в нонане и влияние состава жидкости более важно в определении От, чем влияние температуры.  [c.523]

В приведенной выше теории существует одно интересное противоречие, которое проявляется в том, что в резонансных условиях между сечением рассеяния ag и сечением флюоресценции различие практически исчезает. Термин флюоресценция обычно используется для обозначения процессов излучения, продолжительность которых лежит в диапазоне наносекунд (или более) при низких давлениях и падает из-за столкновительного тушения при давлениях выше нескольких сотен паскаль. В то же время термин комбинационное рассеяние служит для обозначения двухфотонного процесса, протекающего практически мгновенно и поэтому не подверженного тушению (т. е, его интенсивность в расчете на одну молекулу не зависит от состава или давления газа, по крайней мере до давления в несколько сотен килопаскаль). В действительности выражение (3.170) описывает рассеяние при расстройке частоты, которая велика по сравнению с полной шириной линии, однако, как можно видеть, описывает и флюоресценцию на частоте, близкой к частоте разрешенного перехода. При высоких давлениях влияние однородного и неоднородного механизмов уширения, а также тушения усложняет рассмотрение вопроса. Зависимость сечений от давления и природа их изменчи вости в настоящее время нашли лишь частичное объяснение в теории и эксперименте [84, 99].  [c.129]

Атомы, расположенные на поверхности, с внешней стороны имеют свободные связи, и поэтому соприкосновение ювенильной металлической поверхности с окружающей средой при атмосферном давлении приводит к мгновенному образованию на ней мономолекулярного слоя. Физическое состояние поверхности трения твердого тела характеризуется наличием определенного состава поверхностных пленок и особенностями структуры поверхностных слоев. В реальных условиях на воздухе все микровыступы и микротрещины почти м1новенно, от сотых до тысячных долей секунды, покрываются оксидн1,1ми пленками а слоями адсорбированных молекул газов, воды и жирных веп еств. Обычно над ювенильной поверхностью находятся слои оксидов, прочно связанн ,1е с металлом. Эти пленки влияют как на деформационное упрочнение, так и на хрупкое разрушение, причем по-разному при различных температурах и степнях деформации, что часто не учитывается современными теориями. Совершенно очевидно влияние этих пленок на  [c.58]

Возможность регулирования газовой или паровой фазы очень важна для воспроизведения условий, существующих при изготовлении и эксплуатации композита. В гл. 10 Бонфилд описывает заметное влияние состава газовой атмосферы на смачиваемость нитрида кремния алюминием, что может служить основой для выбора оптимальной атмосферы изготовления композитов. С другой стороны, Баше [5] приводит результаты исследований совместимости борного волокна, покрытого карбидом кремния, с титаном (волокна нагревали в контакте с порошком титана). Как компонент композита титановая матрица поддерживает крайне низкое давление диссоциации кислорода и азота у поверхностей волокон. Низкая скорость реакции волокон с порошком титана, по-видимому, определяется наличием газа около волокон.  [c.39]


Газ неравновесного состава поступает в конденсатор одноконтурной установки в случае недостаточного времени пребывания на участке контура между реактором и конденсатором, где происходит снижение температуры и давления. Химически неравновесная система в условиях охлаждения содержит избыточное по сравнению с равновесным содержание N0 и О2, которые являются неконден-сирующимися примесями. Однако в отличие от обычных парогазовых смесей при достаточном для завершения рекомбинации времени пребывания в объеме конденсатора неравновесная система N2O4 полностью конденсируется. Очевидно, что наравне с процессами диффузии и конвективного тепло- и массопереноса большое влияние оказывает кинетика химических реакций, протекающих со значительным тепловыделением.  [c.185]

Чтобы определить параметры плазмы, представляющей собой высокотемпературную равновесно реагирующую газовую смесь, прежде всего необходимо найти ее состав. Очевидно, что точность расчета состава будет определяться не только погрешностью вычислительного процесса, но в первую очередь — полнотой учета физических и химических эффектов, имеющих место в реагирующей смеси. Однако полный учет этих явлений затруднен. В то же время для получения результатов с достаточной для инженерных расчетов точностью можно принять следующие допущения в реакции горения участвует все топливо воздух состоит только из азота и кислорода смесь газов, составляющих продукты сгорания, является идеальным газом в исследуемом диапазоне температур и давлений полностью отсутствует термическая ионизация газовых компонент рассматривается однокомпонентпая легкоионизируемая присадка ее влияние на термодинамические параметры газовой смеси учитывается в приближенной форме введением соответствующих поправочных коэффициентов влияние присадки на вязкость и теплопроводность не учитывается а электропроводность рассчитывается методом малых возмущений.  [c.109]

Изменение химического состава гетерофазного сплава в результате сублимации вызывает количественные и качественные изменения в его структурном состоянии. Быстрее всего, конечно, такие изменения наступают в поверхностной зоне материала, но со временем они распространяются на внутренние слои. Исследование влияния вакуумного нагрева [остаточное давление газа изменялось от 67 мкн1м (5-10 ) до 0,133 мкн1м (l 10 мм рт. ст.), а температура от 760° до 980° С] на микроструктуру нержавеющей стали 316 обнаружило значительное изменение фазового состава сплава [398]. Выдержка этой стали при 870° С в течение 3453 ч привела к выделению относительно грубых частиц Х фазы. Первоначально высокая скорость потери марганца — элемента, стабилизирующего аустенит,— явилась причиной появления на ранних стадиях сублимации в припо- верхностной зоне островков феррита, однако дальнейшая выдержка стали 316 в вакууме при 870 и 980° С привела к полному исчезновению феррита. Авторы объясняют повторный переход сплава в у-состояние сочетанием сравнительно низких потерь никеля и больших потерь хрома. Интересно отметить, что при переходе поверхностного слоя образцов в а-состояние скорость сублимации сплава приближалась к скорости сублимации чистого железа.  [c.435]

Безнакальный холодный W-Ва-катод такого состава исследовался в АЭ ГЛ-201 в широком диапазоне давлений буферного газа неона, ЧПИ и потребляемой мощности а также в начальный момент включения холодного АЭ. При давлении неона pNe = 40-50 мм рт. ст. разряд горит диффузно и устойчиво примерно на четверти поверхности катода (1 см ). С увеличением давления неона разряд сжимается и площадь пятна горения уменьшается при pNe = 80-100 мм рт. ст. размер пятна составляет 2-3 мм, при pNe = 200-250 мм рт. ст. — 1-1,5 мм и при давлениях близких к атмосферному — не более 1 мм. Размер катодного пятна оценивался визуально как при горении разряда, так и после разборки приборов — по площади эрозии. Разряд горит стабильно, форма его горения с катода на выходные характеристики влияния не оказывала. Мощность излучения при увеличении давления  [c.48]

В середине XIX века причины движения ракет становятся более понятными. В учебном пособии 0 боевых ракетах (1856 г.) [171] К.И. Константинов пишет Нри зажжении движущего ракетного состава образуются газы, производящие давление во все стороны и устремляющиеся огненною струею из открытой части ракеты. Давления, происходящие на внутреннюю боковую поверхность гильзы, взаимно уничтожаются давление же на часть глухого состава, противоположную выходу газов, ничем не уравновешенное, побуждает ракету к движению по направлению ее длины . И затем он продолжает Устремляющиеся из ракеты газы встречают в воздухе некоторое сопротивление и в этом прежде видели причину движения ракеты. Мнение это не имеет никакого основания, как то, между прочим, доказывает известный физический опыт приведения газами в движение сегнерова колеса в безвоздушном пространстве. Но не менее того сопротивление, которое воздух оказывает истечению газов из ракеты, имеет влияние на ее движущую силу, ибо от упомянутого сопротивления увеличивается упругость газов внутри ракеты .  [c.23]

Холодное орошение оказывает то же влияние на протекание процесса, что и холодное питание. В точке ввода орошения за счет конденсации паров появляется некоторое дополнительное количество орошения. Хотя внутреннее орошение лишь на несколько процентов превышает внешнее орошение, эта разница становится существенной, если флегмовое число велико, а выход продукта мал. Рассмотрим случай, когда расход пара в колонне составляет 550 моль ч и внешнее орошение поддерживается равным 500 моль1ч. Если орошение подается в колонну при температуре кипения, то дополнительная конденсация отсутствует и расход дистиллята составляет 50 моль[ч. Если орошение переохлаждается до 5,0° С, в колонне дополнительно конденсируется 20 моль ч, расход паров в конденсатор сокращается до 530 моль ч я выход продукта снижается до 30 моль1ч. Уменьшение выхода дистиллята вызывает изменение ei о состава, которое в конце концов будет скорректировано регулятором состава, однако во время переходного процесса полу-чается некоторое количество некондиционного продукта. В разделе, посвященном регулированию давления, показано, как при изменении количества инертных газов и температуры охлаждающей воды меняется температура орощения, однако это изменение происходит относительно медленно. В конденсаторах с воздушным охлаждением вследствие быстрого изменения окружающих условий происходят резкие колебания температуры орошения. Для этих условий инженеры фирмы Филипс Петролеум разработали пневматическую аналоговую вычислительную машину и регулятор, обеспечивающие стабилизацию внутреннего орошения. Краткое описание этой системы приводится ниже в качестве примера того, как с помощью относительно простой комбинации стандартных элементов можно значительно улучшить качество регулирования.  [c.374]

Медью ча сго пользуются при цроведении экспериментов по окислению, особенно для проверки основополагающих теоретических положений. Именно поэтому она неоднократно фигурировала в качестве примера в ряде мест (В настоящей монографии, посвященных составу окалины при различных температурах (см. рис. 48), механизму окисления, зависимости скорости окисления от давления газа (см. рис. 18 и 19) и кристаллографической плоскости. Кроме того, вопрос о влиянии высокого давления кислорода на ско.рость окисления меди был исследован Фасселом с сотрудниками [248].  [c.345]

Изучение важнейших физико-химических механизмов в условиях турбулентного течения многокомпонентной реагирующей газовой смеси, ответственных за пространственно-временные распределения и вариации определяющих макропараметров (плотности, скорости, температуры, давления, состава и т.п.), особенно эффективно в сочетании с разработкой моделей турбулентности, отражающих наиболее существенные черты происходящих при этом физических явлений. Турбулентное движение в многокомпонентной природной среде отличается от движения несжимаемой однородной жидкости целым рядом особенностей. Это, прежде всего, переменность свойств течения, при которой среднемассовая плотность, различные теплофизические параметры, все коэффициенты переноса и т.п. зависят от температуры, состава и давления среды. Пространственная неоднородность полей температуры, состава и скорости турбулизованно-го континуума приводит к возникновению переноса их свойств турбулентными вихрями (турбулентный тепло- и массоперенос), который для многокомпонентной смеси существенно усложняется. При наличии специфических процессов химического и фотохимического превращения, протекающих в условиях турбулентного перемешивания, происходит дополнительное усложнение модели течения. В геофизических приложениях часто необходимо также учитывать некоторые другие факторы, такие, как влияние планетарного магнитного поля на слабо ионизованную смесь атмосферных газов, влияние излучения на пульсации температуры и турбулентный перенос энергии излучения и т.п. Соответственно, при моделировании, например, состава, динамического и термического состояния разреженных газовых оболочек небесных тел теоретические результаты, полученные в рамках традиционной модели турбулентности однородной сжимаемой жидкости, оказываются неприемлемыми. В связи с этим при математическом описании средних и верхних атмосфер планет возникает проблема разработки адекватной модели турбулентности многокомпонентных химически реагирующих газовых смесей, учитывающей сжимаемость течения, переменность теплофизических свойств среды, тепло- и массообмен и воздействие гравитационного поля и т.п. Эти проблемы рассматриваются в данной части монографии.  [c.9]


У разных по составу и назначению высоколегированных хромоникелевых сталей указанные процессы в ЗТВ могут развиваться по-разному, но их развитие, как правило, может оказывать отрицательное влияние на свойства и работоспособность сварных соединений, если эти процессы будут активными. Поэтому, хотя рас-смаи риваемые стали свариваются всеми видаами сварки, предпочитать следует такие, при которых тепловое воздействие на свариваемый металл будет наи.меньшим — в среде защитного инертного газа тонкой проволокой, электронно-лучевую и различные способы сварки давлением (шовная, точечная, диффузионная и др.).  [c.277]


Смотреть страницы где упоминается термин Влияние давления и состава газа : [c.265]    [c.75]    [c.82]    [c.202]    [c.351]    [c.376]    [c.313]    [c.159]    [c.14]    [c.259]    [c.42]   
Смотреть главы в:

Коррозия и защита от коррозии  -> Влияние давления и состава газа



ПОИСК



Влияние состава

Газы состав

Давление влияние

Давление газа



© 2025 Mash-xxl.info Реклама на сайте