Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Виды нагрузок и основных деформаций

Виды нагрузок и основных деформаций  [c.181]

Из схемы рис. 1.1 следует, что надлежащая оценка прочности и долговечности при малоцикловом и длительном циклическом нагружении может быть реализована при соответствующем сочетании расчетов и экспериментов. Решение краевых задач (для зон действия краевых сил, концентрации напряжений механического и температурного происхождения) при малоцикловом нагружении осуществляется с использованием основных положений деформационной теории и теории течения (изотермического и неизотермического). Наибольшее развитие и применение в силу простоты получаемых решений получили различные виды модифицированных деформационных теорий, позволяющих связать напряжения Оц, деформации ви и проанализировать монотонный рост неупругих деформаций при постоянном характере изменения нагрузок в процессе нагружения. При этом смена направления нагружения (при циклических режимах знакопостоянного или знакопеременного нагружения) предполагает использование деформационной теории для соответствующего к полуцикла нагружения при смещении начала отсчета в точку изменения направления нагружения. Сложные режимы термомеханического нагружения с частичными и несинхронными изменениями во времени т нагрузок и температур I анализируются на основе различных модификаций теорий течения, устанавливающих связь между приращениями  [c.9]


Вид разрушения при действии термоциклических нагрузок определяется соотношением величин действующих размахов деформаций, температур и длительности действия нагрузок в цикле (Ае, I, Тц). На рис. 4.4 показана диаграмма [6], характеризующая ожидаемый вид разрушения материала при термоциклическом нагружении в зависимости от сочетания указанных трех основных параметров, которые целесообразно рассматривать в виде отношений Де Тц/т ,, (здесь б— относительное уд-  [c.81]

Определение значений усилий, моментов, напряжений и деформаций, вызванных действием краевых сил и моментов, составляет цель краевой задачи. Эта задача решена только для основных видов оболочек, а именно для цилиндра, конуса, сферы и ее частей при разнообразных видах интересующих нас нагрузок.  [c.165]

Таким образом, деформация оболочки вращения описывается матричным уравнением (9.8). Остановимся на приведении уравнения к безразмерному виду. При численном решении безразмерная форма уравнений позволяет выделить основные параметры системы, провести более обш,ий анализ решения и получить результаты, которые могут быть использованы для широкой области изменения значений нагрузок, жесткости, геометрии системы и др. Введем характерный геометрический параметр оболочки Rq. Это может быть радиус какого-либо сечения оболочки, ее длина или какой-нибудь другой характерный размер. Отнесем к нему радиус поперечного сечения, меридиональный радиус кривизны и длину дуги оболочки р = r/Ro R — R1/R0,  [c.251]

В случае соблюдения законов подобия и равенстве чисел Fo, Hj, где Пг — один из комплексов-аргументов, определяющих условия теплообмена на граничных поверхностях, должно выполняться равенство значений относительных предельных нагрузок образца и элемента конструкции, т.е. (Р/Ро)обр = (Р/Ро)эл- Это означает, что при построении обобщенной характеристики элементов конструкции из КМ в виде соотношения между экспериментально определяемыми значениями предельных нагрузок при повышенной и нормальной температурах Кр = P/Pq могут быть применены методы теории подобия. Очевидно, что они могут использоваться также при определении предельных нагрузок элементов конструкций в случае подобных режимов нагрева. Отметим, что предельные напряженные состояния образцов при совместном действии внешней нагрузки и температуры определяются в основном критическими значениями напряжений, деформаций, перемещений и т.д., т.е. критическими значениями зависящих от температуры физических величин, из которых образованы остальные комплексы или симплексы, входящие в критериальные уравнения рассматриваемой задачи.  [c.27]


Аналогичные зависимости можно построить для многих других видов накопления повреждений. Такой вид имеют, например, диаграммы ползучести углеродистых сталей. Величина 4> имеет смысл деформации ползучести, а параметр q — уровня напряжений либо температуры. Процесс деформирования состоит из стадии неуста-новившейся ползучести, основной стадии, на которой скорость ползучести остается практически постоянной, и этапа прогрессирующего повреждения, который завершается разрушением образца или детали. Относительные продолжительности каждой стадии и уровни нагрузок, при которых происходит переход от одной стадии к другой, существенно зависят от уровня напряжений и температуры испытания.  [c.74]

Предельные состояния, виды и критерии разрушения. Традиционные инженерные расчеты на прочность деталей машин и элементов конструкций при однократном нагружении основаны, с одной стороны, на номинальных напряжениях, определяемых по формулам сопротивления материалов, теории упругости и пластичности, теории пластин и оболочек и, с другой стороны, на характеристиках прочности материалов при однократном нагружении,, определяемых при стандартизированных или унифицированных испытаниях лабораторных образцов из применяемых конструкционных материалов [16]. В зависимости от большого числа конструктивных (вид нагружения, размеры и форма сечений, наличие концентрации напряжений), технологических (.механические свойства применяемых материалов, вид и режимы сварки, термообработки, упрочнения) и эксплуатационных (скорость нагружения, уровень нагрузок, температура, среда) факторов при однократном нагружении возможно возникновение трех основных видов разрушения — хрупкого, квазихрупкого и вязкого 16]. Каждый из этих видов разрушения существенно отличается по уровню номинальных и местных разрушающих напряжений и деформаций, скоростям развития трещин и времени живучести деталей с трещинами, внешнему виду поверхностей разрушения. Применительно к этим видам разрушения выбирают те или иные критерии разрушения из трех основных групп — силовых, деформационных и энергетических.  [c.9]

Для ТОГО чтобы подробнее пояснить общий вид уравнений (11.73), рассмотрим частный пример. Предположим, что некоторая конструкция дважды статически неопределима и что к ней приложены две нагрузки Рх и Р . Тогда энергия деформации основной системы, являющаяся квадратичной формой от двух лишних неизвестных Xi и и от нагрузок Р и Р , будет иметь следующий общий вид (см. выражение (11.44))  [c.532]

Расчет тяговых цепей на прочность. При работе цепи возможны три вида ее предельных состояний по критерию прочности усталостное разрушение деталей, появление в них недопустимых пластических деформаций и полное разрушение под действием кратковременной перегрузки. Расчет цепи на прочность в общем виде должен сводиться к определению нагрузок соответственно ( р у, и Ср. в, чри которых могут возникнуть эти состояния. При конструировании новых цепей необходимо определить разрушающую нагрузку Ср. в. И) которую принято считать основным паспортным параметром любой цепи, В ходе производства цепей нагрузки Ср. в. н находят путем испытании на разрыв, получаемые при этом значения должны быть не ниже паспортного, определяемого предварительным расчетом. Излагаемые в учебной и справочной литературе методы расчета цепей на прочность по допускаемым напряжениям непригодны для определения указанных нагрузок. В многолетней практике работы ЦКБ цепных передач и устройств при ВНИИПТуглемаше хорошо зарекомендовал себя метод расчета, изложенный ниже.  [c.31]

Испытания проводят при различных видах напряженного состояния и различных температурах. Испытания могут быть выполнены при кратковременном или длительном приложении нагрузок, а также с учетом влияния среды, в которой происходит работа деталей машин и конструкций, технологии их изготовления и других факторов. Однако свойства материалов, определенные при простейших напряженных состояниях и на образцах, в значительной степени отличаются от свойств реальных деталей машин и конструкций при их натурных стендовых испытаниях или в процессе эксплуатации. Реальные детали машин и конструкции находятся иод действием сложной системы напряжений, часто имеют сложную конструктивную форму и для них экспериментально трудно определить напряжения, при которых начинаются пластические деформации или наступает процесс разрушения материала. Поэтому возможно большее приближение методов механических испытаний к работе реальных изделий является одной из основных задач, решение которых позволит повысить долговечность и надежность работы деталей машин и конструкций.  [c.11]


Основные требования, предъявляемые к пути. Железнодорожный путь является инженерным сооружением, работающим в сложных условиях. По пути проходят поезда большого веса с высокими скоростями. Колеса давят на рельс с силой 10—11,5 тс, которая при движении поезда увеличивается в 1,5—2 раза. Наличие неровностей на колесах и на пути, отступлений от норм содержания пути и подвижного состава (в пределах допускаемых величин) и другие факторы приводят к тому, что вертикальные и горизонтальные силы, передаваемые на рельс от подвижных нагрузок, не остаются постоянными, а быстро меняются во времени. Под действием этих сил в пути непрерывно накапливаются остаточные неравномерные деформации в виде просадок, перекосов, нарушений положения пути в плане и др.  [c.14]

В случае пластичных металлов с достаточно высокими значениями показателя степени упрочнения п предварительная деформация от технологических операций обычно не снижает разрушающих нагрузок, если они прикладываются при положи-тельных температурах. Предварительная деформация, если она возникает в металлах с неблагоприятным видом диаграммы сг,=/(е ), может в ряде случаев вызвать также и снижение средних разрушающих напряжений. Однако пластическая деформация в сварных конструкциях из низкоуглеродистых и низколегированных сталей без сочетания с другими неблагоприятными факторами обычно не представляет серьезной опасности для прочности. Основное отрицательное влияние пластической деформации проявляется при наличии концентраторов и в особенности тогда, когда пластическая деформация является предпосылкой для интенсивного протекания процессов старения.  [c.274]

Пластические (остаточные) деформации. Пластические деформации в виде вмятин (лунок) на дорожках качения колец, нарушающие работоспособность подшипника, наблюдаются в невращающихся и тихоходных подшипниках (п 1 об/мин) при действии на них больших статических или ударных нагрузок. Поэтому основным критерием работоспособности невращающихся и тихоходных подшипников является статическая грузоподъемность предупреждающая пластические деформации.  [c.423]

Малоцикловое разрушение рассматриваемого вида, таким образом, определяется режимом циклов нагрузки и температуры, при этом вид разрушения может быть чисто усталостный, или ква-зистатический (длительный статический), а также промежуточный с признаками усталостного и длительного статического типа разрушения в завпсимости от соотношения основных факторов формы и длительности цикла деформирования и нагрева, максимальной температуры, амплитуды циклической упругопластической деформации [107]. Одновременное действие на детали машин циклически изменяющихся нагрузок и температур в общем случае может быть совершенно произвольным и нестационарным. Максимальные значения температуры и нагрузок могут совпадать во времени, действовать со сдвигом по фазе, или частота приложения нагрузки может быть отличной от частоты изменения температуры.  [c.35]

Использование гипотезы Кирхгофа — Ляра также обьгчно ограничивает применение излагаемой теории областью тонких оболочек, для которых az/A < 1 и bz/B < 1, откуда появляется возможность упростить выражения (6.8) для деформаций. Стоящие в числителе выражений для о и ер члены вида az/A и bz/B являются существенными при малых перемещениях, и если их опустить, то не получим равными нулю деформации для основного случая, когда u = v=w = 0. Однако если пренебречь слагаемыми az/B и bz/B в знаменателе выражений для деформаций, полагая тем самым знаменатель равным нулю, то ошибки порядка отношения толщины к радиусу будут сделаны только в значениях деформаций в специфических точках. При определении прогибов и критических нагрузок, которые зависят от осредненных условий, эти ошибки будут практически бесконечно малыми-в области, занимаемой стенкой оболочки. Ошибка при определении энергии деформации примерно равна квадрату отношения толщины к радиусу, т. е. ошибка составляет одну десятую процента, когда толщина равна одной тридцатой радиуса. Отсюда видно,-что для тонких оболочек, а в случае нахождения прогибов, критических нагрузок и т. п. это справедливо и для относительно тонких оболочек, не делая серьезной погрешности, знаменатель в выражениях (6.8) мояшо положить равным единице. Однако, хотя в дальнейшем будет показана справедливость сказанного, это требует своего обоснования, так -как кажущиеся нёзначительнйми члены могут оказаться существенными на последующих стадиях исследований все это подробно обсуждается при выводе уравнения (6.36),  [c.406]

Тип машины Основной вид деформации статиче- ских нагрузок, кН а. СЗ S S о >.<а и S Часто -та, Гц Силовоз- будитель Силоиз- меритель тура испытаний, С Рабочая среда Масса, кг  [c.161]

Механнзмы подач и их приводы. К основным критериям механизмов подач (обычно шариковых, винтовых и волновых передач в современных станках с ЧПУ и многоцелевых станках, гидро-или пневмоцилиндров в ряде других видов оборудовани ) относятся равномерность подачи выходного звена, сохранение в про цессе работы заданного усилия подачи, жесткости (предварительного натяга), малое время восстановления скорости при реакции на нагрузку, влияющее на точность положения и стойкость инструмента, динамические характеристики. С учетом температурных деформаций эти свойства определяют также и технологическую надежность. Дополнительно к механизмам подач предъявляется требование защиты от перегрузок, что особенно актуально в условиях полной автоматизации работы технологических модулей ж мелкосерийного производства, когда технология не всегда достаточно отработана. Для ряда видов обработки важное значение имеет также такой критерий, как точность и время позиционирова-лия выходного звена — каретки или стола (более подробно эти вопросы рассмотрены в следующем разделе). Требования к приводу те же, что и у привода главного движения,— высокий КПД, уменьшение затрат времени на переключение подач, снижение динамических нагрузок на детали привода, шума и вибраций, обес печение высокой равномерности движения и надежности привода. Длительность сохранения технологической надежности станков существенно зависит от долговечности и свойств поверхностного слоя направляющих, винтовых пар и редукторов механизмов но-дач.  [c.27]


В основных нормативных документах, используемых в настоя-гцее время на стадии проектирования (см. гл. 1), предусматривается расчет тонкостенных металлических оболочек на действие статических нагрузок. Однако в действительности в процессе эксплуатации такие конструкции подвергаются многократным повторно-статическим и нерегулярным циклическим воздействиям, вызванным периодическим накоплением и опорожнением резервуаров и сосудов, профилактическими осмотрами и ремонтами конструкций, периодическим изменением давления в газгольдерах, магистральных трубопроводах, химических аппаратах. Поскольку в области краевого эффекта, в зонах концентрации напряжений (вблизи патрубков, штуцеров, фланцевых и других видов соединений) пластические деформации развиваются при относительно низких номинальных напряжениях, то циклическое пластическое деформирование приводит к возникновению в этих зонах усталостных трегцин при весьма малом числе циклов нагружения, составляющем 10 —10 .  [c.135]

Расчет строительных конструкций осуществляется в соответствии со строительными нормами и правилами [1]. Получаемый при этом уровень номинальной нагруженности сварных элементов и уровень концентрации напряжений свидетельствуют о возникновении в зонах концентрации локальных пластических деформаций, которые при повторном характере внешней нагрузки приводят к образованию трещины малоцикловой усталости. Так, при обследовании воздухонагревателей доменных печей появление трещин в кожухе было зафиксировано после 2—3 лет эксплуатации, что соответствовало 5 — 6 тыс. циклов. В подкрановых балках тяжелого режима работы повреждения в виде поверхностных трещин вдоль угловых швов приварки верхнего пояса к стенке наблюдались при числах циклов до 2 х 10 , или после 4 лет эксплуатации, в газгольдерах аэродинамических станций — после 4 X 10 циклов нагружения. Опасность появления трещин малоцикловой усталости в сварных конструкциях связана с тем, что трещина данной длины может при определенном соотношении уровня 4нагрузки, климатической температуры эксплуатации, скорости нагружения и других факторов оказаться критической, что приводит к катастрофическому хрупкому разрушению. Раз-рушение может наступить в разный период эксплуатации в зависимости от наступления критического сочетания инициирующих факторов. В этом заключается определенное отличие в разрушении циклически нагруженных конструкций по сравнению со статически нагруженными, основная масса аварий которых приходится на период эксплуатации с первыми похолоданиями при дальнейшей эксплуатации таких конструкций число хрупких разрушений резко сокращается (рис. 9.1). Для циклически нагруженных конструкций в первую зиму и во время испытаний разрушается только 34% конструкций от общего числа зарегистрированных разрушений. При последующей эксплуатации в течение примерно трех лет разрушения отсутствуют, и затем число разрушений начинает увеличиваться с 4 до 10% в год. Такой характер распределения разрушений конструкций под воздействием повторных нагрузок связан с необходимым периодом подрастания дефектов до критических размеров, и поэтому в течение определенного периода разрушения не наблюдаются. При дальнейшей эксплуатации идет накопление повреждений и развитие трещин усталости до образования полного разрушения.  [c.170]

Ситуация на сегодняшний день такова, что значительная часть трубопроводных систем (до 50 - 65 %) исчерпала установленный ресурс и вступает в период интенсификации потока отказов. При этом следует отметить, что одной из основных причин высокой аварийности технологических трубопроводных систем являются коррозионные повреждения (по литературным данным до 30 % от общего количества аварий). Проблема усугубляется еще и тем, что по условиям эксплуатации трубопровод, как правило, воспринимает одновременное воздействие механических нагрузок (деформаций) и коррозионно-активных сред. Такое совместное воздействие может вызвать ускоренное коррозионномеханическое разрушение трубопроводов в виде общей механохимической коррозии, коррозионного растрескивания, коррозионной усталости и др., которое значительно интенсифицируется под влиянием полей блуждающих токов.  [c.5]

В разд. 11.13 уже было показано, как использование дополнительной энергии и теоремы Кротти — Энгессера приводит к методу сил расчета конструкций. Частный вариант метода сил имеет место при линейном поведении конструкции. При таких условиях энергию деформации основной системы (равную дополнительной энергии) можно представить в. виде квадратичной формы как от нагрузок, так и от лишних статических неизвестных Хг, Х ,. . ., Хп. Тогда, применив вторую теорему Кастилиано, получим следующую систему уравнений  [c.531]

Верхнее строение пути имеет важную особенность, отличающую его от других инженерных конструкций, проектируемых так, что после прохода нагрузкн вызванные ею упругие деформаций исчезают и конструкция возвращается к прежнему виду и размерам, т. е. она работает в пределах упругости. А основные элементы верхнего строения пути работают и за пределами упругости, т. е., кроме упругих, в них возникают н остаточные дефсрмации. Эти деформации от одного нагружения практически незаметны, но по мере многократного пропуска нагрузок деформации накапливаются и достигают существенных величин. Так, рельс является не только несущей, но и изнашиваемой конструкцией интенсивность его износа пропорциональна грузонапряженности. Кроме того, в кристаллической решетке металла рельсов возникают и накапливаются усталостные и контактно-усталостные повреждения, приводящие к выщербинам и трещинам (чаще всего в головке рельса, а иногда в его шейке и подОшве).  [c.103]

Клебш з) заимствовал из теории Геринга-Кирхгофа приближенные выводы относительно напряжений и деформаций в малой части пластинки, ограниченной вертикальными плоскими сечениями, и получил уравнения равновесия пластинки, выраженные в проекциях упругих усилий и моментов. Его уравнения распадаются на две группы одна группа содержит растягивающие и гори, зонтальные перерезывающие упругие усилия, а другая группа — упругие пары и вертикальные упругие усилия. Уравнения второй группы относятся к изгибу пластинки, и их форма такова, что если соотношения, при помощи которых упругие пары выражаются через деформацию срздней поверхности, известны, то можно определить вертикальные перерезывающие силы и получить уравнение для прогиба пластинки. Выражения для упругих пар можно получить из теории Кирхгофа. Клебш нашел решение своего уравнения для случая круглой пластинки, защемленной по краям и нагруженной произвольным образом. Кельвин и Тэт сделали невозможными какие-либо дальнейшие сомнения по поводу теории, относящейся к уравнениям равновесия, выраженным в проекциях упругих усилий и пар. Эти ученые отметили, что в случае чистого изгиба выражения для упругих пар могли бы быть получены из теории изгиба балки Сен-Венана объединение двух граничных условий Пуассона в одном условии Кирхгофа они объяснили с т чки зрения прин ципа упругой равнозначности статически эквивалентных систем нагрузок Позднейшие исследования содействовали устранению последних затруднений, связанных с теорией Кирхгофа - ). Одно из препятствий к дальнейшему прогрессу состояло в отсутствии точных решений задач об изгибе пластинок, аналогичных тем, которые были получены fH-Венаном для балок. Те немногие решения, которые были получены подтверждают основной вывод теории, который не был строго доказан, а именно, вид выражений для упругих пар через кривизну средней поверхности.  [c.41]


Для оценки возможности использования резинометаллических элементов тепловоза ТЭП60 в грузовом варианте, проводятся их испытания на стендах, имитирующих основные виды деформаций от эксплуатационных нагрузок сжатие радиальной силой от действия крутящего момента сдвиг осевой силой Рг и перекос моментом Мх от поперечного разбега колесной пары сжатие силой Рг и скручивание крутящим моментом М при вертикальном  [c.37]


Смотреть страницы где упоминается термин Виды нагрузок и основных деформаций : [c.145]    [c.318]    [c.88]    [c.61]    [c.136]    [c.112]    [c.6]    [c.252]    [c.642]    [c.532]    [c.46]    [c.161]   
Смотреть главы в:

Теоретическая механика. Сопротивление материалов  -> Виды нагрузок и основных деформаций

Техническая механика  -> Виды нагрузок и основных деформаций



ПОИСК



Виды основные

Деформация — Виды

Нагрузки — Виды

Основные виды деформаций



© 2025 Mash-xxl.info Реклама на сайте