Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Границы некогерентные

Зародыши обычно образуются на границах зерен и субзерен, в скоплениях дислокаций, включениях, порах, что связано с уменьшением затрат на приращение поверхностной энергии. Распад также интенсифицируется после деформации, которая повышает плотность дислокаций. При медленном охлаждении и малой степени переохлаждения образуются близкие к равновесию стабильные фазы с некогерентными границами раздела. Для них характерно гетерогенное зарождение на высокоугловых границах зерен и скоплениях вакансий (кластерах). В результате возможно образование сетки выделяющейся фазы по границам зерен.  [c.498]


Прочность и твердость сплава с увеличением продолжительности старения, как правило, вначале возрастают, достигают максимума, а затем снижаются (рис. 13.8). Чем выше температура старения, тем скорее достигается этот максимум. Дальнейшее снижение прочностных свойств связано с перестариванием. Последнее вызвано коагуляцией образовавшихся выделений, которая приводит к укрупнению частиц фаз и уменьшению их числа в единице объема. Другой процесс при перестаривании — переход метастабильных фаз в стабильные и замена когерентных границ раздела некогерентными. При достаточно низких температурах старения процесс перестаривания не достигается. Упрочнение при этом развивается непрерывно с затуханием во времени.  [c.499]

В [5] отмечается, что вследствие дис )фузии водорода в металл происходит разрыв некогерентных границ матрица-включение с образованием микротрещин, давление водорода в которых достигает 200-400 МПа, что сопоставимо с пределом текучести низкоуглеродистых конструкционных сталей. Под воздействием внутреннего давления происходит рост и слияние микротрещин с последующим разрушением металла. Растрескивание стали начинается при концентрации водорода 0,1-10 ppm и протекает при температуре от минус 100 до 100 С. В [4, 5] исследовано влияние парциального давления сероводорода на скорость коррозии и водородное расслоение стали. Последнее активно начинается при парциальном давлении серо-  [c.12]

Торцовые границы двойника, заканчивающиеся внутри зерна или на его границах, являются некогерентными.  [c.132]

Известно, что между атомами на границе матрица — двойник имеется когерентная связь. Когерентные границы двойника обладают пониженной поверхностной энергией, по сравнению с поверхностной энергией на обычных некогерентных границах. Вследствие малой величины поверхностной энергии на границе двойник — матрица для двойников характерна большая устойчивость [3]. Очевидно, что выявление двойников деформации в ме-  [c.87]

Если с помощью уравнений (16) и (17) рассчитать величины Оа, то можно обнаружить, что при любых значениях Уд (за исключением случая исчезающе тонких оксидных пленок) получаются значения порядка единиц и десятков мегапаскаль, а в отдельных случаях — до тысяч мегапаскалей. Столь высокие напряжения должны были бы неизбежно вызывать разрушение подложек и оказывать существенное влияние на поверхностное растрескивание, однако в действительности разрущения массивных образцов под действием рассматриваемых напряжений не наблюдается. Факт получения аномально высоких значений при использовании стандартных уравнений для напряжений роста с определенностью свидетельствует о том, что сами эти уравнения недостаточно хорошо описывают реальные системы. При высоких температурах может происходить аккомодация деформаций, связанных с ростом оксида, путем локализованного пластического течения в сплаве или даже в самом оксиде, что приведет к снижению напряжений в обеих фазах до уровня напряжений пластического течения при данной температуре. Одна из основных причин неадекватности уравнений, описывающих напряжения роста, состоит в том, что в них неявно предполагается когерентность межфазной границы между окислом и металлической подложкой. Это означает, что имеет место либо эпитаксия, либо, по крайней мере, когерентное согласование кристаллических решеток фаз, расположенных по обе стороны границы, причем различия атомных объемов должны быть скомпенсированы за счет согласующихся деформаций и напряжений. Хотя определенная степень когерентного согласования на самых ранних стадиях окисления вполне возможна, все же толстые пленки окалины, кристаллическая структура и химический состав которых так сильно отличается от структуры и состава металлов, скорее всего будут отделяться от подложек некогерентной межфазной границей. В этом случае расчеты оа нельзя проводить с помощью уравнений (16) и (17). В действительности аккомодация даже очень существенных различий атомных объемов должна осуществляться в основном в некогерентной границе, в результате чего напряжения роста как в оксиде, так и в подложке будут невелики.  [c.30]


После обработки I обнаружены выделения М зС на границе зерен, после обработки П — два вида выделений М зС (большинство выделений расположено на границах зерен) и ст-фаза (большинство выделений расположено на полосах скольжения внутри зерна). Механические испытания показали, что охрупчивание облученных образцов, прошедших обработку И при 550° С, и относительная потеря пластичности облученных образцов, обработанных по режиму И, оказались гораздо меньше, чем при режиме I. Полученные результаты свидетельствуют о том, что некогерентные выделения внутри зерна могут, по-видимому, служить внутризеренными стока-  [c.109]

Радиационное распухание представляет собой ярко выраженное проявление конкуренции сил взаимодействия в дефектной структуре кристалла. Следовательно, исследования радиационного-распухания являются источником столь необходимой в физике твердого тела информации о взаимодействии точечных дефектов G дислокациями, порами, когерентными и некогерентными границами и о перераспределении точечных дефектов между однородно и неоднородно распределенными стоками различной эффективности.  [c.113]

Влияние некогерентных границ на развитие радиационной пористости  [c.146]

Переходное излучение возникает при пересечении равномерно движущимся зарядом области иространства с неоднородными диэлектрич. свойствами, наир, при пересечении им границы раздела двух сред с разл, диэлектрич. проницаемостями или при движении в среде, содержащей неоднородности. Переходное И. и излучение Черенкова — Вавилова — родственные явления, т, к. и то и другое — испускание эл.- маги, воли атомами вещества, возбуждёнными движущейся частицей Черенкова — Вавилова И.— результат когерентного высвечивания возбуждённых частицей атомов, а переходное — некогерентного высвечивания этих атомов.  [c.104]

Чем ниже температура, тем больше образуется мартенсита. Количество мартенсита при этом возрастает в результате образования все новых и новых кристаллов, а не вследствие роста уже возникших кристаллов, имеющих некогерентную границу. По достижении определенной для каждой стали температуры превращение аустенита в мартенсит прекращается. Эту температуру окончания мартенситного превращения обозначают Л1к. Положение точек  [c.173]

Центры гетерогенного зарождения в случае некогерентных и когерентных выделений могут быть различными. В первом случае превалирующее значение имеет выигрыш в поверхностной энергии и подходящим местом для гетерогенного образования зародыша может явиться граница зерна или поверхность включений. Для когерентного выделения решающее значение будет иметь уменьшение энергии упругой деформации. При наличии искажений постоянная решетки различна в различных участках твердого раствора и в одних участках соответствие с решеткой выделения будет больше, чем в других. Центрами внутренних напряжений (искажений), в частности, служат дислокации они могут быть благоприятными центрами возникновения когерентных выделений.  [c.176]

В случае некогерентных границ поверхностная энергия их оказывает существенное влияние на характер распределения в поликристаллическом материале небольших количеств второй фазы. Если вторая фаза присутствует в небольших количествах, то после длительного пребывания яри высокой температуре она принимает такую форму, при которой поверхностная энергия системы уменьшается. Если поверхностное натяжение между матричной и второй фазой меньше поверхностного натяжения на  [c.179]

Диффузия — по нормали к границе фазы Кристаллографически произвольно. Некогерентное, частично когерентное образование зон, расслоение, формирование сверхструктурных фаз, частично когерентное, мартенситная кристаллография Диффузия — поперек фазовой границы Дискретное превращение а-метастабильной фазы в (а+ +Р)-стабильную смесь  [c.70]


Возвратимся теперь к уравнению (15) и рассмотрим, чем определяется величина В общем случае она может быть равна свободной энергии активации миграции атомов в а-фазе и вряд ли будет ее превышать, так как граница раздела разупорядочена по сравнению со структурой а-фазы. Если граница некогерентна, S.gyn может быть равна энергии активации миграции атомов по границам зерен, а не диффузии по решетке и будет, таким образом, значительно меньше энергии активации роста на стадии зарождения, так как в последнем случае поверхность раздела часто бывает полукогерентной.  [c.258]

С) приводит к образованию в местах, где располагались зоны ГП-2, дисперсных (тонкоиластинчатых) частиц промежуточной 0 фазы, не отличающейся ио химическому составу от стабильной 0-фазы ( uAl. ), но имеющей отличную кристаллическую решетку. 0 -фаза частично когерентно связана с твердым раствором (рис. 161,в). Повышение температуры до 200—250°С приводит к коагуляции метастабильной фазы и к образованию стабильной 0-фазы (рис. 161, г), имеющей с матрицей некогерентные границы. Таким образом, при естественном старении образуются лишь зоны ГП-1. При искусственном старении последовательность структурных изменений в сплавах А1—Си можно представить в виде следующей схемы ГП-1  [c.325]

Дефекты основного металла и сварных соединений приводят к образованию некогерентных границ зерен, коррозионно нестойких пленок, создают концентрацию макро- и микронапряжений, повышают термодинамическую неустойчивость дефектных участков поверхности и интенсифицируют их наво-дороживание и электрохимическое растворение. Поэтому для повышения надежности оборудования и коммуникаций, контактирующих с сероводородсодержащими средами, наряду с тщательным входным контролем соответствия материалов конструкций техническим условиям на их поставку и неразрушающим контролем монтажных сварных соединений, эффективными являются предпусковые гидроиспытания металлоконструкций давлением, создающим напряжения до 95% от минимального нормативного значения предела текучести металла [33, 34]. В ходе этих испытаний разрушаются участки основного металла и сварных соединений, содержащие потенциально опасные дефекты. Вокруг оставшихся неопасных дефектов образуются зоны остаточного сжатия, повышаюшего коррозионную стойкость сварных соединений. Кроме того, после гидравлических испытаний в 2-3 раза снижаются максимальные остаточные напряжения в зоне сварных соединений труб за счет пластического удлинения растянутых областей металла. Одновременно снижаются наиболее высокие монтажные напряжения в трубопроводах. Там, где по техническим причинам проведение гидроиспытаний не представляется возможным, для выявления недопустимых дефектов необходимо применять 100%-ный радиографический контроль сварных соединений и его 100%-ное дублирование ультразвуковым методом [25, 35].  [c.67]

Рис. 83. Схема реакции двойниковой границы, составленной из краевых дислокаций (а), с образованием некогерентной двойниковой границы без дальиодействующего поля напряжения (б) Рис. 83. <a href="/info/515280">Схема реакции</a> <a href="/info/357482">двойниковой границы</a>, составленной из <a href="/info/1495">краевых дислокаций</a> (а), с образованием некогерентной <a href="/info/357482">двойниковой границы</a> без дальиодействующего поля напряжения (б)
Реакция (84) энергетически не выгодна и возможна только при концентрации напряжений на двойниковом некогерентном фронте, что и имеет место в действительности. Реакция (84) дает набор испущенных дислокаций из некогерентных границ двойника с нулевым даль-нодействующим полем напряжений. Происходит увеличение длины двойниковой прослойки за счет эмиссии дислокаций из некогерентной границы. Деформация сдвига, произведенная испущенными дислокациями, эквивалентна деформации от исходной двойниковой границы, из которой они испущены. Существование эмиссионных дислокаций для о. ц. к. и г. п. у. кристаллов подтверждено экспериментами просвечивающей электронной микроскопии, наблюдаемым пробегом субграниц впереди двойника.  [c.145]

Рост зародышей первичной рекристаллизации, отделенных от матрицы высокоугловыми границами, как и рост зерен на стадиях собирательной и вторичной рекристаллизации, может осуществляться только миграцией своих границ. Коалесценция зерен, отделенных друг от друга обычными большеугловыми границами, невозможна. В особых случаях процесс роста зерен может происходить за счет образования и роста двойников отжига, но и в этом случае такой рост осуществляется миграцией некогерентных границ двойников.  [c.322]

К непроницаемым барьерам относятся большеугловые границы случайной ориентировки, малопластич-ные частицы других фаз, некогерентные матрице, барь-  [c.531]

В зависимости от того, будет ли распад происходить с выделением частиц некогерентных или когерентных матрице или вообще ограничится предраспадными образованиями внутри твердого раствора, продукты распада будут выделяться на большеугловых границах, на субграницах или отдельных дислокациях и соответственно тормозить их перераспределение и миграцию. Это и будет приводить к стабилизации структуры, а значит и облегчать ВТМО. Эффект стабилизации будет сохраняться до начала обратного растворения или коагуляции выделившихся частиц.  [c.544]


Поверхностные дефекты. Энергия кристалла с той или иной поверхностью больше энергии равного количества того же материала, находяш,егося внутри кристалла (Т. е. не имеюш,его никакой поверхности). Свободная поверхность кристалла, границы зерен и блоков, двойни-ковая граница и когерентная и некогерентная межфазовые поверхности имеют поверхностные дефекты двухмерной протяженности (вакансии, дислокации, примесные атомы, микротреш,ины и др.).  [c.35]

Размерный эффект должен зависеть от природы межфазной поверхности. Следует ожидать, что некогерентные границы окажутся более эффективными барьерами для перемещения дислокаций, чем полукогерентные, обладающие кристаллографическим соответствием. Кляйн и Ли [10] подтвердили это предположение, показав, что имеется более сильная зависимость напряжения течения от размерного фактора в равноосной ввтекти,к е Ag—>Си  [c.371]

Хотя интерес к разработке систем эвтектических композитов, способных выдерживать высокие напряжения и высокотемпературную газовую коррозию в газотурбинном двигателе, был очень велик, мало внимания уделялось анализу деформадии и механизма разрушения этих направленных микроструктур. То немногое, что было сделано, по-видимому, удовлетворяет общей картине и согласуется, в основном, с тем, что высокотемпературные механические свойства направленных эвтектических композитов существенно снижаются, если имеются некогерентные границы или участки ненаправленной микроструктуры. Проведя сравнительное исследование сплава Ag— u в равноосной и пластинчатой формах соответственно с некогерентными и полукогерентными границами, Кляйн и Ли [40] нашли, что материал с полукогерентными границами имеет повышенные высокотемпературные свойства. Действительно, интенсивное проскальзывание по некогерентным границам зерен делает равноосный эвтектический сплав сверхпла-стичным. Разрушение эвтектики NiAl—Сг по границам колоний также может свидетельствовать о более низких механических свойствах некогерентных границ [61].  [c.382]

Имеются некоторые соображения относительно роли термической стабильности преимущественно ориентированных поверхностей раздела в эвтектике под воздействием напряжений. Возможно, полукогерентные поверхности раздела (стабильные) могут превращаться в некогерентные (нестабильные) из-за концентраторов напряжений, создаваемых дислокациями на границах.  [c.384]

Перемагничивание магнитных пленок может протекать тремя способЭ Ми перемещением границ доменов, когерентными и некогерентным вращением. Длительность этих процессов, определяющая быстродействие устройств, использующих пленки, различна.  [c.311]

Водород способен накапливаться и на границах между матрицей и выделениями, особенно если последние некогерентны. Наличие водорода может уменьшать прочность этой границы раздела, облегчая тем самым зарождение растрескивания. Если же количество водорода достаточно велико, то он может способствовать росту полостей на границе раздела за счет повышения давления Нг. Последний случай возможен при дислокационном переносе водорода, если он быстрее доставляется к границам выделений, чем уходит от них путем диффузии. С такой точки зрения интерпретировались случаи вязкого разрушения, ускоренного присутствием водорода [72, 74, 124]. При этом не уточнялось, влияет ли водород на зарождение или на рост полостей. Однако наблюдающееся во многих случаях уменьшение размеров лунок на поверхностях разрушения в водороде [74, 84, 124] позволяет предположить, что присутствие водорода отражается главным образом на зарождении полостей. Пример таких результатов показан на рис. 54. Эффекты, связанные с накоплением водорода на частицах предполагались и в ряде других случаев [63, 334, 335J. Поэтому важно было бы продолжить исследования влияния типа и ориентации включений в ферритных сталях [26, 59]. Число работ по этой теме возрастает, поскольку в материалах, применяемых на практике, желательно добиться вязкого типа разрушения.  [c.137]

При искусственном старении (190°С) увеличение прочности происходит за счет выделения фаз 0", 0 и S. Пластическая деформация после закалки и перед искусственным старением приводит к более тонкому распределению полукогерентных фаз 0 и S, которые зарождаются предпочтительно на дислокациях. В период начальных стадий искусственного старения зарождаются и растут предпочтительно по границам зерен некогерентные фазы 0 и S, что приводит к обеднению областей, прилегающих непосредственно к границам. В начальных стадиях искусственного старения прочность увеличивается благодаря частичной реверсии зон ГП и ГПБ. По мере продолжения старения максимум прочности достигается, когда сплав содержит множество мелких частиц фаз 0", 0 и S. Во время старения эти частицы, обогащенные медью, образуются по всему объему зерна (рис. 87). Этот общий распад уменьшает концентрацию меди в твердом растворе матрицы и, таким образом, уже нет значительного преимущества  [c.237]

Кроме того, модель предполагает, что объем образуется вокруг самых больших некогерентных частиц, которые находятся в металле. Таким образом, в случае межкристаллитного характера КР высокопрочных алюминиевых сплавов размеры dr объемов, подвергнутых растяжению, должны соответствовать либо размеру (протяженности) интерметаллических частиц, либо размеру выделений по границам зерен (см. рис. 86 и 105). Величина dr приблизительно равна размеру интерметаллических частиц в промышленных алюминиевых сплавах. Выделения по границам зерен по ширине приблизительно на порядок меньше, чем размер интерметаллида. На рис. 132 показана электронная фракто-грамма поверхности разрушения при КР высокопрочного алюминиевого сплава, Следует отметить межкристаллитный характер развития трещины и наличие интерметаллических частиц по границам зерен. Из модели нестабильности  [c.285]

Как указывалось, дислокационная модель строения больше-угловых границ в настоящее время отсутствует. При 9 > 15° количественная модель, снованная на дислокационных представлениях, неприменима, поскольку расстояния между дислокациями становятся столь малыми, что ядра сливаются. В последнем случае может быть использована модель Мотта, согласно которой граница представляется как переходная область, которая состоит из участков с хорошим и плохим сопряжением решеток, т. е. когерентных и некогерентных участков. В последних отсутствует кристаллографическая симметрия. Число атомов п в хорошем участке невелико, обычно п 1000. Плохих участков тем больше, чем больше разориентация.  [c.77]

Двойниковая граница может быть построена при малом числе дислокаций (когорентная граница). Для -случая меди (г. ц. к.) энергия когерентной двойниковой границы, параллельной (111), составляет лишь 7зо энергии среднеугловой границы зерна, расположенной в плоскости (III). Энергия некогерентной двойниковой границы значительно больше, но все же не достигает величины энергии среднеугловых границ зерен.  [c.80]

При соблюдении структурного соответствия зародыш новой фазы когерентно связан с матрицей. Поверхность раздела двух кристаллов считается когерентной, если кристаллы соприкасаются общими плоскостями (сопряжение межнлоскостного расстояния одного кристалла с геометрически подобной, но кристаллографически отличной структурой другого кристалла) и взаимно связаны ориентировками (решетка одной фазы постепенно переходит в решетку другой). Чем лучше геометрически согласуются кристаллы и чем меньше различие электронных конфигураций их атомов, тем меньше энергия поверхности раздела. Такое сопряжение возможно при некотором упругом искажении решеток (например, сжатии одной и растяжении другой) вблизи границы раздела. Таким 0браз0)М, общим условием когерентности является образование метастабильной решетки у зародыша или деформация его равновесной решетки. В обоих случаях свободная энергия новой фазы возрастает по сравнению с равновесной. Следует отметить, что полная когерентность в реальных сплавах наблюдается редко. Однако даже при некогерентном выделении в связи со стремлением системы уменьшить поверхностную энергию может наблюдаться ориентационное соответствие решеток двух фаз. Так, например, в системе медь — цинк при выделении из р-латуни частиц а-фазы наблюдается соотношение (110)р II (111)а и [111]р II [110]а. С упругой энергией деформации связана также форма выделяющейся частицы.  [c.178]


Высокое сопротивление ползучести следует ол идать при наличии когерентной связи между матрицей и второй фазой. В этом случае, с одной стороны, нужны большие усилия, чтобы протащить дислокацию через поверхность раздела, а с другой — такая граница в диффузионном отношении менее проницаема, чем некогерентная. При когерентной связи частицы растут медленно.  [c.393]

Явление ориентированного образования зародышей новой фазы объясняется с привлечением энергетических представлений, согласно которым форма и ориентировка этих зародышей в анизотропной среде должны соответствовать минимуму поверхностной энергии при данном объеме, а минимум поверхностной энергии обеспечивается при максимальном сходстве в расположении атомов на соприкасающихся гранях старой и новой фаз (принцип Конобеевского — Данкова). По данным Д. Мак Лина, на когерентной границе а- и 7-фаз поверхностная энергия уменьшается в 3 — 4 раза по сравнению с теми же значениями в случае неориентированного зародыша. В связи с этим критический размер когерентного зародыша аустенита на порядок меньше, чем некогерентного. Естественно, что это приводит к резкому увеличению вероятности образования когерентного зародыша. Выполненные И.Н. Ки-диным, М.А. Штремелем и В.И. Лизуновым расчеты показали, что вероятность появления некогерентного зародыша ничтожно мала по сравнению с когерентным. При этом, в соответствии с изложенным в гл. П, в основном реализуется гетерогенное зарождение "у-фазы, связанное с меньшими затратами энергии.  [c.85]


Смотреть страницы где упоминается термин Границы некогерентные : [c.27]    [c.24]    [c.173]    [c.145]    [c.89]    [c.94]    [c.372]    [c.382]    [c.131]    [c.270]    [c.268]    [c.106]    [c.46]    [c.76]    [c.24]    [c.63]   
Теория сварочных процессов (1988) -- [ c.498 ]

Теория термической обработки металлов (1974) -- [ c.131 ]



ПОИСК



Некогерентность



© 2025 Mash-xxl.info Реклама на сайте