Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Покрытия карбида кремния

В настоящей работе изложены результаты исследований по нанесению на графит беспористых покрытий карбида кремния из газовой смеси тетрахлорида кремния, водорода и бензола.  [c.131]

Исследования темного карбида кремния на жаростойкость показали его высокие защитные свойства. Так, при нагреве токами высокой частоты образца графита, покрытого карбидом кремния, в течение 10 час. при температуре 1600° С было обнаружено незначительное уменьшение веса образца.  [c.136]


Покрытие карбида кремния на графите образуется только в случае наличия водорода в газовой смеси и при определенном соотношении концентраций тетрахлорида кремния и бензола.  [c.136]

При испытании неотожженного композита Ti—борсик в поперечном направлении трещина обычно проходит через волокна, а не по поверхности раздела (рис. 22). Значит, и в этом композите прочность поверхности раздела больше поперечной прочности волокна. Однако после отжига при 1144 К в течение 1,5 ч этот композит, как и рассмотренный ранее, разрушается по поверхности раздела. Трещины проходят, по-видимому, по зоне взаимодействия или между покрытием (карбидом кремния) и зоной взаимодействия (рис. 23). Тем не менее, как видно из рис. 24, увеличение толщины зоны взаимодействия в результате отжига слабо влияет на поперечную прочность. Эти данные также подтверждают, что поперечная прочность близка к нижнему предельному  [c.214]

Детали двигателя работают в более напряженных температурных режимах, чем элементы планера. Температура вентилятора и передних ступеней компрессора изменяется в пределах от окружающей температуры до 150° С, достигая в задней зоне компрессора 650° С. В указанном диапазоне температур возможно использование большого числа композиционных материалов как полимерных, так и металлических. По-видимому, наиболее эффективно применение композиционных материалов на основе металлических и термостойких полимерных (в частности, полиимидных) матриц, упрочняемых борными или углеродными волокнами. Было обнаружено, что наносимое на борные волокна покрытие карбида кремния исключает взаимодействие между наполнителем и алюминиевой или титановой матрицами в процессе изготовления материала. Рассматривается применение полимерных композиционных материалов (как полиимидных, так и эпоксидных) в корпусах двигателя и редуктора (коробки скоростей).  [c.55]

Интерпретация этих результатов осложняется тем фактом, что на поверхности раздела алюминия 6061 и бора существовала металлургическая связь (рис. 1, б), а между покрытием карбида кремния и матрицей алюминия 6061 (стрелка на рис. 1, в) — механическая связь. Эти композиты были получены методом диффузионной сварки в течение 1 ч приблизительно при 475 и 554 С соответственно. Полагают, что низкая малоцикловая усталостная прочность у композитов, волокна которых имеют покрытия, связана с поведением покрытия Si [23]. Это покрытие обладает предпочтительным направлением кристаллографического роста (111) и вытянутой кристаллической структурой, оба они ориентированы перпендикулярно оси волокна (рис. 1, в). Таким образом, ось волокна, возможно, является направлением относительно низкой прочности покрытия и последнее может служить причиной плохого усталостного поведения в малоцикловой области.  [c.401]


Волокно бора о покрытием карбида кремния 81С.  [c.403]

На рис. 5 показано, какое число п разрывов внутренних волокон на единицу объема образовывалось в современных композитах с волокнами бора или бора, покрытого карбидом кремния, при увеличении числа циклов осевой нагрузки N. Для обоих композитов число разрывов волокон монотонно возрастало с увеличением /V, но в случае волокон с покрытием число п было приблизительно в 3—5 раз больше. Разрывы волокон распределялись хаотичным образом, а усталостные повреждения развивались  [c.408]

Повышают жаростойкость и предотвращают взаимодействие борного волокна с алюминиевой матрицей, нанося на их поверхность покрытия из карбида кремния толщиной 3—5 мкм. Волокна бора, покрытые карбидом кремния, получили название борсик.  [c.269]

Волокна бора обладают ценным сочетанием свойств низкой плотностью (2600 кг/м ), достаточно высокой прочностью (0 = 3500 МПа при модуле Юнга 420 ООО МПа и температуре плавления 2300 °С). Борное волокно интенсивно окисляется на воздухе при 400 °С, а при температурах выше 500 °С интенсивно взаимодействует с алюминиевой матрицей. Повышают жаростойкость и предотвращают взаимодействие борного волокна с алюминиевой матрицей, нанося на их поверхность покрытия из карбида кремния толщиной 3-5 мкм. Волокна бора, покрытые карбидом кремния, получили название борсик.  [c.299]

Самые большие возможности в отношении жесткости и прочности обещают системы титан — бор и титан — бор, покрытый карбидом кремния. Основной проблемой здесь остается контроль технологии изготовления. Природа реакции и допустимые пре-  [c.330]

Серьезным недостатком графита является легкость окислегшя, уже при температурах 520...560 потеря массы составляет 1% за 24 часа, поэтому поверхность графитовых изделий защищают покрытиями (карбид кремния, карбид и нитрид бора толщиной 3 -5 мкм).  [c.139]

Испытания показали, что после 300-кратного нагрева образца со скоростью 200 град./сек. и охлаждения на воздухе покрытие карбида кремния на графите не изменяет своих защитных свойств. Это свидетельствует о том, что покрытия из карбида кремния на графите весьма стойки к тепловым ударам.  [c.136]

Снайд [35] изучал совместимость изготовленных им волокон диборида титана с титаном. Совместимость в данной системе оказалась существенно выше, чем в системе титан —бор, однако в дальнейшем это направление не развивалось под действием ряда факторов. Главный из них — низкая прочность и высокая плотность волокон диборида титана. Поэтому основное внимание стали уделять второму и третьему из перечисленных выше направлений. Разработка покрытий, особенно для высокотемпературных применений, связана с трудностями, поскольку при наличии покрытия вместо одной поверхности раздела появляются две. Однако удачный выбор покрытия, совместимого с упрочнителем, позволяет свести проблему совместимости матрицы с волокном к совместимости матрицы с покрытием. С этой точки зрения волокна бора с покрытием из карбида кремния (торговое наименование борсик ) должны взаимодействовать с титаном так же, как карбид кремния. Значит, поверхность раздела должна удовлетворять тем же гЬизико-химическим требованиям, и в дальнейшем обсуждение может быть ограничено характеристиками композитных систем либо типа матрица — покрытие, либо типа матрица — волокно. В табл. 1 есть примеры системы, в которой волокно защищено покрытием (алюминий — бор, покрытый нитридом бора), и системы, в которой, как полагают, покрытие взаимодействует с матрицей так же, как волокно (система алюминий — карбид кремния, характеризующая поведение системы алюминий — бор, покрытый карбидом кремния).  [c.28]

Возможность регулирования газовой или паровой фазы очень важна для воспроизведения условий, существующих при изготовлении и эксплуатации композита. В гл. 10 Бонфилд описывает заметное влияние состава газовой атмосферы на смачиваемость нитрида кремния алюминием, что может служить основой для выбора оптимальной атмосферы изготовления композитов. С другой стороны, Баше [5] приводит результаты исследований совместимости борного волокна, покрытого карбидом кремния, с титаном (волокна нагревали в контакте с порошком титана). Как компонент композита титановая матрица поддерживает крайне низкое давление диссоциации кислорода и азота у поверхностей волокон. Низкая скорость реакции волокон с порошком титана, по-видимому, определяется наличием газа около волокон.  [c.39]


Потребность в композитных материалах, состоящих из термодинамически несовместимых компонентов, при искусственном объединении которых происходят диффузия через поверхность раздела и сопутствующие вредные эффекты, привела к интенсивной разработке барьерных слоев, предотвращающих диффузию между составляющими композита. Применение воло кон бора, покрытых карбидом кремния (борсик) и нитридом бора для упрочнения алюминиевых сплавов, заметно снизило скорость реакции между волокном и матрицей (гл. 3). Благодаря этому были созданы композиты, прочность которых в условиях повышенных температур сохранялась много дольше. Таким образом, дополнительная стоимость защиты волокон компенсируется улучшением свойств композитов.  [c.48]

Взаимодействие покрытых карбидом кремния борных волокон с титаном исследовали Кляйн и др. [20] на образцах из непрерывной ленты с 30 волокнами, что соответствовало их содержанию в матрице 25 об.%. Методы исследования подобны описанным ранее для системы Ti — В. Исходная толщина покрытия карбида кремния составляла примерно 3,8 мкм. Таким образом, толщина зоны взаимодействия более 4 мкм авидетельствовала о реакции с волокном бора. С этого момента скорость реакции начинает уменьшаться и рост реакционной зоны уже не следует параболическому закону, определенному по данным за короткие промежутки времени. Одновременно в волокне появляются поры.  [c.120]

Хотя прочность при продольном растяжении зависит, главным образом, от класса, к которому принадлежит композитная система (например, псевдопервому или третьему), важную роль играет и другой фактор, а именно, способность волокна за счет собственной пластичности компенсировать образование хрупкого п ро-дукта реакции. Такой продукт определяет разрушение лишь в случае хрупких (упругих) волокон. Примером такой системы, относящейся к третьему классу, является система Ti—В, в которой образуется реакционный слой постоянной толщины с малой деформацией разрушения. Трещины в нем образуются раньше, чем в волокне, а дальнейшее влияние реакционного слоя зависит от его толщины. К этому классу относится и титан, армированный борными волокнами или такими же волокнами с покрытием карбидом кремния, хотя в последнем случае зависимость толщины продукта реакции от условий изготовления может привести к изменению деформации разрушения. В типичной системе псевдопервого класса А1—В продукт реакции, обладающий малой деформацией разрушения, образуется на отдельных участках. Его толщи-  [c.182]

Для измерения критического поверхностного натяжения волокнистых материалов был предложен флотационный метод [67]. За критическую величину поверхностного натяжения волокна принималось поверхностное натяжение жидкости, по достижении которого происходило погружение волокна в жидкость, причем плотность волокна несколько превышала плотность флотационной жидкости. Значения уе органических полимерных волокон и волокон, покрытых полимерами, можно сравнивать с величиной ус, определенной с помощью метода Цисмана [113] (табл. И). Интерпретация экспериментальных данных, полученных для волокон карбида кремния и волокон бора с покрытием карбида кремния, вызывает некоторые затруднения, так как значения ус, полученные двумя указанными методами, существенно различаются. Еще  [c.250]

Поверхности раздела б — между алюш1нием 6061-0 и борными волокнами (стрелки указывают на поверхность Киркендалла) ив — между алю-лшнием 6061-0 и борными волокнами с покрытием карбида кремния 31С (стрелкой показана механическая поверхность раздела между 31С и матрицей) [25].  [c.400]

Сравнение усталостной прочности бороалюминиевых композитов, полученных при 450, 475 и 500 °С, и алюминия, армированного волокнами бора с покрытием карбида кремния (диффузионная сварка при 554 °С) (табл. V, рис. 1, 15—17), приводит к следующим обобщениям [23, 26]  [c.428]

Теперь обратимся к экспериментальным результатам исследования влияния химического взаимодействия на прочность в продольном направлении композиций третьей и псевдопервой группы. В частности, рассмотрим, как влияют изотермические отжиги на прочность в продольном направлении композиций титан—борное волокно, титан—волокно карбида кремния. Все эти композиции относятся к третьей группе. Среди композиционных материалов псевдопервой группы рассмотрим алюминий—борное волокно, алюминий—карбид кремния или волокна бора с покрытием карбида кремния, магний—борное волокно.  [c.76]

К аналогичным выводам можно прийти и при рассмотрении композитов, составленных из металлических матриц и металлических волокон. Здесь в качестве примера рассмотрены следующие композиции рис. 5, в — алюминий — борво-локно, покрытое карбидом кремния рис. 5, г — никель — карбид ниобия (материал получен отверждением в одном направлении) рис. 5,5 — полимерный бетон.  [c.107]

Рис. 5.1. Примеры диаграмм напряжение — деформация, полученных для различных композитов а — эпоксидная смола, армированная стеклотканью с атласным переплетением б — гибридный композит, армированный в одном направлении углеродным волокном и стекловолокном (в качестве матрицы использована эпоксидная смола) в — алюминий, армированный в одном направлении борволокном, покрытым карбидом кремния г — композиция Ni—Nb , застывшая в одном направлении (кривая /), твердый раствор Nb в никеле Ni с весовым содержанием 0,5% (кривая 2) й — полимерный бетон с весовым содержанием песка 20%, СаСОз —40%- Рис. 5.1. Примеры <a href="/info/23901">диаграмм напряжение</a> — деформация, полученных для различных композитов а — <a href="/info/33628">эпоксидная смола</a>, армированная стеклотканью с <a href="/info/63230">атласным переплетением</a> б — <a href="/info/146953">гибридный композит</a>, армированный в одном направлении <a href="/info/39107">углеродным волокном</a> и стекловолокном (в качестве матрицы использована <a href="/info/33628">эпоксидная смола</a>) в — алюминий, армированный в одном направлении борволокном, покрытым карбидом кремния г — композиция Ni—Nb , застывшая в одном направлении (кривая /), <a href="/info/1703">твердый раствор</a> Nb в никеле Ni с весовым содержанием 0,5% (кривая 2) й — полимерный бетон с весовым содержанием песка 20%, СаСОз —40%-
В табл. 6.3 приведены в качестве примера механические свойства композитов, армированных высокопрочными волокнами (углеродным волокном и борволокном) [6.16]. Из приведенных данных видно, что у этих материалов ударные вязкости оказываются сравнительно низкими. На рис. 6.24 показано изменение ударной вязкости в зависимости от содержания стекловолокна в различных композитах, составленных на основе термопластичных пластмасс [6.17]. Пример металлического композита приведен на рис. 6.25. Это алюминий, армированный борволокном, покрытым карбидом кремния [6.18]. Для него можно найти, как влияет на ударную вязкость направление волокна в зависимости от направления удара.  [c.167]


Рис. 6.25. Ударная вязкость металла, армированного волокном (волокно — борволокно, покрытое карбидом кремния, матрица — алюминий). 1 — образец LT 2 — образец ТТ 3 — образец TL. Рис. 6.25. <a href="/info/64486">Ударная вязкость металла</a>, <a href="/info/560240">армированного волокном</a> (волокно — борволокно, покрытое карбидом кремния, матрица — алюминий). 1 — образец LT 2 — образец ТТ 3 — образец TL.
Если нет соответствующего знака, это означает, что использовалось борво-локно диаметром 0,012 см. d) Борволокно, покрытое карбидом кремния.  [c.196]

Хотя цаблюдается разброс значений, типичный для углеродных волокон, нужно отметить, что модуль упругости волокон, покрытых карбидом кремния, выше модуля упругости углеродных волокон без покрытия. -  [c.211]

Рис. 92. Разрыв углеродного волокна с никелевым покрытием (промежуточное покрытие — карбид кремния), Х9000 Рис. 92. Разрыв <a href="/info/39107">углеродного волокна</a> с <a href="/info/6714">никелевым покрытием</a> (<a href="/info/271155">промежуточное покрытие</a> — карбид кремния), Х9000
Таким образом, показана возможност ь созданий армирующих компонентов чдля композиционных материалов путем никелирования поверхности углеродных волокон, предварительно покрытых карбидом кремния. Для никелирования армирующих компонентой рекомендован раствор, содержащий гексагидрат хлорида, никеля, хлорид аммония, гипофосфит натрия, лимоннокислый на1грЙй и сульфид свинца. Показано, что технологический процесс нанесения никелевого покрытия методом химического восстановления на прочность нсходнЬ1х волокон не влияет. Установлено резкое падение прочности волокна при Толщине покрытия из кар бйда кремния более 0,010 мкм.  [c.213]

Рис. 8.4. Характеристики композиционных материалов на основе алюминия и борных волокон при испытании на Ползучесть (BORSI - борное волокно, покрытое карбидом кремния). Рис. 8.4. Характеристики композиционных материалов на основе алюминия и борных волокон при испытании на Ползучесть (BORSI - <a href="/info/38690">борное волокно</a>, покрытое карбидом кремния).
Композиционные материалы из сплетенных углеродных волокон, подвергнутые пиролизу после пропитки смолой или другим углеродосодержащим наполнителем, получили известность под названием углерод-углеродные композиционные материалы (УУКМ). Покрытые карбидом кремния Si и пропитанные стеклом УУКМ с успехом применялись для изготовления носового обтекателя и передних кромок плоскостей космического корабля многоразового использования типа "Спейс Шатл." Эти  [c.340]

Из этих двух исследований было сделано заключение, что общий вид предложенного Меткалфом [16] соотношения между характеристиками разрушения и толщиной реакционного слоя является правильным. Кроме того, теория оказалась в равной степени хорошо применимой и к другой реакцианноспособной системе титан — бор, покрытый карбидом кремния. Предсказанное значение разрушающей деформации для продукта реакции титана с кремнием составляло 4500 мкдюйм/дюйм (0,45%) (см. табл. 2). Превосходное соответствие с этой величиной иллюстрирует рис. 7. i  [c.286]

Борсик — зарегистрированное торговое наименование разработанного фирмой ип11е(1 Air raft борного волокна, покрытого карбидом кремния.  [c.286]

Полное ухудшение состояния композиционных материалов типа титана, упрочненного волокнами борсика, приводит согласно рис. 7 к снижению разрушающей деформации до 4500 мкдюйм/дюйм (0,45%). Данные табл. 2 свидетельствуют, что эта деформация равна ожидаемой деформации разрушения силицида титана, и подтверждают представление о том, что разрушение таких композиционных материалов контролируется свойствами промежуточного соединения. При данной деформации напряжение в волокне борсика равно 270 ООО фунт/кв. дюйм (189,8 кгс/мм ) или 315 ООО фунт/кв. дюйм (221,5 кгс/мм ), если в результате реакции с волокнами, покрытыми карбидом кремния, образуется силицид титана (вследствие более высокого модуля упругости).Отмеченные значения прочности близки к соответствующим величинам для партий волокна, полученных на первых этапах освоения технологии. Из результатов некоторых прежних работ следует вывод о том, что либо карбид кремния образует менее вредные продукты, либо скорость их образования меньше, чем в случае реакции с бором. Другая высказанная по этому поводу точка зрения состоит в том, что покрытие карбида кремния на боре (борсик) является жертвенным и предотвращает какое-либо ухудшение свойств до завершения реакции, после чего может начаться взаимодействие титана с лежащим под покрытием бором.  [c.308]

В табл. 8 обобщены сравнительные данные для композицион-пых материалов, изготовленных с применением основных армирующих волокон. Прочность и жесткость оценены по сравнению со свойствами типичного титанового сплава Ti—6% А1—4% V. В ряде случаев они сравнены с перспективными свойствами, дости-н ение которых предполагается, если будут преодолены производственные трудности. Высокотемпературная удельная прочность относится к 600—1200° F (316—649 С), к этому же температурному интервалу относится характеристика стабильности. Четыре последних армирующих материала — бор и бор, покрытый карбидом кремния, карбид кремния и окись алюминия — располагаются в порядке возрастания плотности и снижения прочности. Однако потенциальная прочность при комнатной температуре у композиционных материалов, изготовленных из первых трех видов волокна, примерно одинакова и оценена одинаковым показателем. Значительно более высокая плотность окиси алюминия (4 г/см ) отрицательно влияет на потенциальную прочность и нсесткость композиционных материалов, изготовленных с этим армирующим волокном.  [c.330]


Смотреть страницы где упоминается термин Покрытия карбида кремния : [c.139]    [c.429]    [c.435]    [c.229]    [c.237]    [c.90]    [c.399]    [c.212]    [c.115]    [c.202]    [c.309]    [c.316]    [c.316]    [c.330]    [c.330]   
Композиционные материалы с металлической матрицей Т4 (1978) -- [ c.425 ]



ПОИСК



Карбид кремния

Карбиды

Кремний

Покрытия кремния



© 2025 Mash-xxl.info Реклама на сайте