Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление нагружениям

Для эквивалентных электрических сопротивлений нагруженного индуктора теперь можно написать  [c.85]

Если зазор между индуктором и нагреваемой деталью относительно велик и превышает глубину проникновения тока Д , п конце нагревав несколько раз, то реактивное сопротивление нагруженного индуктора х в основном определяется реактивностью рассеяния Х5, которая значительно превышает приведенное реактивное сопротивление х 2 и не зависит от режима нагрева. Следовательно,  [c.99]


Индуктивное сопротивление нагруженного индуктора (в омах)  [c.283]

Полное сопротивление нагруженного индуктора  [c.284]

В случае длительного малоциклового и неизотермического деформирования сопротивление нагружению меняется в зависимости от числа циклов нагружения, температур, формы цикла нагружения и нагрева (длительность цикла, выдержка и т. д.). Процесс сопровождается соответствующим увеличением или уменьшением показателей упрочнения и, следовательно, изменением деформаций и напряжений (коэффициентов K s Kg, К ).  [c.187]

Так как кривая зависимости нагрузки от прогиба может продлеваться до бесконечности в случае упругого материала, предельному значению давления будет соответствовать точка, в которой впервые в оболочке возникнут пластические деформации, после чего можно ожидать резкого падения сопротивления нагружению. При движении вдоль кривой увеличиваются как мембранные, так и изгибные напряжения, причем мембранные напряжения определяются главным образом вертикальной координатой точки на кривой, изгибные напряжения — горизонтальной координатой. Если пластические деформации возникают в точке Pi. при достаточно большом продвижении вдоль кривой, то предельное значение внешнего давления можно определить по формуле  [c.476]

Сила сопротивления нагруженной ветви определяют по формуле (271)  [c.238]

Цементуемые-, они имеют низкое содержание углерода (до 0,3%). После цементации они закаливаются с достижением высокой твердости только в насыщенном поверхностном слое — чаще толщиной до I—1,5 мм и сохраняют при этом вязкую сердцевину со сравнительно невысокой твердостью. Поскольку содержание углерода в поверхностном слое в этом случае повышенное (—0,8%), то твер-д сть HR 60—62) и износостойкость высокие. Однако сопротивление нагруженности пониженное из-за малой толщины поверхностного слоя и особенно из-за сравнительно резкого перепада твердости к более мягкой и менее прочной сердцевине. Более резкий переход в твердости у углеродистых сталей, используемых поэтому для работы с меньшими давлениями, и менее резкий — у легированных, имеющих более высокие прочность и твердость в сердце-виле после закалки.  [c.396]

Основными критериями химического сопротивления нагруженных стеклопластиков являются долговременная прочность и ползучесть. Прогнозирование долговременной прочности может проводиться на базе различных уравнений долговечности [например, (5.45) и (5.46)]. Могут быть использованы и параметрические уравнения.  [c.171]

Выражение (6.1) аналогично формуле для коэффициента отражения по напряжению в линии передачи с волновым сопротивлением нагруженной на сопротивление Эта аналогия полезна при определении коэффициентов Rut для многослойных сред. В конкретных расчетах можно использовать круговую диаграмму полных сопротивлений [121. При наклонном падении плоской электромагнитной волны на границу раздела задача о нахождении коэффициентов отражения и преломления имеет простое решение только для сред без потерь. Поэтому приведенные соотношения можно применять только тогда, когда потери в реальных среда малй, т. е. если tg б, <С I.  [c.62]


Рис. 5.2. Длинная линия с волновым сопротивлением / , нагруженная на концах на включенные параллельно сопротивление к и Рис. 5.2. <a href="/info/145100">Длинная линия</a> с <a href="/info/13954">волновым сопротивлением</a> / , нагруженная на концах на <a href="/info/295379">включенные параллельно</a> сопротивление к и
Здесь F - площадь поперечного сечения I - длина стержня, балки -момент сопротивления при изгибе 7 — о.севой момент инерции сечения - момент сопротивления при кручении - момент инерции при кручении h — толщина оболочки, пластины г — радиус оболочки, пластины Е, G - moj h упругости при растяжении и сдвиге соответственно а, а, 1, oi2, а% — коэффициенты, зависящие от условий закрепления, нагружения и коэффициента Пуассона /i.  [c.5]

Выполнение этих требований не только повышает надежность детали (в том числе и при динамическом нагружении), но и улучшает другие эксплуатационные характеристики, например сопротивление истиранию.  [c.59]

Жесткость упругих элементов в зависимости от их конструкции и схемы нагружения определяют методами сопротивления материалов. Подставляя вместо С зависимость для жесткости конкретного упругого элемента, вычисляют его геометрические размеры.  [c.215]

Применение и развитие схемы Иоффе для металлов принадлежит И. Н. Давиденкову [49]. Он вводит температурно-независимую характеристику сопротивления отрыву S . В то же время считается, что S суш,ественно зависит от пластической деформации. Давиденков отмечает, что у стали существуют два механизма разрушения (рис. 2.5,6). Хрупкое разрушение происходит при пересечении кривой сопротивления отрыву fd, которая возрастает с ростом пластической деформации. В случае, если кривая нагружения достигнет сначала кривой вязкого отрыва db, произойдет вязкое разрушение.  [c.57]

Исследования барьерной роли микронапряжений и составляющих деформационной субструктуры позволили установить, что с ростом пластической деформации эффективность указанных барьеров по остановке трещин увеличивается. Используя взаимосвязь критического напряжения хрупкого разрушения S с сопротивлением материала развитию микротрещин, т. е. с барьерами различной природы, предложен подход к аналитическому прогнозированию S в статически и циклически деформированном материале. Оказалось, что S независимо от истории нагружения монотонно увеличивается с ростом накопленной деформации, мерой которой может служить параметр Одквиста.  [c.147]

В настоящее время для расчета прочности и долговечности конструкций с трещинами используется механика разрущения. Процедура такого расчета заключается в следующем. На первом этапе определяются те или иные параметры механики разрушения (например, коэффициент интенсивности напряжений, J- или Т -интеграл, интенсивность высвобождения упругой энергии), зависящие от характера и уровня нагружения, а также от длины трещины. Далее на основании экспериментальных данных по сопротивлению росту трещин, представленных в терминах указанных параметров, определяется долговечность или прочность элемента конструкции.  [c.188]

Особая роль сварных соединений в вопросах прочности конструкций при переменном нагружении привлекла пристальное внимание многих исследователей к свойствам материала соединения, а также к проблеме влияния остаточных сварочных напряжений (ОСН) на развитие трещин усталости [23, 235, 361]. Первоначально делались попытки методами механики разрушения получить интегральные сведения о сопротивлении  [c.196]

Сопоставляя поведение реальной трещины в конструкции с деформированием надреза, полученного с помощью предлагаемой модели, можно отметить следующее. Если на некоторых участках по длине трещины возникают нормальные растягивающие напряжения, то трещина в этих местах раскрывается, практически не сопротивляясь прикладываемым нагрузкам уровень, напряжений в прилегающих областях материала невелик. В предлагаемой модели это условие обеспечивается за счет назначения в соответствующих элементах трещины модуля упругости Е, вызывающего разгрузку элементов и значительное увеличение податливости на рассматриваемом участке, В том случае, когда на некотором участке реальной трещины действуют напряжения сжатия, приводящие к контактированию (схлопыванию) берегов трещины, тело с точки зрения передачи силового потока, нормального к трещине, работает как монолит, и модуль упругости в принятой модели для соответствующих элементов трещины назначается равным обычному модулю упругости материала конструкции. При соприкосновении берегов трещины возможны два варианта берега могут проскальзывать относительно друг друга и не проскальзывать. Второй вариант автоматически реализуется при условии Етр = Е. Для реализации первого варианта необходимо обеспечить отсутствие сопротивления полости трещины на сдвиг. Процедура необходимых для этого преобразований для более общего случая — динамического нагружения конструкций — будет изложена в разделе 4.3.1.  [c.202]


Прогноз субкритического развития трещины при вязком разрушении во многих случаях, как известно, проводится на основании концепции /д-кривых. Данная концепция весьма формальна и не отражает физической сущности рассматриваемого явления. Так, увеличение сопротивления росту трещины по мере ее развития, выраженное зависимостью Jr AL), связано с неоднозначностью описания НДС у вершины движущейся трещины с помощью /-интеграла реально сопротивление разрушению материала у вершины растущей трещины (критическая деформация е/) остается постоянным. Кроме того, Уд-кривые не инвариантны к схеме нагружения и типу образца, что ставит под сомнение их использование для анализа предельных состояний элементов конструкций с трещинами.  [c.266]

Эк])ивалентиые электрические сопротивления нагруженного индуктора (без шин) по формулам (6-10)  [c.259]

Электрическое сопротивление преобразователя Zn. э — комплексное электрическое сопротивление, измеренное на зажимах преобразователя при опре-деленмон акустической нагрузке на его рабочей поверхности. Различают электрическое сопротивление нагруженного преобразователя Z" g и не-нагруженного 3. График зависимости модуля I Zn, э I от частоты имеет в области рабочих частот два характерных экстремума минимум на частотах резонанса и антирезонанса. Значения Z . g и его параметры используют для определения оптимальных условий согласования преобразователя с электронным блоком дефектоскопа, а также для диагностирования его качества. Например, при нарушении склейки пьезопластины с демпфером значения Z g,  [c.214]

Использование образцов с цилиндрической формой рабочей части или плоских образцов постоянной ширины на рабочей длине как в случае применения продольных, так и поперечных деформо-метров приводит к получению недостоверных результатов. Продольные деформометры, охватывающие различные зоны сварного шва, дают осредненную (уменьшенную) величину деформации по сравнению с максимально деформируемой зоной, в которой, как правило, происходит разрушение. Аналогичная картина может получиться и при использовании поперечных деформометров, ибо место установки деформометра может оказаться в сечении не с минимальным сопротивлением нагружению.  [c.157]

Случая сомнительвый (критический) по Ляпунову 459, 460 Смещение статическое 321 Сопротивление нагружениям 137-142  [c.613]

Известны случаи малого вл11яния запаса упругой энергии на величину максимальной нагрузки (прочность) и при испытании тонкостенных оболочек и образцов другой формы до разрушения однако во всех случаях с ростом запаса упругой энергии скорость процесса пластической деформации существенно увеличивается. ГТостепенные нарушения прочности (в отличие от потери устойчивости), в большей мере характеризуют материал, степень неравномерности сопротивления нагружению Ю объему образца и в меньшей — зависят от свойств испытательной машины и других условий нагружения, от размеров тела и т. п. факторов. Отметим, что многие практически применяемые критические характеристики (критическая температура хрупкости, температура появления кристаллического излома, переход от установившейся к заключительной стадии ползучести и др.) отображают начало перехода в закритическое состояние по деформации или по разрушению и, таким образом, должны быть отнесены к группе характеристик потери устойчивости.  [c.78]

Рассмотрим вопрос о том, как определяется момент трения качения М . Физические явления, вызывающие трение качения, изучены мало, в технических расчетах пользуются в основном данными, полученными при экспериментах, проводимых над различными конкретными объектами катками, колесами, роликами и шариками в подшипниках и т. д. Опыт показывает, что сопротивление перекатыванию зависит от упругих свойств материалов соприкасающихся тел, кривизны соприкасающихся поверхностей и величины прижимающ,ей силы. На преодоление сопротивлений при перекатывании тел тратится работа. Работа эта расходуется на деформацию поверхностей касания. Пусть, например, имеется неподвижный цилиндр, лежащий на плоскости (рис. 11.26) и нагруженный некоторой силой F.  [c.232]

В первом разделе представлены основные формулы, относящиеся к расчетам как при простых видах деформации (растяжение и сжатие, кручение, изгиб), так и при сложном сопротивлении (косой изгиб, вкецентренное продольное нагружение, изгиб с кручением) в условиях статического и динамического нагружения расчетам на устойчивость, расчетам статически неопределимых систем, кривых стержней, тонкостенных и толстостенных сосудов.  [c.3]

В расчетах на сопротивление усталости действие кратковременного момента перегрузки не учитьшают, а фактический переменный режим нагружений заменяют эквивалентным (по усталостному воздействию) постоянным режимом с номинальным моментом Т (наибольшим из длительно действующих Т= Tj= / ц на рис. 2.2) и эквивалентным числом Np циклов нагружения.  [c.15]

Выполняют расчеты валов на статическую прочность и на сопротивление усталости. Расчет проводят в такой последовательности по чертежу сборочной единицы вала составляют расчетную схему, на которую наносят все внешние силы, нагружающие вал, приводя плоскости их действия к двум взаимно перпендикулярным плоскостям (горизонтальной X и вертикальной У). Затем определяют реакции опор в гбризонтальной и вертикальной плоскостях. В этих же плоскостях строят эпюры изгибающих моментов Мх Му, отдельно эпюру крутящего момента Предположительно устанавливают опасные сечения исходя из эпюр моментов, размеров сечений вала и концентраторов напряжений (обьршо сечения, в которых приложены внешние силы, моменты, реакции опор или места изменений сечения вала, нагруженные моментами). Проверяют прочность вала в опасных сечениях.  [c.165]


Отрицательные свойства соединение ослабляет вал и ступицу шпоночными пазами концентрация напряжений в зоне шпоночной канавки снижает сопротивление усталости вала прочность соединения ниже прочности вала и ступицы, в особенности при переходных посадках или посадках с зазором. Поэтому шпоночные соединения не рекомендуют для быстроходных динамически нагруженных валов. Технологическим недостатком призматических шпонок является трудность обеспечения их взаимозаменяемости, т. е. необходимость пригонки или подбора шпонки по пазу, что ограничивает их применение в крупносерийном и массовом производстве. Пригонкой стремятся обеспечить устойчивое положение шпонки в пазах, так как перекос (выворачивание) шпонки значительно ослабляет соединение. Сегментная шпонка с глубоким пазом в этом отношении обладает пре-имуп],еством перед простой призматической шпонкой. Ее предпочитают применять при массовом производстве.  [c.78]

Построить теоретическую форму (в виде бруса равного сопротивления изгибу) консольно нагруженной оси по данным, приведенным на рис. 12.5. Материал оси — сталь 45 нормализоваи-  [c.201]

Расчетное исследование НДС образцов из стали 15Х2МФА (рис. 1.4), подвергнутых растяжению в области низких температур, было проведено с целью анализа параметров, характеризующих сопротивление хрупкому разрушению материала [131]. Подробно результаты расчета и эксперимента будут изложены в подразделе 2.1.4. В настоящем разделе мы хотим продемонстрировать работоспособность метода решения упругопластических задач в части учета геометрической нелинейности. Дело в том, что перед разрушением испытанных образцов при Т = —100 и —10°С происходила потеря пластической устойчивости (зависимость нагрузки от перемещений имела максимум). Очевидно, что расчетным путем предсказать потерю несущей способности конструкции можно, решая упругопластическую задачу только в геометрически нелинейной постановке. При численном моделировании нагружение образцов осуществляли перемещением захватного сечения образца от этапа к этапу задавалось малое приращение перемещений [131]. При этом анализировали нагрузку, действующую на образец. Механические свойства стали 15Х2МФА, используемые в расчете, представлены в подразделе 2.1.4. На рис. 1.4 представлены зависимости нагрузки от перемещений захватной части образца. Видно, что соответствие экспериментальных данных с результатами расчета хорошее. Наибольшее отличие расчетной максимальной нагрузки от экспериментальной составляет приблизительно всего 3 % различие в среднеинтегральной деформации при разрушении образца е/ = —1п (1—i j) (i ) — перечное сужение нет-  [c.32]

Рассмотрим принципиальную возможность моделирования влияния пластического деформирования на 5с, исходя из увеличения сопротивления распространению микротрещины в результате эволюции структуры материала в процессе нагружения. Можно предположить, по крайней мере, две возможные причины увеличения сопротивления распространению трещин скола в деформированной структуре. Первая — это образование внут-ризеренной субструктуры, играющей роль дополнительных барьеров (помимо границ зерен), способных тормозить мнкро-трещину. Наиболее общим для широкого класса металлов структурным процессом, происходящим в материале при пластическом деформировании, является возникновение ячеистой, а затем с ростом деформации — фрагментированной структуры [211, 242, 255, 307, 320, 337, 344, 348, 357, 358]. Второй возможный механизм дополнительного торможения микротрещин — увеличение разориеитировок границ, исходно существующих взернз структурных составляющих (например, перлитных колоний). Первый механизм, по всей вероятности, может действовать в чистых ОЦК металлах с простой однофазной структурой. Второй, как можно предполагать,— в конструкционных сталях.  [c.77]

В низкоуглеродистых сталях и других деформационно стареющих материалах наблюдается четкий предел выносливости, т. е. ниже некоторого значения приложенного напряжения усталостная долговечность образцов неограниченно велика. Важность деформационного старения подтверждается так называемым эффектом тренировки образец в течение длительного времени подвергают циклическому нагружению при напряжениях ниже предела выносливости, после чего его усталостная долговечность существенно повышается благодаря увеличению напряжения течения в результате деформационного старения. Ранее считалось, что предел выносливости является характери-ристикой, отражающей сопротивление материала зарождению разрушения (т. е. зарождению усталостной трещины). В настоящее время взгляд на предел выносливости несколько трансформировался. Показано, что усталостная трещина может зарождаться и прорастать через поверхностные слои образца при напряжениях меньше предела выносливости, но не развивается в глубь образца и не приводит к разрушению [263, 423]. Таким образом, наличие предела выносливости не является следствием невозможности зарождения трещины, а скорее неспособности ее распространения в материале при данном уровне напряжений [152]. Данная закономерность позволяет связать предел выносливости с пороговым значением коэффициента интенсивности напряжений AKth, характеризующим отсутствие развития трещины при АК < А/Сгл- Указанный подход был нами использован при прогнозировании влияния асимметрии нагружения на предел выносливости. Подробное изложение полученных по данному вопросу результатов будет приведено в подразделе 4.1.4.  [c.128]

В настоящее время для анализа устойчивости квазистати-ческого подрастания трещины обычно используют концепцию Уд-кривых и модуля разрыва [33, 219, 339, 426]. Суть /д-подхода заключается в допущении, что процесс разрушения, происходящий у вершины субкритически развивающейся трещины, контролируется двумя параметрами приращением длины трещины AL и /-интегралом Черепанова—Райса, введенным для нелинейно-упругого тела. Иными словами, предполагается, что зависимость J (AL) однозначно определяет сопротивление субкри-тическому росту трещины независимо от вида приложенной нагрузки (при условии монотонного характера нагружения) и геометрии образца. В то же время во многих работах указывается на уязвимость этого подхода, в частности на неинвариант-ность /н-кривых к типу нагружения и геометрии образцов. Поэтому не случайно появление в последние годы большого количества работ, посвященных модификации /д-подхода путем введения различного вида энергетических интегралов [33, 276, 287, 288]. Наиболее значительные результаты получены при использовании интеграла Т [33, 287, 288]. В то же время методичес-  [c.253]

Практика эксплуатации сварных нетермообрабатываемых конструкций в условиях циклического нагружения показывает, что в большинстве случаев разрушения возникают в сварном шве или области сопряжения шва с основным металлом. Это связано с комплексом факторов, снижающих работоспособность сварных соединений, основными из которых являются концентрация напряжений и деформаций в зонах сопряжения шва с основным металлом, остаточные сварочные напряжения (ООН), а также ухудшение характеристик сопротивления усталости металла шва и зоны термического влияния по отношению к основному металлу [59, 119, 144].  [c.268]



Смотреть страницы где упоминается термин Сопротивление нагружениям : [c.283]    [c.23]    [c.137]    [c.139]    [c.141]    [c.602]    [c.125]    [c.9]    [c.240]    [c.88]    [c.396]    [c.205]    [c.57]    [c.199]   
Машиностроение Энциклопедия Т I-3 Кн 2 (1995) -- [ c.137 , c.138 , c.139 , c.140 , c.141 ]



ПОИСК



Базовые эксперименты и расчетные характеристики сопротивления малоцикловой усталости при неизотермическом нагружении

Зависимость сопротивления деформации от истории процесса нагружения

Зависимость сопротивления конструкционных материалов деформации от режима нагружения

Закономерности сопротивления усталости жаропрочных конструкционных материалов при малоцикловом термомеханическом нагружении

Испытания на сопротивление малоцикловому разрушению 96 — Методик нагружении — Методика

МЕТОДЫ И СРЕДСТВА ИССЛЕДОВАНИЯ ЗАКОНОМЕРНОСТЕЙ ДЕФОРМИРОВАНИЯ И РАЗРУШЕНИЯ ПРИ МАЛОЦИКЛОВОМ НАГРУЖЕНИИ Методы определения механических свойств материалов и характеристик сопротивления деформированию и разрушению

Машины с полигармоническим и двухкомпонентным нагружением Исследование сопротивления усталости при полигармоническом нагружении

Методы испытаний на сопротивление хрупкому разрушению при статическом нагружении

Методы определения сопротивления хрупкому разрушению при ударном нагружении

Методы оценки сопротивления распространению трещины при статическом нагружении

Методы оценки сопротивления распространению трещины при ударном нагружения

Покровский В. В. О прогнозировании влияния цикличности нагружения на сопротивление хрупкому разрушению конструкционных сплавов при наличии трещин

Расчет характеристик сопротивления усталости при многоцикловом нагружении (В. П. Когаев)

Расчетные характеристики сопротивления малоцикловой усталости ПО Метод расчета на прочность и долговечность элементов машин и конструкций при малоцикловом нагружении (У. А Махутов, Гусенков)

Расчеты на прочность по критериям сопротивления разрушению при однократном нагружении А Махутов)

СОПРОТИВЛЕНИЕ ДЕФОРМИРОВАНИЮ ПРИ ИЗОТЕРМИЧЕСКОМ НАГРУЖЕНИИ

Свойства материалов при циклическом изменении температуры и нагрузки Сопротивление материалов циклическому термическому нагружению

Сопротивление Влияние способа нагружени

Сопротивление деформациям и разрушению при многоцикловом нагружении

Сопротивление деформированию и разрушению жаропрочных материалов при статическом и циклическом нагружении

Сопротивление деформированию и разрушению при малоцикловом нагружении

Сопротивление деформированию и разрушению при циклическом нагружении

Сопротивление деформированию и разрушению при циклическом нагружении в связи с условиями нагружения и етруктурньши изменениI ями материала

Сопротивление деформированию при длительном малоцикловом нагружении

Сопротивление деформированию при некоторых режимах сложного малоциклового нагружения

Сопротивление деформированию при сложных режимах циклического нагружения

Сопротивление жаропрочных материалов термической усталости в связи с условиями нагружения и нагрева

Сопротивление кратковременному, длителъ но му динамическому и циклическому нагружениям

Сопротивление малоцикловому деформированию при меняющихся амплитудах напряжений в условиях нерегулярного нагружения

Сопротивление малоцикловому деформированию. Связь характеристик циклического и статического нагружений

Сопротивление разрушению биметаллических композиций при однократном нагружении

Сопротивление термической усталости жаропрочных сплавов и сталей в связи с изменением параметров цикла нагружения

Сопротивление унругопластическому деформированию при ступенчатом нагружении

Сопротивление усталости сталей при асимметричном нагружении



© 2025 Mash-xxl.info Реклама на сайте