Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Химическая связь, типы

Химическая связь, типы 19 Хлорированные дифенилы 417—420 Хлорированные парафины 420—423 Хлорированные углеводородные растворители 303—306 Хлористый винил 558, 559, 568, 570, 572, 574, 605—608 сополимеры с винилацетатом 566 сл. модификаторы 582, 583 пластификаторы 579, 580 применение 583—587 промышленные типы 566, 567  [c.756]

Каков же детальный механизм отдельных атомных прыжков Единого универсального механизма диффузионных перемещений для всех материалов и условий нет. Эти механизмы зависят от природы химических связей, типа и компактности решетки, природы диффундирующей примеси, температуры диффузии и других факторов. В некоторых веществах диффузионные перемещения могут происходить по нескольким механизмам одновременно или с изменением условий диффузии может меняться и ее механизм. Наиболее вероятны следующие механизмы диффузии междоузельный (перемещение атомов по междоузлиям), вакансионный (перемещение атомов по вакансиям), кольцевой или обменный (прямой обмен местами между атомами) и диссоциативный. Рассмотрим эти механизмы более подробно.  [c.287]


Явление сорбции [36, 61] возникает в результате действия сил притяжения между молекулами газа и атомами на поверхности твердого тела. Различают два вида адсорбции физическую и химическую. В первом случае силами сцепления являются только относительно слабые межмолекулярные силы типа сил Ван-дер-Ваальса, во втором происходит обмен электронами и формируются прочные химические связи между адсорбируемым веществом и твердым телом. Часто бывает так, что физическая адсорбция переходит в химическую, если температура возрастает достаточно для того чтобы обеспечить необходимую энергию активации процессу химической адсорбции.  [c.89]

Для объяснения насыщения и короткодействующего характера ядерных сил было принято (впервые В. Гейзенбергом) положение о том, что ядерные силы являются обменными силами , подобно силам химической связи в обычных молекулах. Это означает, что ядерные силы между двумя нуклонами возникают благодаря обмену третьей частицей. Такой частицей, по современным представлениям, является один из л-мезонов (п , я°, я ), а может быть, и другие тяжелые мезоны. Какие типы обменного взаимодействия и какими видами я-мезонов они могут осуществляться между двумя нуклонами, мы рассмотрим ниже, в 27.  [c.136]

Температурный фактор. Вывод выражения для атомного фактора f был произведен нами для покоящегося атома со сферически симметричным распределением электронной плотности. В реальном кристалле атомы (а значит, и электроны вместе с атомами) совершают хаотические тепловые колебания около положений равновесия и между атомами имеет место определенный тип химической связи. Естественно, что тепловое движение оказывает влияние на значение рассеивающей способности атома, а следовательно, и на интенсивность рефлексов.  [c.46]

При взаимодействии атомов одного сорта с атомами другого сорта характер химической связи определяется их способностью захватывать или отдавать валентный электрон. Эта способность характеризуется так называемой электроотрицательностью атомов X. По существу, электроотрицательность — это параметр, выражающий тенденцию атома притягивать к себе электроны в конкретном твердом теле. Электроотрицательность — относительная мера взаимодействия атомов, она не является строго физической величиной, поскольку она не постоянна и зависит от природы другого атома, с которым химически связан данный атом. Один и тот же атом в химической связи иногда одновременно может выступать и как электроположительный, и как электроотрицательный. Электроотрицательность очень слабо зависит от типа связи и от конкретных особенностей кристаллической структуры, что делает ее некоторым объективным параметром атомов, который полезен при обсуждении свойств твердых тел.  [c.57]


В диэлектриках с ионным типом химической связи под действием электрического поля происходит смещение положительных ионов относительно отрицательных. Возникающая таким образом  [c.280]

Различают четыре типа химической связи ионную, ковалентную, металлическую и Ваш-дер-Ваальса. Последняя ха-  [c.94]

Поэтому двухатомная молекула, образованная разными атомами, имеет химическую связь промежуточного типа. При колебании такой молекулы (рис. 40, б) одновременно изменяются и поляризуемость и дипольный момент. В этом случае будет наблюдаться и GKP и спектр ИК-поглощения. Например, в ряду молекул НС1, НВг, HJ по мере уменьшения полярности связи падает интенсивность ИК-полосы поглощения, в то время как интенсивность линии комбинационного рассеяния возрастает.  [c.101]

Вообще говоря, потенциал взаимодействия ядер с электронами — это потенциал кулоновского типа, и поэтому он достаточно велик (по модулю) вблизи ядер. При этом химическая связь и многие физические свойства определяются внешними электронами, поскольку внутренние электроны атома спариваются, с трудом возбуждаются и не вносят ощутимого непосредственного вклада ни в энергию связи, ни в другие характеристики кристалла. Однако было бы ошибкой пренебречь ими полностью. Их особая роль состоит в том, что они экранируют внешние электроны от поля ядра, как бы уменьшая его, притом весьма существенно. Это позволяет во многих случаях считать, что на внешние электроны действует потенциал , заметно меньший потенциала ядра и являющийся достаточно слабым. С таким потенциалом оперировать оказывается несравненно проще, поскольку он допускает использование теории возмущений во втором и третьем порядках. Суще-  [c.55]

Типы химической связи. При рассмотрении молекул прежде всего возникает вопрос о природе сил, которые удерживают вместе нейтральные атомы, образующие молекулу, т.е. обеспечивают между собой связь атомов. Они называются химической связью.  [c.298]

Существует два типа химической связи а) ионная связь, б) ковалентная связь.  [c.298]

Во втором случае атомы вводимой примеси имеют меньшее число валентных электронов, чем атомы полупроводника. Поэтому атомам примеси не хватает валентных электронов для образования всех химических связей с окружающими их атомами полупроводника. Недостающие электроны могут быть захвачены атомами примеси у соседних атомов полупроводника, для чего необходима небольшая энергия Ел (рис. 3, в). При этом атомы примеси приобретают отрицательный заряд, а в валентной зоне на месте захваченного электрона образуется дырка. Введение в полупроводник таких примесей, называемых акцепторными, приводит к возрастанию концентрации дырок в валентной зоне при неизменной концентрации электронов в зоне проводимости. Полупроводники, легированные акцепторной примесью, называют дырочными, или полупроводниками р-типа электропроводности.  [c.8]

В настоящее время известно несколько сотен сегнетоэлектриков, которые по типу химической связи и физическим свойствам принято подразделять на две группы 1) ионные кристаллы, к которым от-  [c.243]

Ковалентная связь возникает при обобществлении электронов двумя соседними атомами. Химическая связь такого типа осуществляется в молекулах Hj, O.j и СО (рис. Ei-I), а также наблюдается в молекулах, образованных металлоидными атомами, например в молекуле хлора и др.  [c.9]

Можно предположить, что чистое кварцевое стекло должно обладать наиболее ярко выраженными защитными свойствами ввиду реализации в нем весьма прочных химических связей в кремнекислородных тетраэдрах. Введение в его состав катионов будет сопровождаться поляризацией ионных комплексов, что повлечет за собой ослабление внутренних связей между этими комплексами ввиду образования структурных элементов типа  [c.246]

Главная особенность любого полимерного вещества, определяющая его физические свойства, состоит в наличии двух типов связей, резко отличающихся по своей природе и энергии. Атомы в цепи соединены химическими связями, энергия которых составляет сотни больших калорий, а сами цепи между собой объединены значительно более слабыми межмолекулярными силами [54].  [c.45]


Числовые значения долговечности и сохраняемости определяют с помощью ресурсных показателей. В СНГ стандартными показателями являются средний, гамма-процентный и назначенный ресурсы, средний и гамма-процентный сроки службы, средний и гамма-процентный сроки сохраняемости, которые могут рассчитываться с использованием ретроспективной информации о работе и простоях котлов вероятностными методами. Вместе с тем интенсивность физикохимических процессов, влияющих на динамику долговечности и сохраняемости, выявляется прямыми измерениями средствами диагностики и расчетом функциональных связей типа наработка-параметр износа, т.е. детерминированными методами. качестве параметров износа рассматриваются микроструктура и плотность металла, его механические свойства, химический состав, коррозия.  [c.142]

Известно, что на способность металлов к схватыванию при совместной пластической деформации влияют характеристики поверхности элементный состав, тип химической связи, структура, геометрия (топография). В настоящее время существует множество физических и физико-химических теорий, описывающих механизм соединения материалов в твердой фазе. Подробно они рассматриваются в [36].  [c.87]

Si ). Электронное строение атомов, тип химической связи и структура тугоплавкого вещества во многом определяют его свойства, технологическое поведение, характер спекания и взаимодействия с другими веществами. Особенно это важно при изготовлении керметов, для которых характерно сочетание и взаимодействие металлической и неметаллической фаз. Температура плавления основных тугоплавких бескислородных соединений, применяемых в керамике, дана в табл. 47.  [c.225]

Такие соединения отличаются рядом особенностей, прежде всего повышенной термодинамической устойчивостью. Для бензола и его производных, т. в. для ароматических соединений, это проявляется в ббльшей склонности к реакциям замещения, чем к реакциям присоединения. Для химических связей типа С—X (где X соответствует атомам С, И, С1, Вг и т. д.) при переходе от молекул типа СН3—X к молекулам типа СН2=СН—СН2—X энергии связей уменьшаются на 20—25 ккал.  [c.584]

При затвердевании расплавленного материала слабые адге знойные связи заменяются прочными химическими связями, соответствующими природе соединяемых материалов и типу их кристаллической решетки. При сварке плавлением вводимая энергия (обычно тепловая) должна обеспечивать расплавление основного и присадочного материалов, оплавление стыка, нагрев кромки и т. д. При этом происходит усиленная диффузия компонентов в расплавленном и твердом материалах, их взаимное растворение. Эти процессы, а также кристаллизация расплавленного металла сварочной ванны (или припоя) обеспечивают объемное строение зоны сварки, что обычно повышает прочность сварного соединения.  [c.13]

Силы межатомной связи в кристаллах в значительной мере зависят от распределения электро1Юв в кристалле (электронной плотности), обусловливая определенный тип химической связи. Они определяют устойчивость кристаллической решетки и ее свойства. Для анализа ее устойчивости выделим в деформируемом теле локальный объем (кластер) и рассмотрим его сопротивление сдвигу и отрьсву. Кластер сохраняег устойчивость к деформации вплоть до достижения относительной продольной деформации сдвига связанной с  [c.181]

Ионные кристаллы представляют собой соединения с преобладающим ионным характером химической связи, в основе которой лежит электростатическое взаимодействие между заряженными ионами. Типичными представителями ионных кристаллов являются галогениды щелочных металлов, например, со структурой типа Na l и s l.  [c.70]

Из всех типов хим ческой связи для 1полуп ровадник 0вых Веществ первостепенное значение имеет ковалентная связь с электронной парой. Для примера рассмотрим химическую связь в таком модельном полупроводнике, как кремний. В нормальном состоянии у атома кремния имеются четыре валентных электрона Зз и Зр . Их распределение по орбиталям показано на рис. 36 (а — нормальное, б — возбужден-  [c.97]

Число факторов, определяющих конкретный тип текстуры деформации, весьма велико. Оно включает в себя прежде всего условия деформации (схема, скорость, температура, смазка и др.), а также природу основного материала (тип решетки и природа химических связей, энергия дефектов упаковки, исходная текстура и величина зерна и др.), характер легированР1я (природа легирующей примеси, концентрация, фазовое состояние) и др.  [c.281]

В первом случае атомы легирующей примеси имеют большее число валентных электронов, чем атомы полупроводника. Такую примесь называют донорной. Вследствие введения донорной примеси после образования химических связей примесного атома с окружающими его атомами полупроводника один валентный электрон оказывается лишним , т. е. не участвует в химических связях. Поэтому достаточно лишь небольшой энергии Ео (рис. 3, б), чтобы оторвать от примесного атома и сделать свободным этот валентный электрон, т. е. перевести его в зону проводимости. При этом образуется неском-пенсированный положительный заряд, который отличается от положительно заряженной дырки, способной перемещаться по кристаллу, тем, что остается неподвижным в кристаллической решетке. Легирование полупроводника донорной примесью увеличивает концентрацию электронов в зоне проводимости при неизменной концентрации дырок в валентной зоне. При этом электропроводность осуществляется в основном электронами, находящимися в зоне проводимости. Такие полупроводники называют электронными, или полупроводниками п-типа электропроводности.  [c.8]


Действие поверхностно-активных ингибиторов анионного типа в кислых средах обусловлено тормозящим эффектом, вызванным в первую очередь блокировкой поверхности корродирующего металла, при которой адсорбщ1Я анионов нередко сопровождается установлением химической связи между ними и поверхностными атомами металла, хотя при этом смещение потенциала максимума электрокапиллярных кривых в отрицательном направлении свидетельствует о таком изменении структуры двойного электрического слоя, которое должно бы приводить к ускорению коррозионного процесса. Чтобы значительно перекрыть отрицательное воздействие двойнослойного эффекта, необходимо гораздо большее заполнение поверхности металла ингибитором. В противном случае при введении таких ингибиторов общая коррозия может перейти в локальную.  [c.153]

Прогнозирование механических свойств материалов и покрытий основывается на корреляции между механическими свойствами твердых тел и природой и энергией химической связи в веществах (кристаллах веществ), образующих твердое тело. Так, высокой прочностью обладают магнийфосфатные цементы, поскольку Mg имеет как высокие электростатические характеристики (ионный потенциал равен 5.12), так и заметную способность образовывать ковалентные связи. Для систем типа цементных прочность камня тем выше, чем выше доля ковалентности связи, при этом, однако, необходимо, чтобы координационные числа (к. ч.) катиона в цементирующих фазах не были ниже 4. Для материалов, полученных на основе связок, прочностные свойства тем выше, чем большая степень полимерности достигается при отвердевании связки — чем более сшитым получается полимерное тело. Это, видимо, имеет место в том случае, когда степень ионности связи в полимере существенна, а к. ч. катиона равно 4. При к. ч.=2- -3 образуются линейные или слоистые полимеры, макромолекулы которых в полимерном теле связаны молекулярными или водородными силами, что делает такие тела менее прочными по сравнению со сшитыми полимерами, например кварцем. С этой точки зрения высокие механические характеристики будут получаться при использовании связок на основе многозарядных элементов (А1) и особенно многозарядных -элементов (2г, Сг).  [c.10]

Термин значительное изменение химического состава относится также и к малым изменениям, рассмотренным, в частног сти, Грэхемом и Крафтом [20] в связи со стабильностью эвтектических композитов. В этом случае изменения растворимости возникают из-за различия в кривизне поверхностей раздела, как эта следует из соотношения Томсона — Фрейндлиха. Аналогичным образом такому определению удовлетворяют и малые содержания растворенных примесей, ускоряющих рекристаллизацию, что наблюдалось, например, в системе u(Ni)—W [28, 34]. Сюда может быть включен и случай сегрегации элементов на поверхности раздела например, как показано Саттоном и Файнголдом [37], цирконий переходит из никелевого сплава к поверхности раздела с окисью алюминия, что усиливает их связь. Под это определение попадают и связи типа окисных, предложенные для систем псев-допервого класса. Эти связи реализуются между последовательно расположенными фазами от матрицы через поверхность раздела матрица — окисел, окисную пленку и поверхность раздела окисел— упрочнитель к упрочнителю.  [c.18]

Механическая связь реализуется в отсутствие какого бы то ни было химического механизма — даже сил Ван-дер-Ваальса — и сводится к механическому сцеплению. Однако отсутствие химической связи существенно снижает прочность композита при поперечном нагружении поэтому в технологии изготовления компози тов механическую связь не считают полезной. Связь путем смачивания и растворения имеет место в композитах, где упрочнитель, не являющийся окислом, смачивается или растворяется матрицей, но не образует с ней соединений. Окисная связь может возникать при смачивании, а также при образовании промежуточных соединений на поверхности раздела. Как правило, металлы, окислы которых обладают малой свободной энергией образования, слабо связываются с окисью алюминия. Однако следы кислорода иль активных элементов усиливают эту связь путем образования промежуточных зон в обоих случаях связь относится к окисному типу. Кроме того, согласно общей классификации, к окисному типу относится связь между окисными пленками матрицы и волокна.  [c.35]

Проблема создания материалов с особыми механическими, физическими, химическими свойствами не может быть решена без изучения взаимодействия между элементами, в частности, между переходными металлами, которые являются основными компонентами современных материалов. Большой интерес представляет способность металлов образовывать при взаимодействии соединения — металлиды, которые образуют особый класс неорганических соединений. Они обладают различными, часто очень сложными, кристаллическими структурами, различными типами химической связи  [c.167]

В стекле атомы расположены более беспорядочно по отношению друг к другу, чем в поликристалличе-ских металлах. Оно обладает жесткостью твердых кристаллических тел, но не имеет правильной кристаллической структуры. Изучение стекол обнаруживает микронеоднородности их структуры. В стекле нет полного хаоса и в то же врегля нет решетки, которая сопутствует кристаллическим веществам. Существует несколько гипотез строения стекла. Так, ионная теория предполагает ионный тип связей в стекле, в то время как полимерная теория исходит из преимущественно ковалентного характера химических связей. Ученые ищут концепцию, пригодную для всех видов стекла. Что же касается механизма деформации сдвига, то в стекле он диффузионный, в отличие от реальных кристаллов, где он дислокационный.  [c.96]

Молекулы полимеров могут быть линейными или сетчатыми, в обоих случаях они состоят из. чвецьев одинакового или различного химического состава. При закономерном расположении звеньев, среди которых преобладают звенья одной структуры, полимер называется гомополимером. При случайном взаимном расположении звеньев двух или трех типов имеем так называемый сополимер. Показатели свойств сополимера располагаются между показателями свойств гомополимеров с такими же звеньями, которые входят в сополимер. Между звеньями молекулы имеются химические связи, между молекулами — межмолекулярные. Чем значительнее химическая связь превышает молекулярную, тем ярче проявляются специфические свойства полимеров.  [c.337]

На диаграмме рис. 2 наиболее износостойким материалом, расположившимся на прямой для чистых металлов, был вольфрам. При испытании твердых материалов оказалось, что на тон же прямой лежат сложные карбиды хрома и железа (ТДХ, твердость 1770 кг1мм ) и эвтектиче-окий сплав W и W2 (твердость 2570 кг1мм ), как это видно из диаграммы рис. 3. Однако у многих материалов с высокой твердостью износостойкость оказывается значительно более низкой по сравнению стой, которая соответствует этой общей линии для чистых металлов. В одних случаях это связано с неоднородностью структуры, в других — можно предположить влияние трещин в твердом слое (электролитически бори-рованный слой стали). Это может быть связано с отличным типом химической связи, как отмечено для таких полуметаллических материалов на кремний и германий.  [c.46]

Соединения типа А " В . Имеют в осн. кристаллич. структуру типа сфалерита. Связь атомов В кристаллич. решётке носит преим. ковалентный характер с нек-рой долей (5—15%) ионной составляющей (см. Химическая связь). Важнейшие представители этой групиы СаАз, 1пР, 1нАэ, 1п8Ъ, СаР. Мн. П. м. А В  [c.44]

При взаимодействии твердого и жидкого металлов возможно образование химических связей различного типа. Начальной стадией взаимодействия во всех случаях являются химические реакции между атомами, находящимися на поверхности металлов, поэтому бездиффузионный спай имеет место только в период, предшествующий началу протекания диффузионных процессов, начиная с момента возник-нове1 ИЯ контакта между твердым и жидким металлами.  [c.10]


Стеклотекстолит на фенолоформальдегидном связующем (типа КАСТ) недостаточно вибропрочен, но зато по сравнению с обычным текстолитом он более теплостоек и имеет более высокие электроизоляционные свойства. Стеклотекстолиты на основе крем-нийорганических смол (СТК, СК-9Ф, СК-9А) имеют относительно невысокую механическую прочность, но отличаются высокой теплостойкостью и морозостойкостью, обладают стойкостью к окислителям и другим химически активным реагентам, не вызывают коррозии металлов. Эпоксидные связующие (ЭД-8, ЭД-10) обеспечивают стеклотекстолитам наиболее высокие механические свойства и позволяют изготовлять из них крупногабаритные детали. Стеклотекстолиты на основе ненасыщенных полиэфирных смол (ПН-1) также не требуют высокого давления при прессовании и применяются для изготовления крупногабаритных деталей.  [c.466]

Электроны, принадлежащие к самой внешней оболочке (оболочке с наибольшим квантовым числом), называются валентными. Именно они принимают участие во взаимодействии между атомами системы. Все химические связи возникают потому, что электроны одновременно могут находиться около двух ядер. Химическое взаимодействие между атомами происходит путем обмена или обобществления валентных электронов таким образо м, что каждый arovi системы приобретает устойчивую электронную конфигурацию. Возникающие при этом типы связи схематично показаны на рис. 2.4. Они могут быть классифицированы следующим образом  [c.26]

Второй необходимый фактор для образования растворов замещения - химическое подобие компонентов, в частности, близость типа химической связи. В качестве параметра, определяющего возможность образования твердого раствора замещения, используют различие в степени ионности связи, иногда - разность электроотрицательностей атомов замещающих друг друга элементов и др. Непрерывные твердые растворы замещения образуются между изоморфными металлами, близко стоящими в Ta6j iHiie Менделеева. В качестве примеров можно привести системы Ag-Au, K-Rb, Se-Te, Mo-W, Au- u, Ge-Si, Nb-Ta, o-Ir, состоящие из близких компонентов одной фуппы Ir-Pt, Au-R, u-Ni, Ni-Fe, Fe- r, состоящих из близких компонентов одного периода Au-Pd, o-Pd, Fe-Pd, состоящее из компонентов близких фупп и периодов.  [c.37]

Существенное влияние на физические свойства полимеров оказывают четыре фактора, характеризующие структуру макромолекул (полимерных цепей). Один из факторов - средняя длина цепи, к другим трем факторам относятся сила взаилюдействия между полимерными цепями, регулярность упаковки цепей и жесткость отдельных цепей. aN№e сильное меж.молекуллрное взаимодействие возникает, когда цепи имеют поперечные мостики, т.е. образуют друг с другом химические связи. Этот процесс называют сшиванием, он часто происходит при нагревании. Образование поперечных связей замыкает полимерные цепи в трехмерную сетку, поэтому таким полимерам при нагреве уже нельзя придать новую форму. Жесткие полимеры такого типа называют термоактивными К ним относятся полиэфирные, эпоксидные, алкидные и другие смолы. Трехмерная (сшитая) структура позволяет эластомерам (например, каучук) долго вьщерживать достаточно высокие температуры и циклические нагрузки без остаточной деформации. Многие перспективные полимеры, напротив, термопластичны и размягчаются при нагреве (например, полиолефины, полистирол и др.).  [c.48]


Смотреть страницы где упоминается термин Химическая связь, типы : [c.14]    [c.26]    [c.15]    [c.28]    [c.297]    [c.45]    [c.28]    [c.138]    [c.6]   
Технология органических покрытий том1 (1959) -- [ c.19 ]



ПОИСК



Связи—Типы

Связь химическая



© 2025 Mash-xxl.info Реклама на сайте