Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Примеры потенциальных потоков

Теперь рассмотрим пример потенциального потока, отвечающий функции тока ф = 1пл и потенциалу скорости ф=Л0. Линии тока потенциального течения жидкости (рис. 3.5) представляют собой концентрические окружности. Постоянное значение потенциала скорости <р представляется постоянством угла 0, т. е. живые сечения  [c.133]

Ниже даны примеры потенциальных потоков.  [c.512]

Примеры потенциальных потоков  [c.83]


Следовательно, построение плоского потенциального потока методом конформного отображения сводится к нахождению аналитической функции, с помощью которой область течения с известным комплексным потенциалом отображается на область с заданными границами. Способы определения отображающих функций являются чисто математической проблемой и выходят за рамки курса гидромеханики, поэтому в приводимых ниже примерах использованы отображающие функции, известные из математики.  [c.238]

ПРИМЕРЫ ПРОСТРАНСТВЕННОГО ОБТЕКАНИЯ ТЕЛ УСТАНОВИВШИМСЯ ПОТЕНЦИАЛЬНЫМ ПОТОКОМ  [c.279]

Рассмотрим простейшие примеры пространственных потенциальных потоков.  [c.175]

В качестве примера наложения потоков рассмотрим обтекание потенциальным потоком сферы, которое получается как совокупность однородного потока и диполя. Потенциал скорости такого потока выражается как сумма потенциалов однородного потока и диполя с обратным знаком  [c.178]

В качестве примера рассмотрим косое обтекание циркуляционным потенциальным потоком профиля, носящего наименование симметричного профиля Жуковского.  [c.104]

Все сказанное в этом параграфе относилось к внешним задачам, т. е. к обтеканию каких-либо тел практически неограниченным потоком. При рассмотрении внутренних задач, простейшим примером которых являются случаи течения внутри труб, изложенные представления сохраняют силу, пока длина русла не слишком велика по сравнению с его поперечным размером (для трубы ее длина I не должна значительно превышать диаметр d). В противном случае пограничные слои, зарождающиеся на входе в канал и непрерывно утолщающиеся вниз по течению, смыкаются. Начиная с этого места, предпосылки для применения пограничного слоя отпадают, поскольку эта теория строится в предположении, что имеется внешний потенциальный поток и ему можно  [c.108]

Поскольку проблема трехмерного пограничного потока особенно актуальна для крыла, пример расчета выбирается таким, чтобы его условия хотя бы до некоторой степени отражали условия крыла. К сожалению, потенциальный поток точно определен только для ограниченного числа тел, и одним из них является трехосный эллипсоид, обтекаемый в направлении его плоскостей симметрии, следовательно при угле атаки, равном нулю.  [c.365]

Рассмотрим теперь, что происходит с очень маленькими замкнутыми жидкими линиями. Если эти линии лежат в области потенциального движения, то циркуляция вокруг них равна нулю. Если же они находятся внутри вихревой нити, то в общем случае циркуляция вокруг них не равна нулю, причем, согласно теореме Томсона, она все время остается постоянной. Отсюда непосредственно следует, что вихревая нить состоит все время из одних и тех же частиц жидкости. Так как количество движения и энергия самой вихревой нити малы по сравнению с количеством движения и энергией окружающего потенциального потока, то движение вихревой нити в основном управляется движением потенциального потока (см. ниже, пример первый). Правда, геометрически потенциальное движение можно свести к циркуляции вокруг оси вихревой нити, что для расчетов обычно удобнее. При таком представлении движение каждого элемента вихревой нити обусловливается влиянием всех остальных элементов нити, а все потенциальное движение вызывается вихревой нитью. Однако такое представление следует рассматривать только как геометрическое. С точки зрения энергетической преобладающее влияние на движение вихревой нити оказывает внешнее движение.  [c.109]


Отсюда следует, что линип тока п линии равного потенциала взаимно заменяемы. Можно линии тока считать линиями равного потенциала, а линии равного потенциала — линиями тока. Таким образом, определив какой-нибудь плоский потенциальный поток, мы сразу же находим другой поток, для которого линии тока первого потока являются линиями равного потенциала, и наоборот. Такие потоки называются сопряженными. В предыдущем мы ужо имели примеры сопряженных потоков таковы, напрпмер, источник на плоскости и вихрь. Для диполя на плоскости сопряженным является также диполь, но с осью, перпендикулярной к оси первого диполя.  [c.217]

ПРИМЕРЫ СЛОЖЕНИЯ ПОТЕНЦИАЛЬНЫХ ПОТОКОВ  [c.122]

Пример. Потенциальный плоский поток задан потенциалом скорости  [c.57]

В последующих параграфах будут рассмотрены наиболее характерные примеры простейших плоских, установившихся потенциальных потоков, комбинацией (наложением) которых могут быть получены сложные практически важные потоки.  [c.63]

В настоящем параграфе указанный ход исследования потока покажем на примере потенциального движения однородной несжимаемой жидкости.  [c.62]

В циркуляционном течении центр О также является особой точкой, поэтому физически такой поток возможен лишь за пределами некоторого ядра конечного радиуса (на рис. 47 это ядро заштриховано). Ядро может быть образовано жесткой границей или вращающейся жидкостью, течение в которой не является потенциальным. Примером подобного рода есть уже упоминавшийся смерч.  [c.78]

Формула (1.6) является характеристикой аккумулирующего потока. Чтобы ею можно было пользоваться, надо знать выражение энергии Wj в функции времени. Энергия может иметь кинетическую (как в рассмотренном выше примере) или потенциальную форму.  [c.19]

Влияние толщины. Влияние толщины на сопротивление тела, обтекаемого безграничной жидкостью, выявляется при рассмотрении семейства симметричных профилей, описываемых параметром ti , где — толщина профиля, взятая по нормали к направлению потока, а с — длина хорды профиля в параллельном потоку направлении. Отношение ti изменяется от нуля (плоская пластинка) до единицы (цилиндр). Примером такого семейства являются симметричные профили Жуковского, промежуточные формы которых получаются математически путем специального конформного преобразования (или отображения) окружности единичного радиуса. Это семейство профилей обладает тем свойством, что в случае потенциального обтекания поля скорости и давления, имеющие место при обтекании цилиндра, также могут быть преобразованы в поля скорости и давления при обтекании этих профилей. Таким образом, экспериментально измеренные распределения давления на таких профилях могут быть сопоставлены с распределениями давления, полученными из теории потенциального течения идеальной жидкости.  [c.401]

Другим примером потенциального потока с циркуляцией является поток около крыла самолета (рис. 63). Этот поток получатся из обычного потенциального потока без циркуляции (рис. 64) путем наложения на последний циркуляционного потока, изображеннго на рис. 65, вследствие чего при обтекании крыла также возникает циркуляция. С циркуляцией тесно связано возникновение подъемной силы крыла. Без всякого расчета легко видеть, что при наложении циркуляционного потока на обычный потенциальный поток (рис. 64) скорость последнего над крылом увеличивается, а под крылом, наоборот, уменьшается. Согласно уравнению Бернулли это означает, что над крылом давление уменьшается, а под крылом увеличивается, следовательно, возникает сила, действующая на крыло снизу вверх, т.е. подъемная сила. Кут-та (Ки11а) и Н. Е. Жуковский независимо друг от друга нашли путем теоретических расчетов, что подъемная сила на единицу длины крыла равна  [c.104]

Рассмотрим в качестве примера потенциальное бесциркуляционное обтекание круглого цилиндра ( 4 гл. 7). Начиная от передней критической точки /<1, давление убывает dpldx < 0), а скорость возрастает вплоть до точки С, за которой начинается обратное изменение давления и скорости. Жидкие частицы на участках пути вблизи границы Ki испытывают ускорение, обусловленное падением давления в направлении движения, и их кинетическая энергия возрастает. В идеальной жидкости этому ускорению ничто не препятствует, но в реальной движение тормозится трением, развивающимся благодаря прилипанию жидкости к твердой поверхности и образованию пограничного слоя. Все же благодаря прямому перепаду давления ускорение в нем наблюдается, по крайней мере, до точки С. Иначе обстоит дело на участках С/<2. Здесь dpldx > 0 и частицам приходится двигаться против нарастающего давления, В идеальной жидкости это приводит лишь к убыванию кинетической энергии и восстановлению полного давления, достигаемого в точке К2- В реальной жидкости часть кинетической энергии должна быть затрачена еще на компенсацию работы сил трения, оказывающих тормозящее действие. В связи с этим частицы, двигавшиеся в пограничном слое и имевшие малый запас кинетической энергии, начиная с некоторой точки О (рис. 186), не могут уже преодолевать совокупное действие обратного перепада давления и трения они в этом сечении останавливаются, а частицы, двигающиеся по более удаленным от тела траекториям, отклоняются в сторону внешнего потока. Часть жидкости, расположенная ниже точки О, под действием обратного градиента давления получает возвратное движение. Это явление и называют отрывом пограничного слоя. Структура течения и конфигурация линий тока вблизи точки отрыва показаны ка рис. 186.  [c.382]


Рассмотрим вначале плоокий потенциальный поток идеальной несжимаемой жидкости на примере обтекания реактивной решетки (рис. 11.2). Вследствие периодичности потока достаточно изучить течение в одном межлопаточном канале или обтекание одного профиля. На рис. 11.2,а оплошными линиями изображены линии тока il)= onst.  [c.292]

Одним из простейших примеров потенциальных течений является установившееся обтекание потоком несжимаемой невязкой жидкости сферы радиуса R с центром в начале координат Предположим, что скорость нееозмущснного потока параллельна оси и имеет величину V. Решение получаегся наложением течения, вызванного диполем, на однородный поток, В результате легко вычислить теоретическое распределение давлений вокруг сферы для течения. Если не учитывать гидростатические силы, то оказывается, что распределение давлений впереди и позади сферы вполне симметрично и, следовательно, результирующая сила давления равна нулю. Аналогичный результат можно получить и для нулевой подъемной силы, что находятся в явном противоречии с каждодневным опытом.  [c.64]

Первый пример потенциального движения жидкости привел еще в середине XVIII в. Л. Эйлер. Последующее изучение кинематики сплошной среды, выполненное Коши и Стоксом, привело к появлению понятия вихря и к изучению вихревых течений. Ряд изящных и важных теорем о вихревых линиях и вихревых трубках был опубликован в 1858 г. Г. Гельмгольцем, привлекшим интерес исследователей к вихревым течениям. В этот же период было введено понятие циркуляции скорости и установлена связь циркуляции с потоком вихря. Гельмгольцу, в частности, принадлежит важная кинемати-74 ческая теорема о постоянстве потока вдоль вихревой трубки, из которой следует невозможность обрыва вихревых трубок внутри жидкости.  [c.74]

Потенциальное течение с циркуляцией. Подъемная сила крыла. Эффект Магнуса. Хотя при всех потенциальных течениях циркуляция в любой малой области потока равна нулю, тем не менее существуют такие потенциальные потоки, в которых циркуляция для всего потока в целом не равна нулю. Правда, необходимым условием для этого является многосвязность области, в которой происходит течение. Область пространства или плоскости называется многосвязной, если в ней можно провести такие замкнутые кривые, которые нельзя стянуть в точку, не разрывая их, т.е. не выходя за пределы области. Примерами двухсвязной области могут служить комната с колонной посредине или область вокруг кольца. Пусть поток занимает многосвязную область, в каждой односвязной части которой частицы движутся без вращения, следовательно, в каждой такой части циркуляция равна нулю. Далее, пусть в рассматриваемой области циркуляция вдоль какой-нибудь кривой, которую нельзя стянуть в точку, равна Г. Тогда, как легко доказать, циркуляция вдоль любой другой кривой, которую нельзя стянуть в точку и которая получается из первой непрерывной деформацией, также равна Г. В 10 мы определили потенциал в заданной точке как значение криволинейного интеграла при интегрировании между фиксированной точкой и заданной точкой. Поскольку теперь в потоке существуют замкнутые кривые, вдоль которых циркуляция не равна нулю, а имеет некоторое значение Г, то это означает, что потенциал такого потока не является больше однозначным наоборот.  [c.102]

Другой пример сложения потенциальных потоков показан на рис. 3-3. Сложение плоского источника (стока) и циркуляционного течения дает более сложное движение, называемое вихреисточником (вихрестоком), линии тока которого имеют форму спиралей.  [c.77]

Отсутствие азимутальной составляющей вектора скорости в рассмотренных вариационных задачах при осевой симметрии является ограничением, которое может, например, снизить силу тяти оптимального сопла. В работах [19, 20] на примере присутствия потенциальной закрутки потока вокруг оси симметрии выведены необходимые условия экстремума и продемонстрировано увеличение силы тяги. Дальнейшие исследования в этом направлении проведены Гудерлеем, Табаком, Брей-тером и Бхутани [21]. Систематическое сравнение оптимальных сопел этого типа выполнено Тилляевой [22].  [c.47]

В ударной волне, возникающей при обтекании вогнутого профиля, мы имеем пример волны, начинающейся от некоторой точки, расположенной в самом потоке вдали от твердых стенок. Такая точка начала ударной волны обладает некоторыми общими свойствами, которые мы здесь отметим. В самой точке начала интенсивность ударной волны обращается в нуль, а вблизи нее мала. Но в ударной волне слабой интенсивности скачок энтропии и ротора скорости — величины третьего порядка малости, и потому изменение течения при прохождении через волну отличается от непрерывного потенциального нзэнтропического изменения лишь в величинах третьего порядка. Отсюда следует, что в отходящих от точки начала ударной волны слабых разрывах должны испытывать скачок лишь производные третьего порядка от различных величин. Таких разрывов будет, вообще говоря, два слабый разрыв, совпадающий с характеристикой, и тангенциальный слабый разрыв, совпадающий с линией тока (см. конец 96).  [c.606]

Ограничиваясь нривс.депными примерами простых потенциальных течешгй, отметим, что в этих случаях нахождение Ф и Ч оказалось несложным благодаря простоте граничных условий (потоки — безграничны).  [c.322]

Самым простым способом получения консервативных схем является метод баланса, основанный на применении дивергентных форм физических законов к ячейкам сетки. Рассмотрим его на примере разностной схемы для расчета потенциального поля. Потенциальные поля описывают стационарный процесс теп.топроводности, электрическое поле рабочего конденсатора при диэлектрическом нагреве и т. д. т Запишем выражение для потока вектора  [c.131]


В эл.-магн. стоячей В. фазы колебаний олектрпч. и магн. полой смещены во времени на п/2, поэтому поля обращаются в нуль по очереди . Аналогичное смещение по фазе происходит и в пространстве пучности Е приходятся на узлы Я и т. д. Поэтому поток энергии в таких В. в среднем за период колебаний равен пулю, но в каждой четвертьволновой ячейке происходит ме-риодич, с частотой 2(о) перекачка электрич. анергии в магнитную и обратно. В случае звуковых В, аналогичным образом ведут себя звуковое давление р и колебат. скорость частиц V, при этом кинетич. энергия переходит в потенциальную и обратно. Т. о., стоячая В, в любой физ. системе как бы распадается на совокупность независимых осцилляторов, колеблющихся в чередующихся фазах. Волновое поле внутри замкнутого объёма с идеально отражающими стенками (резонатора). существует в виде стоячих В. Простейший пример — система, состоящая из двух параллельных, от]ражающи1 зеркал, между к-рыми оказывается запертой плоская эл.-магн. В. интерферометр Фабри—Перо). Поскольку на поверхности идеально проводящего зеркала тангенциальная составляющая электрич. поля Еравна нулю, границы x=L фиксируют узлы ф-ции [c.318]

С другой стороны, оценка точности 1-го приближения во многом зависит от типа используемого в расчете распределения скорости внешнего потока по контуру цилиндра. Приведенные на рис. 2,а в качестве примера результаты расчета локальных коэффициентов теплообмена кругового цилиндра для двух распределений скорости — потенциального L/=2 7< sin О и по Хименцу — показывают, что только за этот счет можно получить расхождения порядка 10—12%.  [c.146]

Расчеты с ненулевыми градиентами давления выходят за пределы этой книги. Однако результаты приближенного метода решения для установившегося ламинарного пограничного слоя на эллиптическом цилиндре в потоке со скоростью и ас приводятся на рис. 10-9 [Л. 1]. На рис. 10-9,а показано поперечное сечение этого цилиндра, представляюш,ее собой эллипс с отношением осей 4 1, и распределение скорости вдоль внешней границы пограничного слоя. В этом примере предполагается, что U(x) представляет собой скорость невязкого потенциального течения 1. На рис. 10-9,6 приведены вычисленные профили безразмерной скорости для разных сечений от передней критической точки при х = 0 до точки отрыва. Обратите внимание, как развивается перегиб профиля скорости с возрастанием xjl. Предполагается, что отрыв будет иметь место в точке, где duldy y=a = Q. На рис. 10-9,в приведено распределение касательного напряжения на стенке, которое постепенно снижается до нуля в точке отрыва.  [c.218]

В качестве примера безвихревого движения около тела рассмотрим двумерный поток в направлении оси х, обтекающий неподвижный цилиндр, ось которого нерпендикулярна направлению течения. Уравнение ноля течения получается из потенциальной теории [Л. 1], причем линии тока соответствуют постоянным значениям функции тока  [c.394]


Смотреть страницы где упоминается термин Примеры потенциальных потоков : [c.179]    [c.452]    [c.460]    [c.461]    [c.231]    [c.202]    [c.81]    [c.205]   
Смотреть главы в:

Гидрогазодинамика Учебное пособие для вузов  -> Примеры потенциальных потоков



ПОИСК



Метод наложения потенциальных потоков. Примеры его применения. Диполь

Поток потенциальный

Примеры пространственного обтекания тел установившимся потенциальным потоком

Примеры сложения потенциальных потоков



© 2025 Mash-xxl.info Реклама на сайте