Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фазы и структура в металлических сплавах

В основном коррозия протекает равномерно, когда система металл — среда гомогенна, т. е. металл однороден по составу и среда при таких определенных параметрах, как состав, концентрация кислорода, pH, температура, скорость потока и др., равномерно действует на всю металлическую поверхность. Гетерогенность системы (неоднородность металла или среды либо металла и среды одновременно) приводит к локализованному разрушению с интенсивностью, зависящей от самой системы. Шероховатость поверхности металла или сплава, наличие разных фаз и различие в механической или термической обработке — вот причины, способствующие локализованному разрушению. Металлографическое травление для исследования структуры металла основано на том, что по границам кристаллитов разрушение происходит быстрее, чем внутри протравленная поверхность имеет темную решетку. Подобные рассуждения справедливы применительно к зернам, ориентация которых такова, что кристаллы, корродирующие с максимальной скоростью, находятся на поверхности. Неоднородность металла или среды может привести к разрушению на одной поверхности  [c.12]


Промежуточные фазы- многокомпонентные кристаллические фазы, при образовании которых возникает кристаллическая решетка, отличающаяся от кристаллических решеток исходных компонентов. Такие фазы имеют место при образовании химических соединений, например, интерметаллических (интерметаллидов) - соединений разных металлов. Большое число химических соединений, образующихся в металлических сплавах, не подчиняется законам валентности и не имеет постоянного стехиометрическоГо состава. Они образуют различного рода промежуточные фазы. На основе химического соединения могут возникать твердые растворы, обусловленные дефектами структуры. Появление стабильных промежуточных соединений приводит к сужению области первичных твердых растворов. Вероятность образования таких соединений в сплавах будет тем больше, чем более электроотрицательным является один из элементов и электроположительным - другой.  [c.63]

При использовании оптического микроскопа структуру металла можно изучать при общем увеличении от нескольких десятков до 2000—3000 раз. Микроанализ позволяет характеризовать размеры и расположение различных фаз, присутствующих в сплавах, если размеры частиц этих фаз не менее 0,2 ц. Многие фазы в металлических сплавах имеют размеры 10 - ,д.  [c.99]

Область применения. Многие фазы в металлических сплавах и в большинстве случаев также и зерна (кристаллиты) имеют размеры 10 - — 10 см и обнаруживаются при тех увеличениях, которые создает современный металлографический микроскоп. В таких случаях рентгеновский анализ дает, как уже указывалось выше, необходимые сведения о природе (атомном строении) соответствующих фаз, но не указывает характер распределения этих фаз в металле. Более того, микроанализ даже при применении во многих подобных случаях очень больших увеличений выявляет отдельные детали строения фаз, но не дает общего представления о структуре сплава.  [c.53]

Сопоставление различных типов химической связи показывает, что связь осуществляется внешними валентными электронами и носит различный характер в зависимости от поведения этих электронов. Одновременно выяснилось, что в ряде твердых веществ связи не осуществляются только по одному из указанных предельных типов. Такие вещества чаще всего встречаются в металлических сплавах. Следует предположить, что у подобных веществ имеет место наложение нескольких типов связей. Примером подобного твердого вещества может служить 7-фаза системы алюминий—магний [72]. Вероятно, и металлический марганец в форме а, имеющий такую же структуру, также должен быть причислен к веществам со смешанным характером связи. Природа связи в кристаллических решетках определяет свойства данного вещества.  [c.99]


Доказано, что в результате образования непрерывных и ограниченных твердых растворов термически стабильных соединений повышается прочность межатомной связи этих фаз. В результате образования гетерогенных структур с мелкодисперсным выделением избыточных фаз из пересыщенных твердых растворов создаются дополнительные условия для упрочнения сплавов. Эти факторы, повышающие жаропрочность металлов, объясняют то, что на диаграммах состав - жаропрочность при определенных интервалах температур наблюдаются максимальные значения жаропрочности. Эти максимальные значения в металлических системах расположены вблизи границы предельного насыщения.  [c.47]

При невыполнении указанных выше условий образования непрерывных твердых растворов и при заметной концентрации компонент в сплавах возникают промежуточные фазы. Их отличительные особенности — отличие структуры фаз от структуры исходных компонент и большая вариабельность концентрации компонент, обусловленная характерными чертами металлической связи.  [c.173]

Если с помощью уравнений (16) и (17) рассчитать величины Оа, то можно обнаружить, что при любых значениях Уд (за исключением случая исчезающе тонких оксидных пленок) получаются значения порядка единиц и десятков мегапаскаль, а в отдельных случаях — до тысяч мегапаскалей. Столь высокие напряжения должны были бы неизбежно вызывать разрушение подложек и оказывать существенное влияние на поверхностное растрескивание, однако в действительности разрущения массивных образцов под действием рассматриваемых напряжений не наблюдается. Факт получения аномально высоких значений при использовании стандартных уравнений для напряжений роста с определенностью свидетельствует о том, что сами эти уравнения недостаточно хорошо описывают реальные системы. При высоких температурах может происходить аккомодация деформаций, связанных с ростом оксида, путем локализованного пластического течения в сплаве или даже в самом оксиде, что приведет к снижению напряжений в обеих фазах до уровня напряжений пластического течения при данной температуре. Одна из основных причин неадекватности уравнений, описывающих напряжения роста, состоит в том, что в них неявно предполагается когерентность межфазной границы между окислом и металлической подложкой. Это означает, что имеет место либо эпитаксия, либо, по крайней мере, когерентное согласование кристаллических решеток фаз, расположенных по обе стороны границы, причем различия атомных объемов должны быть скомпенсированы за счет согласующихся деформаций и напряжений. Хотя определенная степень когерентного согласования на самых ранних стадиях окисления вполне возможна, все же толстые пленки окалины, кристаллическая структура и химический состав которых так сильно отличается от структуры и состава металлов, скорее всего будут отделяться от подложек некогерентной межфазной границей. В этом случае расчеты оа нельзя проводить с помощью уравнений (16) и (17). В действительности аккомодация даже очень существенных различий атомных объемов должна осуществляться в основном в некогерентной границе, в результате чего напряжения роста как в оксиде, так и в подложке будут невелики.  [c.30]

Тепло- и электропроводность сплавов в твердом состоянии зависит от их состава и структуры. Для эвтектических систем эта зависимость графически изображается прямой линией, соединяющей точки на диаграмме состояния системы, отвечающие при выбранной температуре электро- или теплопроводности соответствующих фаз, составных частей механической смеси (чистых металлов, предельных твердых растворов, химических соединений). Образование твердого раствора сопровождается понижением тепло- и электропроводности, и изменение этих свойств в зависимости от состава представляет собой вогнутую кривую [19]. У жидких металлических сплавов эти свойства являются более сложной функцией состава.  [c.8]

Строение металлических сплавов зависит от того, в какие взаимодействия вступают компоненты, их образующие. Под структурой, как уже указано ранее, понимают форму, размеры и характер взаимного расположения фаз в сплаве. Структура сплава выявляется микроанализом.  [c.42]


Большинство используемых в технике металлических материалов являются многофазными. Поскольку растворимость компонентов один в другом с температурой меняется, в этих материалах во время термоциклирования происходят процессы растворения и выделения фаз, вследствие чего структура, свойства и размеры тел испытывают изменения. На развитие процессов растворения и выделения фаз влияют и термические напряжения, возникающие при интенсивных сменах температуры тела, и дефекты атомно-кристаллического строения. В многокомпонентных сплавах термо-циклирование сопряжено с перераспределением компонентов между фазами, формированием метастабильных и стабильных состояний.  [c.79]

Поверхности раздела в кристаллах — границы зерен и субграницы, границы фаз, внешняя поверхность — какова бы ни была их физическая модель являются средоточием структурных дефектов (дислокаций, избыточных вакансий) и, следовательно, создают пути облегченной диффузии. Аналогичное влияние должны оказывать нарушения, возникающие в результате пластической деформации, облучения частицами высоких энергий, фазовых превращений и растворения чужеродных атомов. Диффузия в связи с особенностями тонкой структуры металла определяет во многих случаях кинетику сложных процессов, изменение структуры и в конечном счете изменение свойств металлического сплава.  [c.118]

Процессы старения наблюдаются в большой группе широко применяемых металлических сплавов наиболее подробно изучено старение алюминиевых сплавов. Общий вопрос заключается в следующем каковы пути перехода от пересыщенного твердого раствора к равновесию Если после охлаждения с высоких температур твердый раствор оказывается в пересыщенном состоянии, то в конечном счете должно произойти выделение фаз и образование равновесной структуры, т. е. отвечающей равновесной диаграмме состояния. Однако процесс обычно идет сложным образом, так как, кроме фактора химического равновесия, в процесс выделения вмешиваются факторы, связанные с упругой и с поверхностной энергией. Существенное влияние на ход процесса оказывают структура металла и кинетические условия, связанные с диффузионной подвижностью атомов. В связи с этим часто возникают промежуточные состояния метастабильного равновесия, в определенных условиях достаточно устойчивые [185- 188].  [c.216]

Определение твердости и особенно микротвердости позволяет исследовать механические свойства отдельных фаз, присутствующих в структуре металлических сплавов.  [c.91]

Предположительно зарождение аморфной фазы происходит на поверхности раздела интерметаллид—матрица, так как именно здесь возникает градиент свободной энергии вследствие повышенной концентрации дефектов на границе. Это приводит к выравниванию свободной энергии интерметаллидной фазы и аморфного сплава от периферии к центру частиц. На конечной стадии процесса предполагается полная аморфизация материала. Расчеты [509] энтальпий и свободной энергии систем Со—Сг, Ni—Сг, Fe—Сг основывались на неравенстве Гиббса—Богомолова и потенциале взаимодействия заряженных несжимаемых сфер Юкавы. Расчетные данные удовлетворительно согласовались с экспериментальными, но такой подход не лишен спорных моментов и не объясняет, почему при МЛ металлических порошков происходит аморфизация. При рассмотрении же последовательности возникновения новых фаз, определяемой энергией Гиббса или изобарно-изотермическим потенциалом, становится ясно, что структуры, наиболее предпочтительные в термодинамическом отношении, будут и наиболее устойчивыми.  [c.314]

В качестве матрицы в этих материалах используют никель и его сплавы с хромом ( 20 %) со структурой твердых растворов. Сплавы с хромоникелевой матрицей обладают более высокой жаростойкостью. Упрочни-телями служат частицы оксидов тория, гафния и др. Временное сопротивление в зависимости от объемного содержания упрочняющей фазы изменяется по кривой с максимумом. Наибольшее упрочнение достигается при 3,5 - 4 % НЮ2 (<Тв = 750. .. 850 МПа (т / рд) = 9. .. 10 км й = 8. .. 12 %). Легирование никелевой матрицы W, Ti, А1, обладающими переменной растворимостью в никеле, дополнительно упрочняет материалы в результате дисперсионного твердения матрицы, происходящего в процессе охлаждения с температур спекания. Методы получения этих материалов довольно сложны. Они сводятся к смешиванию порошков металлического хрома и легирующих элементов с заранее приготовленным (методом химического осаждения) порошком никеля, содержащим дисперсный оксид гафния или другого элемента. После холодного прессования смеси порошков проводят горячую экструзию брикетов.  [c.443]

Металлические сплавы обмениваются с солевой средой ионами всех металлов, входящих в их состав. Если прилегающие друг к другу поверхностные слои металлической и солевой фаз находятся в термодинамическом равновесии, то соотношения активности их компонентов в обеих фазах должны быть равными. Более электроотрицательные компоненты сплавов переходят в расплав в относительно больших количествах. Происходит селективное обеднение ими поверхностного слоя сплава. При этом будет меняться его состав и структура. Скорость селективного удаления более активного компонента сплава определяется скоростью диффузии в твердой металлической фазе. В большинстве случаев лимитирующей является диффузия по границам зерен, а не по их объему.  [c.381]

Компонентами называют элементы (металлы или металлоиды), образующие металлический сплав системой — группу элементов, входящих в сплав фазой — однородную часть системы, т. е. сплава, состоящего из нескольких элементов. Фаза отделена от другой части системы поверхностью раздела, при переходе через которую структура или химический состав сплава изменяются скачкообразно. Фазой могут быть чистые металлы, жидкие или твердые растворы и химические соединения.  [c.11]


Структурное состояние металлов и сплавов влияет на их электрические и магнитные характеристики. Благодаря этому оказывается возможным контролировать не только вариации химического состава, но и структуру металлов и сплавов, а также определять механические напряжения в них. Широко применяют вихретоковые измерители удельной электрической проводимости и другие приборы для сортировки металлических материалов и графитов по маркам (по химическому составу). С помощью электромагнитных приборов контролируют качество термической и химико-термической обработки деталей, состояние поверхностных слоев после механической обработки (шлифование, наклеп), обнаруживают остаточные механические напряжения, выявляют усталостные трещины в металлах на ранних стадиях их развития, обнаруживают наличие а-фазы и т. д.  [c.92]

Коррозионная стойкость металлических сплавов зависит не только от химического состава сплава, но и от его структуры и, следовательно, от свойств образующихся в сплаве фаз и структурных составляющих, от величины поверхности, формы и характера распределения последних, а также от напряжений, возникающих в сплаве, и от состояния его поверхности.  [c.45]

Определение твердости и особенно микротвердости позволяет исследовать механические свойства отдельных фаз, присутствующих в структуре металлических сплавов. Большую роль определения твердости и электропроводности сплавов сыграли при исследовании Н. С. Курнаковым природы твердых растворов.  [c.52]

Физические и химические методы, позволяющие судить о превращениях, протекающих в тех или иных металлических сплавах, существенно дополняют данные структурного исследования. Они позволяют определять изменения состояния металлов, которые не удается отметить структурными методами (в частности, когда превращения, протекающие в них, приводят к изменению электронной структуры атомов металлов). Измерение электрического сопротивления позволяет указать природу образующихся новых фаз в металле и т. д.  [c.8]

Основное преимущество применения метода микротвердости в металловедении — возможность изучения свойств малых объемов материалов, например отдельных фаз и структурных составляющих металлических сплавов. В настоящее время имеется больщое количество работ по исследованию методом микротвердости структур металлов, в частности, облученных нейтронами. В данной работе сделана попытка кратко обобщить результаты, относящиеся к этому вопросу.  [c.236]

Фазовыми превращенрмми второго рода называются превращения, при которых плотность и термодинамические характеристики изменяются непрерывно, а скачок претерпевают производные термодинамических функций по давлению и температуре, например, теплоемкость при постоянном давлении, сжимаемость и т.д. Теплота фазового превращения второго рода равна нулю. К таким фазовым превращенрмм относятся превращение антиферромагнетиков в парамагнетики, переход гелия в сверхтекучее состояние и др. Причиной фазовых превращений является изменение стабильности фаз в зависимости от внешних воздействий. При любом фазовом превращении в твердом состоянии происходит перестройка атомной структуры системы. В металлических сплавах фазовые превращения в твердом состоянии сопровождаются относительно небольшими изменениями объема. Пренебрегая этими малыми объемными изменениями, можно использовать свободную энергию для анализа закономерностей фазовых превращений в металлах и сплавах.  [c.49]

Обычно процесс фазового превращения происходит столь медленно., что его можно считать равновесным. Однако возможны случаи чрезвычайно быстрых превращений с образованием неравновесных структур. Известно образование мартенситной фазы при быстром охлаждении (закалке) стали. В стали, имеющей в начале, т. е. при высокой температуре, аустенитную структуру с гранецентрированной кубической (ГЦК) решеткой, возникает мартенситная структура с тетрагональной объе,мно-центрированной кубической (ОЦК) решеткой. Л артенситные превращения наблюдаются и в других металлических сплавах, в которых возможны структуры с ГЦК или ОЦК и гексагональной плотно  [c.238]

Некоторые из новых литейных сплавов на основе алюминия испытывают в условиях кристаллизации под поршневым давлением. Одним из таких сплавов является сплав АЛЗМ, содержащий 3,0—3,67о Si 0,15— 0,30% Mg 3,5—4,5,%i Си 0,05—0,30% Ti, остальное алюминий. Из этого сплава изготовляли слитки (Д = = 96 мм) при кристаллизации под поршневым давлением 340 МН/м [5]. Установлено, что условия кристаллизации оказывают большое влияние на структуру слитков. При литье в сухую песчаную форму и кристаллизации под атмосферным давлением наблюдается крупнозернистая структура твердого раствора с грубыми выделениями эвтектики по границам зерен, а в процессе кристаллизации под поршневым давлением в металлической прессформе измельчение зерен твердого раствора и включений избыточных фаз.  [c.122]

Исследования показывают, что для чугунов второй группы, содержащих 10—15% Сг, металлическая основа представляет собой в литом состоянии а-фазу (продукты распада аустенита) И частично остаточный метастабильный аустенит. Карбидная эвтектика чугунов этой группы имеет пластинчатое строение. По структурному составу карбидная фаза содержит два типа карбидов орторомбический цементит (Fe, Сг)зС и тригональимй карбид (Сг, Ре)7Ся. Описанные изменения в структуре чугунов, легированных 10—15,% Сг, обуславливают рост прочности, пластичности и износостойкости этой группы сплавов.  [c.31]

Лит. Хачатурян А. Г., Теория фазовых превращений и структура твердых растворов, М., 1974 Чуистов К. В., Старение металлических сплавов. К., 1985. В. А. Финкелъ. МОДУЛЯТОРЫ СВЕТА — устройства для управления параметрами световых потоков (амплитудой, частотой, фазой, поляризацией). Простейшие амплитудные М. с.— механич. прерыватели светового луча, в качестве к-рых используют вращающиеся и колеблющиеся заслонки, призмы, зеркала, а также вращающиеся растры. Однако быстродействие и надёжность таких М. с. невелики. Наиб, широкое практич. применение получили М. с. на основе физ. эффектов, при к-рых внеш. поля меняют оптич. характеристики среды, таких, как влектрооптические Поккельса эффект и Керра аффект, магнитооптический Фарадея эффект, фотоупругость и сдвиг края полосы поглощения Келдыша — Франца эффект).  [c.179]

Таким образом, основываясь на данных исследования свойств расплавов железа, железо — углерод и железо — углерод—кремний, следует жидкий чугун характеризовать как дисперсную систему с коллоидной микронеоднородностью, в которой присутствуют группировки с наследственной структурой сплава и графитные образования. Диспергирование фаз при температуре металлургических процессов всегда термодинамически выгодно вследствие возрастания конфигурационной энтропии. Диспергированные фазы постепенно растворяются в десперсионной фазе и тем быстрее, чем выше температура расплава. Термовременная обработка синтетического чугуна является методом управления степенью дисперсности частиц графита и однородности металлического расплава.  [c.129]

При больших переохлаждениях образуются неравноосные и разветвленные кристаллы. Этому способствуют примеси. В сплавах рост кристаллов может контролироваться не переходом атомов через межфазную поверхность, а диффузионной доставкой их к этой поверхности. Особенно это важно для твердофазных превращений, сопровождающихся диффузионным перераспределением компонентов между фазами. В зависимости от переохлаждения (пересыщения) в этих сплавах формируются разнообразные структуры [129, 330]. В пересыщенных твердых растворах различных металлических систем при определенных условиях происходит  [c.41]


Памятью формы называют специфическое свойство некоторых металлических сплавов, которое состоит в восстановлении деформаций, сообщенных материалу при температуре ниже некоторой переходной, в результате его нагревания до температуры выше переходной. Указанное свойство определяется особенностями кристаллической структуры и фазовых трансформаций этих сплавов при изменениях термонапряженного состояния. Под фазовьши трансформациями при этом понимают переход исходной (условно ее можно назвать высокотемпературной) фазы в мартенситную (низкотемпературную) фазу - мартенсит - при понижении температуры, и также обратный переход мартенсита в исходную фазу при повышении температуры. Мартенсит (в честь немецкого металлурга Мартенса) - метастабильная фаза металла или сплава, получаемая охлаждением от температуры выше переходной, характеризующаяся игольчатой (пластинчатой) кристаллической микроструктурой. Помимо охлажден сплава напряжениями.ия мартенситный переход (в определенном диапазоне температур) может быть инициирован приложенными к образцу  [c.247]

В основе обозначения — химический состав для обозначения структур простых веществ (элементов) используют букву А (А1 — г, ц. к., А2 — о. ц. к., A3 — г. п., A4—кубическая типа алмаза и т. д.), для обозначения бинарных соединений равноатомного состава XY — букву В, для соединений XY — букву С, для пУт — букву О для фаз металлических сплавов в свое время было введено обозначение L (от немецкого Legierungen) цифры не имеют специального содержания и отражают хронологическую последовательность учета данного структурного типа дополнительная буква в индексе первоначально носила характер временного обозначения.  [c.101]

Изучение электрохимического поведения металла при постоянном значении потенциала может быть очень полезным также и в других случаях, кроме исследований пассивности, например при металлографическом и фазовом анализах металлического электрода [83—85]. Различие в электрохимическом поведении отдельных фаз в сплаве, как показано на рис. 28, дает возможность подоб-брать потенциалы, при которых будет происходить избирательное травление только одной фазы. Таким образом, травление при конт-тролируемом потенциале позволяет определить структуру сплава, а также выделить отдельную фазу из сплава и изучить ее при помощи различных других методов — рентгеноструктурного анализа, электронной микроскопии (фазовый анализ).  [c.48]

Зародыши изотермического превраш ения могут возникнуть не только по границам, но и внутри исходных зерен. Однако, поскольку возникновение зародышей внутри зерен активируется значительно труднее, оно происходит только при больших степенях переохлаждения 2). В этих условиях возможно образование дисперсных частиц выделяющейся фазы внутри матрицы другой фазы. Получающиеся при этом микроструктуры обнаружены во многих видах металлических сплавов типичным примером такой структуры является бейнит на фиг. 12, а. Здесь приближение к геометрическому равновесию происходит обычно быстрее, чем в пластинчатых микроструктурах. Например, структура сферо-идизированного карбида (фиг. 12,6) может быть получена из бей-нита при 700° С за 1 или 2 час по сравнению с 10—15 час, необходимыми для получения такой же структуры из перлита.  [c.416]

При травлении чугунов хорошо выявляется структура металлической основы фосфидная эвтектика не травится. Для кремнистых чугунов рекомендуется 2%-ный раствор кислоты в амиловом спирте. Для разделения цементита и фосфида в фосфидной эвтектике шлиф следует сначала слегка протравить 3%-ным раствором азотной кис-лоты в этиловом спирте в течение 10—15 сек, затем быстро (за 3—5 мин) нагреть до 250—350° С и быстро охладить в ртутной ванне. В результате фосфид окрашивается в более темный цвет по сравнению с цементитом. Для разделения карбидных фаз в сплавах железо — хром — углерод рекомендуется после травления 2%-ным раствором поместить шлиф в печь при 520° С и после 25-мин выдержки охладить на металлической плите. В результате продукты распада аустенита получаются голубовато-серыми, орторомбический карбид (Fe, Сг)зС окрашивается в кирпичный цвет, тригональный карбид (Fe, rjj s остается светлым.  [c.6]

Металлические сплавы обмениваются с солевой средой ионами всех металлов, входящих в их состав. В условиях стационарной диффузии, когда пршюгающие друг к другу поверхностные слои металлической и солевой фаз находятся в термодинамическо.м равновесии, соотношения активностей компонентов в той и другой становятся равными. Следовательно, более электроотрицательные компоненты сплавов переходят в электролит в относительно больших количествах, чем благородные. Происходит селективнее обеднение ими новерхностного слоя сплава. При этом может меняться его фазовый состав и структура [30, 321—327], Как было пока-  [c.186]

Особый интерес представляют покрытия из никель-алюминие-вых порошков, которые в процессе плазменного напыления образуют алюминиды никеля, отличающиеся высокой твердостью и жаростойкостью. В одних из первых работ [362—364], посвященных этому типу покрытий, рассмотрены некоторые особенности формирования никель-алюминиевых покрытий и их свойства. Напыление проводили порошком алюминия, частицы которого были покрыты слоем никеля. Обычно соотношение между количеством алюминия и никеля нужно выбирать из расчета получения в процессе формирования покрытия фазы NiAl, отличающейся наиболее высокими защитными свойствами среди других алюминидов никеля. Покрытие может быть успешно нанесено на стали различных марок, алюминиевые сплавы, титан, ниобий, тантал, молибден и другие металлические материалы. Покрытие характеризуется высокой сплошностью и прочностью сцепления с основой более 200 кПсм . Твердость покрытия достигает 75 HRB. Защитные свойства покрытий иллюстрируются следующими примерами при толщине до 0,25 мм оно защищает молибден от окисления при 1020° С на воздухе более 200 ч, выдерживает многократный циклический нагрев до 980° С и сохраняет свою структуру и высокую жаростойкость вплоть до 1500—1600° С. Среди особо ценных свойств покрытия следует отметить хорошее сопротивление расплавам жидких стекол различных марок. В связи с этим оно нашло применение для защиты стеклоформующих инструментов и оснастки [364].  [c.333]


Смотреть страницы где упоминается термин Фазы и структура в металлических сплавах : [c.85]    [c.78]    [c.22]    [c.33]    [c.9]    [c.129]    [c.165]    [c.26]    [c.18]    [c.181]    [c.106]    [c.235]    [c.182]   
Смотреть главы в:

Материаловедение Учебник для высших технических учебных заведений  -> Фазы и структура в металлических сплавах



ПОИСК



Аморфные фазы металлических сплавов и их атомная структура

Металлический сплав

П фазы

Структура металлическая

Фазы в металлических сплавах

Фазы и структуры



© 2025 Mash-xxl.info Реклама на сайте