Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные характеристики металлов и сплавов

II. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ МЕТАЛЛОВ И СПЛАВОВ  [c.27]

В табл. 140—169 приведены основные характеристики металлов и сплавов, применяемых для деталей крановых механизмов.  [c.359]

Твердость тесно связана с такими основными характеристиками металл и сплавов, как прочность, износоустойчивость, и является важной характеристикой металла для выбора режущих инструментов (напильников, резцов, метчиков, сверл и др.). Часто по измеренной твердости металла судят о его способности сопротивляться износу, например, чем тверже сталь, тем меньше она изнашивается, и наоборот.  [c.16]


Основные механические характеристики металлов и сплавов  [c.11]

К основным физическим характеристикам металлов и сплавов следует отнести удельный вес (Г/сж ), коэс ициент линейного расширения (а —  [c.13]

Микропластическое внутреннее трение определяют для характеристики металлов и сплавов с высокой или низкой способностью к рассеиванию колебаний. Изучая частотную или температурную зависимость другого вида внутреннего трения — диффузионного, можно выявить его источники, основным из которых является перестройка атомов в поле напряжений. Это обстоятельство дает возможность использовать метод диффузионного внутреннего трения для исследования превращений, не сопровождающихся остаточным изменением структуры, например, для изучения распада пересыщенных твердых растворов, протекающего при низких температурах, упорядочения и других процессов.  [c.26]

Основной фактор, влияющий иа изменение механических характеристик металлов и сплавов в процессе холодной прокатки,—величина суммарной степени обжатия. С увеличением степени деформации происходит упрочнение металла, обусловленное отсутствием процессов рекристаллизации и возврата в его структуре.  [c.107]

Помимо рассмотренных и ряда не нашедших освещения в данной главе приборов, аппаратов, установок и методов, применяемых при изучении различных видов эрозионного разрушения, существует еще множество косвенных методов, использующих оригинальную аппаратуру для установления характеристик металлов и среды в процессе эрозии. Сюда относятся установки и методы испытания на термическую усталость очень широкий класс приборов и установок для определения прочностных характеристик металлов и сплавов при высоких и сверхвысоких температурах разнообразная аппаратура для определения теплофизических констант металлов, особенно при высоких температурах методы определения прочности сцепления эрозионно-стойкого покрытия с основным металлом высокочастотная аппаратура для получения весьма высоких температур аппаратура для изучения свойств материалов в вакууме и при сверхвысоких давлениях различные установки для изучения гидродинамических, газодинамических и электродинамических процессов и многое, многое другое.  [c.130]

Систематизированы промышленные изделия из благородных металлов и сплавов. Даны полная техническая характеристика этих изделий и нормативно-техническая документация, по которой выпускается продукция. Приведены сведения о биметаллах, изделиях из материалов порошковой металлургии и других видах продукции. Изложены основные свойства благородных металлов и области их применения. Рассмотрен химический состав указанных металлов и сплавов и описаны стандартные методы его анализа.  [c.23]


Так, проф. М. М. Хрущов и М. А. Бабичев [2171 исследовали различные материалы и сплавы на износ при трении об абразивное полотно и определяли так называемую относительную износостойкость материалов е, т. е. отношение износа эталонного материала к износу испытуемого. Исследования показали,, что основной характеристикой абразивной износостойкости является твердость металлов и сплавов. Для чистых металлов и термиче ски необработанных сталей имеется линейная зависимость между их твердостью и износостойкостью  [c.245]

Основные параметры, подлежащие контролю, в большинстве случаев характеризуют механические свойства материалов — прочность, пластичность, твердость, ударную вязкость и выносливость. Прочность металлов и сплавов оценивают характеристиками.  [c.8]

Химический состав металлов и сплавов — основная и наиболее неизменная характеристика — в справочнике из-за ограниченности объема приводится лишь в случаях, когда металлы и сплавы подвергаются дополнительной термохимической улучшающей обработке.  [c.10]

В табл. 245—287 приводятся основные свойства, марки, механические свойства, характеристики, примеры применения и основной сортамент цветных металлов и сплавов, имеющих наиболее широкое применение в промышленной практике.  [c.598]

Глава XI Технология термической обработки металлов- содержит справочные данные по термической и химико-термической обработке деталей из стали, чугуна и частично цветных металлов и сплавов (по ряду алюминиевых, магниевых и других сплавов сведения по термической обработке помещены в т. 4). В эту главу включены также технологические характеристики основного и вспомогательного оборудования термических цехов.  [c.724]

Помимо химико-термической обработки поверхностей для улучшения эрозионной стойкости металла применяются также методы металлизации. Как известно, металлизация распылением обычно производится следующим образом струп сжатого газа (воздуха, азота, аргона, генераторного или какого-либо другого газа) направляется на плавящиеся в электрической дуге концы двух электродов из материала, который предполагается наносить на обрабатываемую поверхность. Под действием струн распыленной в дуге металл диспергируется на частицы размером 8—10 мкм, которые, попадая на поверхность изделий, образуют прочный и твердый защитный слой с хорошей износоустойчивостью. По механическим свойствам, составу и физическим характеристикам слой, полученный в результате газопламенного напыления, может весьма существенно отличаться от основного материала изделия. В качестве материала для напыления используются тугоплавкие металлы и сплавы, а также керамические материалы.  [c.152]

Свариваемость — сложное, комплексное свойство материалов. Его нельзя определить каким-либо одним испытанием, одной методикой. Оценка свариваемости непосредственно связана с характеристикой материала, условиями его эксплуатации. Однако некоторые критерии оценки свариваемости являются достаточно общими для широкого круга металлов и сплавов. Рассмотрим основные из них.  [c.495]

Часть III учебного пособия посвящена изложению коррозионных характеристик ряда металлов и сплавов, а также неметаллических материалов. В части IV изложены основные методы защиты машин и аппаратов от коррозии.  [c.4]

В устройствах, работающих по замкнутому циклу, в том числе и в двигателе Стирлинга, необходимо избегать потерь рабочего тела, поскольку такие потери снижают среднее давление цикла и, следовательно, выходную мощность. Имеется много путей для просачивания рабочего тела из внутренней полости двигателя например, водород под действием высоких давлений и температур будет диффундировать сквозь металлические перегородки, изготовленные из больщинства металлов и сплавов (особенно это относится к нержавеющей стали). Однако чаще всего основной причиной утечки является просачивание газа под давлением около поршней и их штоков. На первый взгляд такую утечку можно ликвидировать, установив обычные уплотнения, т. е. металлические кольца или кольца из шнура, поскольку, например, газовые компрессоры работают при давлениях, превышающих давление в двигателях Стирлинга. Однако рабочие температуры в двигателях Стирлинга выше, чем в компрессорах, и это усложняет решение проблемы уплотнений. В двигателях внутреннего сгорания рабочие температуры сопоставимы с температурами в двигателях Стирлинга, однако в двигателях Стирлинга уплотнения должны работать в атмосфе ре, не содержащей масла, поскольку при попадании масла из картера в рабочие полости происходит его пиролиз и образование углеродных отложений, засоряющих теплообменники и особенно высокопористые регенераторы. Кроме того, масло в картере может загрязняться просачивающимся рабочим телом. Усовершенствование уплотнений не должно производиться за счет увеличения трения, поскольку это может привести к недопустимому падению рабочих характеристик на валу двигателя. Из сказанного видно, что создание работоспособной конструкции уплотнения для двигателей Стирлинга с высоким внутренним давлением представляет достаточно серьезную проблему. Этот вопрос рассматривается в разд. 1.7. Необходимо уяснить, что использование газообразного рабочего тела, находящегося под высоким давлением, делает чрезвычайно вероятной утечку газа безотносительно к степени совершенства уплотняющих устройств. Следовательно, чтобы поддерживать выходную мощность двигателя на одном уровне в течение длительного периода эксплуатации, такая утечка должна компенсироваться. Практически это означает, что на двигателях Стирлинга с высоким давлением должен быть установлен компрессор, автоматически нагнетающий сжатый газ в двигатель при падении давления цикла ниже определенного уровня иными словами, должен быть обеспечен процесс подкачки . Компрессор может быть расположен как внутри двигателя, так и вне его. В двигателе с косой шайбой Форд — Филипс имеется внутренний поршневой компрессор, состоящий из небольших порш-  [c.81]


Металлы и сплавы, характеристики механических свойств которых позволяют использовать их до -60 °С. Они являются основными конструкционными материалами холодильного машиностроения. Их используют также для изготовления изделий так называемого северного исполнения. К этой группе относятся качественные углеродистые и низколегированные стали ферритного и перлитного классов с ОЦК решеткой.  [c.595]

Свариваемость — это способность металлов и сплавов образовывать неразъемные соединения с требуемыми технологическими характеристиками. Свариваемость оценивают путем сравнения характеристик свойств сварных соединений с характеристиками свойств основного металла или их нормативными значениями. Свариваемость данного металла тем-выше, чем больше способов сварки может быть применено, проще технология получения сварного соединения и шире пределы допускаемых режимов сварки.  [c.45]

Жидкий металл как основной исходный продукт металлургического производства требует детального изучения. Структурное состояние расплавленных металлов и сплавов определяет процессы, протекающие при формировании стального слитка. Исследователи и практики проявляют большой интерес к результатам исследования структуры и свойств жидкости, пытаясь установить связь характеристик расплава с параметрами кристаллизации. Однако и в учебной, и в оригинальной литературе эти вопросы не всегда изложены достаточно подробно.  [c.10]

Важность процессов зарождения, размножения и перераспределения дислокаций (и вообще дефектов атомно-кристаллической структуры) при трении не вызывает сомнений. Роль дислокационных процессов наглядна проявляется в изменении характеристик трения и износа различных материалов (стм. п. 3 данной главы). Основная сложность интерпретации непосредственной роли изменений плотности несовершенств структуры металлов и сплавов в механизме трения и изнашивания определяется труд-ностью анализа деформационных процессов вследствие их локализации В ТОнких поверхностных слоях и высокой неоднородности деформации вдоль профиля поверхности.  [c.52]

Как уже отмечалось, основным результатом испытания на растяжение является диаграмма нагрузка — удлинение, по которой рассчитывают большинство характеристик механических свойств. Многие из них соответствуют отдельным точкам диаграммы. Следовательно, вся диаграмма в целом служит наиболее полной характеристикой материала. Поэтому прежде чем рассматривать методику расчета отдельных механических свойств и анализировать их смысл, целесообразно ознакомиться с общими закономерностями изменения нагрузки (напряжения) в функции деформации при растяжении различных металлов и сплавов.  [c.110]

Основной характеристикой пластичности при кручении является относительный сдвиг у, определяемый по формуле (109) в момент разрушения. Величина у при этом включает как упругую, так и остаточную деформацию. Для пластичных материалов, у которых вклад упругой деформации по сравнению с пластической относительно мал, общий сдвиг можно без большой цо-грешности принять за остаточный. Для малопластичных металлов и сплавов при расчете остаточного относительного сдвига необходимо вычесть из общего у, определенного по формуле (109), упругий сдвиг  [c.194]

Общеизвестно значение и распространенность различных методов дилатометрических измерений при исследовании кинетики фазовых превращений в твердых веществах. Последние считаются одними из наиболее чувствительных и надежных. Не вскрывая существа превращений, они дают весьма точную временную характеристику суммарного процесса при применении простой и часто стандартной аппаратуры. Дилатометрический метод физико-химического анализа имеет то основное преимущество исследования фазовых превращений в твердых веществах, в том числе в металлах и сплавах, что величина объемного эффекта, наблюдающаяся при фазовых превращениях первого рода, зависит не от скорости нагрева или охлаждения, а только от температуры. Это позволяет в результате уменьшения скорости изменения температуры записывать объемные эффекты в условиях, приближающихся к равновесным, т. е. изотермическим. Указанное обстоятельство особенно важно, если мы пользуемся дилатометрическим методом при построении диаграммы состояний. Методом дилатометрического анализа, помимо непосредственного определения коэффициентов термического расширения, являющихся одной из основных характеристик материалов, можно также исследовать явления упорядочения и распада твердых растворов, рекристаллизации и вообще все процессы, которые сопровождаются экстремальным изменением объема. Немаловажным преимуществом является также возможность получения непрерывной записи кривых нагрева или  [c.41]

Способность металлов и сплавов образовывать при сварке неразъемное соединение за счет образования металлической связи определяется их основными физическими, химическими и физикохимическими свойствами и называется физической или принципиальной свариваемостью. Совокупность свойств технологических характеристик основного металла, определяющих его реакцию на изменения, происходящие при сварке, и его способность образовывать сварное соединение с требуемыми свойствами, называют технологической свариваемостью.  [c.488]

Наиболее распространены макро- и микроструктурный анализы и исследования механических свойств. Последние определяют как при комнатной температуре, так и применительно к условиям работы изготовляемых изделий при повышенных или пониженных температурах. Определяемые при этих испытаниях предел прочности на растяжение а ,, предел текучести а , относительное удлинение 8, относительное сужение площади поперечного сечения ф, твердость, предел выносливости ах, ударная вязкость и др. являются основными характеристиками, приводящимися в государственных стандартах (ГОСТ) и технических условиях (ТУ) на металлы и сплавы.  [c.92]


Характеристики металлов и сплавов с округлой петлей гистерезиса. По предельной петле гистерезиса определяют значения индукции насыщения Bs, остаточной индукции и коэрцитивной силы Не (рис. 17,4). Удельные потери на единицу веса в ферромагнитных материалах при переменном токе определяют при заданной максимальной индукции Вт н частоте /. Если, например, В = Юкгс = тл, а / = 50 гц, то эти потери обозначают Рю/5о [ т/кг]. Если снять ряд петель гистерезиса при переменном токе для нарастающих значений иапряжениостп поля Н и соединить их вершины плавной линией, то получится основная кривая индукции (намагничивания). С помощью этой кривой опре-  [c.229]

Третий раздел содержит сведения по составу, структуре и свойствам основных цветных металлов и сплавов на их основе. Приведены марки сплавов на основе алюминия, магния, титана, цинка, меди, никеля и указаны основные области их применения. С учетом экономической целесообразности широкого применения порошковых материалов даны характеристики материалов для подшипников скольжения, конструкционных, антифрикционных, фрикционных материалов, а также пористых фильтров тонкой 0ЧИСТЮ1 жидкостей и газов.  [c.3]

Основными магнитными характеристиками сталей и сплавов являются остаточная индукция Вг[Го](магнитная шдукция. сохраняющаяся в металле после его намагничивания и дальнейшего снятия  [c.76]

Основными требованиями, предъявляемыми к конструкционным металлам и сплавам являются прочность и пластичность, высокие упругость и износостойкость, жаростойкость и жаропрочность, стойкость к криогенным температурам, высокая коррозионная стойкость, стойкость к тепловым ударам и перегрузкам, технологичность, стойкость к радиационому облучению, экономичность. Непременным требованием, предъявляемым ко всем авиационным материалам, является их высокий коэффициент качества, т. е. отношение величины данной характеристики материала к плотности.  [c.261]

Основной характеристикой термогальванического элемента является отношение плотности термогальванического тока к разности температур между холодным и горячим электродом — так называемая общая термогальваническая эффективность На-Исследования ряда металлов и сплавов, проведенные в растворах в интервале pH 0—14 с различным анионным составом, показали, что величина Н может изменяться в пределах от 210 доЗ- 10 а-см " град- . Отметим, что термогальванические пары возникают не только на металлах в коррозионно-активной среде, но и в условиях равновесия между металлом и его ионами в растворе.  [c.165]

Основным показателем качества цветных металлов является минимальное содержание в них примесей — чистота, определяющая наиболее естественное значение свойств металлов и. соответствующую эффективность при получении сплавов с определенными характеристиками. В связи с возросщими технологическими возможностями очистки металлов и сплавов постепенно исчезает деление их на первичные и вторичные и вводится критерий — степень чистоты. Свойства, особенно прочностные, цветных металлов и сплавов в значительной мере зависят от технологии образования изделий и от их размеров (масштабный фактор) и поэтому они, как правило, нормируются в стандартах и ТУ на конкретные изделия из цветных металлов и сплавов.  [c.77]

Свариваемость металлов и сплавов при точечной сварке характеризует способность материала образовывать сварные точки стабильной прочности, без трещин и значительной пористости в ядре, без повреждения поверхности свариваемых деталей и без существенного снижения своих основных свойств Втабл. 112и113 приведены характеристики свариваемости сталей и цветных металлов по данным Американской ассоциации производителей контактно-сварочного оборудования (RWMA)  [c.366]

С учетом указанного представляет интерес проанализировать полученные ранее [144, 1521 многочисленные результаты 6 взаимос,вязи-характеристик сопротивления усталостному разрушению различных металлов и сплавов и неупругой деформации за цикл на стадии стабилизации, которая, как отмечалось, соответствует моменту зарождения магистральной трещины. Исследования были проведены в основном на сплавах, имеющих высокий уровень неупругих деформаций, как правило, на гладких образцах сравнительно малых поперечных сечений. И в этом случае отличие между числом циклов до окончательного разрушения, которое фиксировалось в исследованиях, и до зарождения трещины размером I—1,5 мм невелико.  [c.67]

При таком характере контактного нагружения сопротивление металла разрушению определяется не усредненными свойствами отдельных макрообъемов, а свойствами металла отдельных микро-участков-или свойствами структурных составляющих. При этом представление о способности металла к пластической деформации и разрушению также изменяется. Некоторые свойства металлов и сплавов, не имеющие основного значения при обычных видах нагружения, при микроударном воздействии становятся первостепенными. Известно, например, что прочность отдельных микроучастков металла неодинакова. Даже в самых качественных сплавах с высокими усредненными показателями прочности имеются слабые микроучастки, которые не всегда заметно влияют на обычные характеристики их механической прочности в то же время при разрушении отдельных микрообъемов эти слабые микроучастки могут иметь решающее значение.  [c.90]

Рассмотрим, как изменяются основные пассивационные характеристики титана и сплавов системы Fe—Сг под влиянием легирующих компонентов. Характер пассивации металла или сплава определяется, как известно, кинетикой анодных процессов при переходе сплава в пассивное состояние, при нахождении их в пассивном состоянии и при возможном нарушении пассивности. Эти данные могут быть получены на основании анализа анодных поляризационных кривых. При некотором упрощении задачи построение кривых заменяют определением местоположения характерных точек (рис. 39). Здесь благоприятное смещение критичес-  [c.127]

Рассмотрим обобщение полуэмпирических моделей, основанное на введении двух и более мер повреждений. Необходимость в этом возникает очень часто. Описанная в 3,5 многостадийная модель, в сущности, принадлежит к моделям этого типа. Действительно, если вместо одной скалярной функции i t), удовлетворяющей уравнению (3.33), ввести т функций i] , t), каждая из которых описывает одну из стадий, то придем к векторной модели. Другая причина для введения таких моделей — необходимость учета нескольких взаимосвязанных и параллельно протекающих процессов. Так, для описания ползучести металлов и сплавов иногда используют модели, которые наряду с основной мерой повреждений — относительной деформацией ползучести, содержат характеристики степени микрорастрескивания, плотности линий скольжения и т. п. Для описания процессов повреждения и разрушения при наличии физико-химических воздействий среды (например, при коррозии или водородном охрупчивании) необходимо добавлять уравнения диффузии и химической кинетики, содержащие дополнительные функции. Эти уравнения образуют вместе с основным уравнением накопления повреждений общую систему относительно некоторой векторной мерыг t). Вместо скалярного уравнения (3.1) получаем векторное уравнение  [c.92]


Одним из " наиболее перспективных приложений ионной имплантации металлов и сплавов является легирование титана и его сплавов. Отличаясь высокими удельными прочностными характеристиками, титановые сплавы склонны к схватыванию при контактном взаимодействии и имеют низкую износостойкость. Методом ионной имплантации удается значительно повысить фрикционные характеристики титановых сплавов. В отдельных случаях износостойкость возрастает на три порядка [193]. Априори невозможно назвать основной механизм, ответственный за повышение фрикционных характеристик, так как он зависит от состава сплава, типа ионов, параметров имплантации и условий трения. Следует отметить, что, обладая большим сродством к С, N, В, О, титан легко образует соответствующие высокопрочные соединения. Их точная идентификация в поверхностных слоях затруднена изоморфизмом кристаллических структур и возможностью образования оксииитридов, карбонитридов, ок-сикарбидов и т. д.  [c.98]

Физические и механические свойства переходных металлов. Энергия межатомных связей, определяющая в конечном итоге технические показатели высокой прочности и жаропрочности тугоплавких металлов и сплавов на их основе кратковременную аь и длительную 01ООЧ прочность, предел текучести Стт или Сто,а. а равно и характеристики пластичности и вязкости — относительное удлинение б, сужение ij), ударную вязкость а , скорость ползучести е и т. д.,— может быть характеризована основными термодинамическими свойствами этих металлов [70].  [c.40]

Несмотря на ряд очевидных преимуществ, новое число твердости еще не получило широкого распространения в массовых испытаниях. Величина НВ остается основной характеристикой твердости при статическом вдавливании шарового индентора. Для достаточно пластичных материалов ее физический смысл соответствует условному пределу прочности при растяжении. Для многих металлов и сплавов между НВ и 0в существует линейная связь Ов=хНВ. Коэффициент пропорциональности д тем больше, чем меньше степень равномерной деформации. Он вавиоит также от упругих констант материала. Величина х для большинства деформируемых алюминиевых сплавов примерно постоянна и близка к 0.25, для сталей д я 0,35, для меди 0,48, и т. д.  [c.230]

Директивами XXIV съезда КПСС по пятилетнему плану развития народного хозяйства СССР на 1971— 1975 годы предусмотрено всемерно улучшать качестъо продукции во всех отраслях народного хозяйства , в том числе в черной металлургии считать основной задачей коренное улучшение качества металлопродукции... . Обусловлено это тем, что современная техника предъявляет возрастающие требования к качеству сталей, в частности к их прочности, пластичности и вязкости, так как в большинстве случаев указанные характеристики определяют надежность и эксплуатационную стойкость конструкций, машин, механизмов. Проблема прочности и пластичности является одной из основных проблем современной науки о металлах. Под влиянием внешних воздействий в сталях могут развиваться многие процессы, в том числе статическое или динамическое деформационное старение, в значительной мере определяющее уровень структурно чувствительных свойств и не сопровождающееся видимыми изменениями микроструктуры. Старение стали является частным вопросом общей проблемы старения металлов и сплавов.  [c.4]

В промышленности начал развиваться новый технологический процесс — процесс теплой обработки давлением. В частности, разработано и освоено теплое волочение труб [498, 499], теплая прокатка труб [500], теплое волочение прутков и проволоки [501—503]. Получает распространение теплая прокатка высококремнистых трансформаторных и динамных сталей [504], теплое прессование [505]. Разрабатываются новые способы механико-термической и термо-механической обработки, включающие теплую обработку давлением [506]. Опробована теплая правка катанки и таврового профиля [474]. Проводят систематические исследования по изучению температурных и скоростных зависимостей сопротивления деформированию металлов и сплавов [466, 507]. Разработано и внедрено теплое (полугорячее) выдавливание втулок и сменных головок торцовых гаечных ключей [518, с. 27]. Все возрастающий интерес к теплой деформации обусловлен тем, что она занимает промежуточное положение между холодной и горячей обработкой давлением и обладает достоинствами, присущими им обоим. Незначительное окисление поверхности, повышенные прочностные характеристики, более высокая точность и чистота поверхности изделий по сравнению с горячей обработкой давлением, более высокие допустимые степени деформации по сравнению с холодной обработкой давлением способствуют дальнейшему развитию теплой обработки давлением. Следует, однако, отметить, что теплая обработка давлением получает применение в основном при производстве труднодефор-мируемых сплавов. Основное внимание уделяется исследованию энергетических, силовых и других параметров, относящихся к области обработки давлением.  [c.268]


Смотреть страницы где упоминается термин Основные характеристики металлов и сплавов : [c.177]    [c.55]    [c.52]    [c.298]    [c.250]    [c.133]   
Смотреть главы в:

Краткий справочник технолога-машиностроителя Изд.2  -> Основные характеристики металлов и сплавов



ПОИСК



299 — Основные характеристики

299 — Основные характеристики характеристики

Металлы и сплавы Металлы

Металлы характеристика

Основные методы исследования металлов и сплавов и получаемые характеристики Структурные методы исследования

Основные характеристики металла шва

Сплавы металлов

Характеристики сплава



© 2025 Mash-xxl.info Реклама на сайте