Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Понятие о предельных напряжениях

РАСЧЕТЫ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ 8.1. Понятие о предельных напряжениях  [c.283]

Необходимо еще раз остановиться на двух вопросах. Во-первых, надо разъяснить, что все расчеты будут выполняться по опасной точке, т. е. нарушением прочности конструкции будем считать возникновение хотя бы в одной точке заметных пластических деформаций или признаков хрупкого разрушения. Не вдаваясь в подробности, надо упомянуть, что такой подход к расчету не единственно возможный и в расчетной практике применяют другие методы и подходы. Конечно, учащимся строительных специальностей в свое время придется подробно рассказывать о расчетах по предельным состояниям. Во-вторых, надо дать понятие о предельном напряжении как о напряжении, при котором возникают признаки разрушения или появляются заметные пластические деформации уточнить, какие механические характеристики материалов при статическом нагружении являются предельными напряжениями.  [c.77]


Деформации. Ознакомление с вопросами о продольных силах и напряжениях позволяет перейти к расчетам на прочность такая последовательность изучения темы хотя возможна, но нерациональна. Отсутствие сведений о законе Гука не позволяет рассмотреть диаграммы растяжения материалов, и понятия о предельных и допускаемых (или только допускаемых) напряжениях приходится вводить без должных обоснований. Итак, пусть лучше несколько задержится знакомство учащихся с расчетом на прочность, но они получают стройное изложение теоретической части темы.  [c.65]

Приведенное неравенство является условием прочности. В большинстве случаев удобнее вести расчет на прочность, пользуясь понятием о допускаемом напряжении, которое равно отношению предельного напряжения к нормативному коэффициенту запаса прочности  [c.10]

Понятие о предварительном напряжении железобетонных балок. Известно, что бетон хорошо сопротивляется сжатию и плохо растяжению. Разрушающие напряжения при растяжении составляют 1/10 — 1/15 долю разрушающих напряжений при сжатии. Для оказания помощи бетону в той области конструкции, где ему приходится работать на растяжение, укладывают стальную арматуру, воспринимающую на себя значительную часть растягивающих усилий. В ряде случаев бетон вовсе выключается из работы на растяжение вследствие возникновения в нем трещин, и растягивающие усилия полностью воспринимаются арматурой. Однако простое использование стальной арматуры без дополнительных мер все же не позволяет решить всей проблемы. Во-первых, несмотря на сцепление бетона с арматурой в нем, как уже отмечено, могут возникнуть трещины. Это объясняется тем, что предельная растяжимость бетона очень мала, Во-вторых, при тех относительных деформациях, при которых д бетоне воз-  [c.308]

Какое из двух понятий является более общим понятие о предельном или понятие о разрушающем напряжении Почему  [c.19]

Вариационные принципы. Вариационные принципы Лагранжа и Кастильяно для задач ползучести являются, очевидно, простой перефразировкой соответствующих принципов для нелинейно упругого тела, поскольку исходная гипотеза состоит в допущении зависимости потенциального типа между напряжениями и деформациями или скоростями деформации. Систематическое развитие приближенных методов, основанных на принципе Кастильяно, принадлежит Л. М. Качанову. При степенном законе установившейся ползучести с возрастанием показателя п в ряде случаев распределение напряжений мало отличается от того, которое соответствует предельному состоянию идеального жестко-пластиче-ского тела. Таким образом, вводится понятие о предельном состоянии ползучести напряжения о / для этого состояния находятся по схеме жестко-пластического тела, причем предел текучести зависит от характера нагрузки. Приближенные значения скоростей находятся прямым применением теоремы Кастильяно. Более точные результаты получаются, если представить компоненты напряжения в виде  [c.134]


Расчет по методу предельных состояний дает возможность осуществлять дифференцированный подход к различным частям металлических конструкций и обеспечивать важнейший принцип конструирования — равнопрочность элементов и их соединений. При этом методе специфика работы конструкции учитывается введением понятий о предельных состояниях, ограничивающих или исключающих его нормальную эксплуатацию. В отличие от расчета по допускаемым напряжениям в расчете по предельным состояниям вместо одного коэффициента запаса принимается система трех расчетных коэффициентов однородности, перегрузки и условий работы. При расчете конструкции по предельным состояниям вместо допускаемых напряжений принимают расчетные сопротивления, которые являются наименьшими возможными сопротивлениями материала, гарантируемыми весьма малой вероятностью появления меньших значений.  [c.45]

Назначение и физическая сущность гипотез прочности. Выскажем некоторые соображения о терминологии. До сравнительно недавнего времени (а во многих книгах и по сей день) принято наименование теория прочности , недостаточно хорошо отражающее существо вопроса. Наиболее четко сущность понятия отражена в наименовании теория предельных напряженных состояний (гипотезы возникновения текучести и гипотезы прочности) , принятом в монографии [26] и в учебнике [36]. Несмотря на то что это наименование удачно по смыслу, оно неудобно (слишком многословно) и поэтому предложено пользоваться более кратким — гипотезы прочности . Этот термин вошел в программы по технической механике и в учебную литературу для техникумов.  [c.159]

После того как понятие о назначении гипотез прочности дано, рассказано, что и.х существует несколько, следует изложить общую схему расчета с применением гипотез прочности. Зная главные или исходные напряжения для проверяемой точки, надо вычислить по принятой для расчета гипотезе прочности эквивалентное напряжение (предупредить учащихся, что о том, как это делается, будет рассказано позже) и сопоставить его с предельным или допускаемым напряжением. Обязательно подчеркнуть, что независимо от принятой гипотезы условие прочности записывается одинаково  [c.162]

Понятие о трещиностойкости материала в виде предельного значения коэффициента интенсивности напряжений Ki вытекает из структуры напряженно-деформированного состояния, возникающего в окрестности вершины трещины при плоской деформации (см. гл. I). Если же плоская деформация в окрестности вершины трещины в рассматриваемом теле не реализуется, то установленную в таком случае трещиностойкость в терминах коэффициентов интенсивности напряжений обозначают через Кс. Взаимосвязь между величинами Ки и Кс следующая в рамках принятой точности измерения, вообще говоря, нечувствительна к геометрии испытываемого образца, а Кс — чувствительна, в первую очередь, к толщине (поперечному сечению) образца. В связи с этим характеристику Ki принято рассматривать как константу материала она является минимальным значением из числа возможных значений Кс при заданных условиях испытания (температура, скорость  [c.126]

В зависимости от материала детали, типа напряженного состояния и характера изменения напряжений во времени в качестве предельного напряжения принимают одну из следующих механических характеристик материала предел текучести (физический или условный) при статическом нагружении детали из пластичного или хрупко-пластичного материала предел прочности при статическом нагружении детали из хрупкого материала предел выносливости при возникновении в детали напряжений, переменных во времени. Все сказанное, а также сведения, приведенные ниже, относятся к работе деталей при комнатной или слегка повышенной температуре общие понятия о механических характеристиках материалов при высоких температурах даны на стр. 21.  [c.10]

Локальность взаимодействия. В рамках теории сплошной среды можно ввести понятия о напряженном и деформированном состоянии в точке. Это достигается рассмотрением конечного объема среды и предельным переходом при стягивании объема к точке. Взаимодействие называется локальным, если напряжения в данной точке зависят лишь от совокупности деформаций в той же точке (но не зависят от деформаций в других точках). Как будет видно ниже ( 2), дискретная среда может быть в определенном смысле  [c.14]


Вернемся к модели циклически стабильного материала. Вариант, рассмотренный в гл. 1—4, основан иа предположении о существовании предельной упругой деформации определяющей экстремум на кривой деформирования. Однако известно, что на диаграмме истинных напряжений касательный модуль ие достигает нулевого значения [55 J, а условная диаграмма отражает лишь неустойчивость процесса деформирования образца при достижении напряжением некоторого уровня. С другой стороны, условным является и понятие установившейся ползучести, при которой скорость неупругой деформации постоянна и определяется лишь текущим напряжением  [c.117]

При пайке в печи с очищенным водородом (при 1100° С) мягкой стали серебром, не образующим химических соединений со сталью, максимальный предел прочности стыкового соединения близок к пределу прочности стали 392 Мн1м (40 кГ мм ) [256]. По данным работы [171], полученным при сварке и пайке высокопрочной стали, прочность бездефектного соединения непрерывно увеличивается и при нулевом зазоре равна 970 Мн1м (99 кГ/мм ) при сварке армко-железом, 174 Мн/ж (17,8 кР/мм ) — при пайке оловом, 67 Mh m (6,9 кГ л1М ) — при пайке свинцом. Согласно работе [171] эти напряжения соответствуют возможному пределу прочности припоя. Это значение предельной прочности припоя, полученное экстраполяцией, не следует, с нашей точки зрения, смешивать с прочностью стыкового соединения из основного материала, получаемого, по существу, путем диффузионной сварки, производимой по температурному режиму пайки. Следует также учитывать, что при введении понятия о предельной прочности припоя не учитывалось диффузионное взаимодействие между припоем и паяемым металлом. Согласно схеме, представленной У. Ростокером [103] по данным В. Лерера, наибольшая прочность паяного соединения наблюдается не при нулевой, а при какой-то небольшой величине зазора (см. рис. 63, г). Резкое уменьшение прочности соединения объясняется переходом от сопротивления разрыву с участием сдвиговой деформации к сопротивлению разрыву при достижении предельных значений нормальных напряжений (сопротивление отрыву) [103]. Такая схема принципиально вероятна, но отчетливо не вытекает из опытных данных, на основании которых она построена.  [c.113]

Надо четко ввести понятие о трех группах конструкционных материалов — пластичных, хрупкопластичных и хрупких. Указать, какие механические характеристики приняты в качестве предельных напряжений для материалов каждой из указанных групп.  [c.76]

Как правило, обсужденные выше методы построения предельных поверхностей основаны на представлении слоистого композита в виде составного анизотропного материала, и для построения предельных поверхностей используют свойства слоя, критерий прочности слоя и теорию слоистых сред, позволяющую осуществить переход от напряжений и деформаций композита к напряжениям и деформациям в любом слое. В противоположность этому Пуппо и Эвенсен [27] предложили в своем подходе рассматривать слоистый композит как однородный анизотропный материал, введя коэффициенты взаимодействия и понятие о главных осях прочности. Еще один метод оценки прочности слоистого композита как квазиодно-родного материала был предложен By и Шойблейном [28].  [c.144]

Учитывая конечность пластической деформации, СМПД использует логарифмические выражения главных компонентов итоговой деформации, а также при условии монотонности деформации энергетический принцип установления связи между компонентами деформаций и напряжений. Дана формулировка и установлены закономерности при протекании немонотонного процесса формоизменения. В СМПД уточнено понятие о строении рабочей модели твердого тела и принято положение о различии в состоянии тел не по агрегатному признаку, а по способности к релаксации, разработано положение о влиянии положительного и отрицательного гидростатического давления на предельно прочную пластичность, разработаны определения интенсивности результативной деформации и степени деформации, дано четкое определение видов напряженно-деформированного состояния. Формулировку основных законов пластичности СМПД увязывает с положениями современной теории пластического течения твердых тел.  [c.25]

Понятие прочности ассоциируется с сопротивлением материала его разрушению (нарушению сплошности среды), происходящему под действием механического поля. Реакция на механическое воздействие характеризуется напряженным и деформированным состоянием, а связь этих состояний обусловлена обобщенным временныл фактором, поэтому прочностные свойства резин наиболее полно должны быть определены как предельные эцачения деформационных свойств, т. е. соотношений напряжение о — деформация е — обобщенное время Ь, при которых в заданных условиях нагружения происходит разрушение материала. Поэтому прочностные свойства резин (предельные напряжения, деформации) существенно зависят от режима деформирования, и их следует характеризовать в совокупности, указывая все механические параметры, или условия нагружения. Минимальное число характеристик — это предельные напряжение сг и деформация е при обобщенном временном факторе I, включающем как время, так и температуру. Практически необходимо определять также вид деформации, среду, состояние материала (высокоэластическое, застеклованное, хрупкое) и масштабный фактор (объем, форма, размеры).  [c.182]


КИМ образом, условие выражается зависимостью п — Опред/сГтах > [п , где п — коэффициент запаса Отах — максимальное рабочее напряжение 0 ред предельное напряжение [п] = 15 -г- 6 — нормативный коэффициент запаса. Введем понятие допускаемого напряжения при растяжении [а] = ОпредДи], тогда условие прочности примет вид Ошах [о] - Таким образом, условием прочности при растяжении является выражение Отах = Л /5[а].  [c.177]

В геометрически сложных конструкционных элементах имеются области сложного напряженного состояния. Материал в этих областях с возрастанием степени его нагруженности (при увеличении внешних усилий) проходит упомянутые три стадии упругого и упругопластического деформирования, а также стадию разрушения. Считается, что можно подобрать такой параметр, который характеризует степень нагруженности материала в условиях сложного напряженного состояния аналогично тому, как это делается с помощью понятия напряжения а при простом растяжении. Упомянутый параметр (или критерий) обычно имеет размерность напряжения. В этом случае он называется эквивалентным напряжением с обозначением через Од Введение этого понятия означает, что любому сложному напряженному состоянию всегда можно сопоставить эквивалентное ему (по степени нагруженности) напряженное состояние простого растяжения. Отсюда следует, что различные сложные напряженные состояния (с различными соотношениями между главньЕми напряжениями а,, Оа, Од) эквивалентны друг другу, если характеризуются одним и тем же значением В частности, при любом сложном напряженном состоянии материал переходит в состояние предельной упругостРЕ при условии  [c.134]

Здесь предполагается, что предельное критическое напряжение Ой зависит от концентрации водорода С в данном микрообъеме [381]. Расчет напряженно-деформированного состояния в окрестности вершины трещины [368] (рис. 41.3) показывает, что при л б эффективное напряжение Oef определяется практически растягивающим напряжением о , имеющим максимум при х = — Хш 26, а при а ss б в зависимости от значения параметра а в соответствии с (41.20) доминирующим фактором для напряжения Oef может оказаться интенсивность деформаций ер (см. рис. 41.5, а). Это, в частности, означает, что в отсутствие водорода, когда Ос можно считать константой, критическое условие (41.20) может быть выполнено при достижении в окрестности вершины трещины предельных деформаций е, или напряжений Оу. В связи со сказанным известные микромеханическпе критерии вязкости разрушения [253], основанные на понятиях критической деформации или критического напряжения, можно считать предельными случаями более общего критерия, получающегося из условия (41.20). Однако, если в отсутствие водорода соответствие какой-либо микромеханпческой модели вязкости разрушения (деформационной или силовой) данному материалу достаточно стабильно и определяется преимущественно свойствами самого сплава, то при водородном охрупчивании реализация этого соответствия существенно зависит от распределения водорода вблизи вершины трещины и его влияния на значение Ос.  [c.334]

При обсуждении критериев разрушения композиционных материалов необходимо иметь полное представление о природе рассматриваемых явлений и определить понятие разрушение в том смысле, в котором оно обычно используется при анализе этих материалов. Прочность слоистой структуры — это ее способность выдерживать заданный уровень термомеханического нагружения без разрушения. Поэтому разрушение будем рассматривать как предел несуп ей способности материала при всех возможных напряженных состояниях. Предельные состояния могут быть представлены аналитически для данного материала поверхностью разрушения. Как и для металлов, под пределом текучести слоистой структуры будем понимать уровень напряжений, соответ-ствуюхций началу неупругого деформирования, микроструктур-ный механизм которого для металлов и композиционных материалов существенно различен. Растрескивание — это мгновенное образование свободных поверхностей в материале, которое может ускорить его разрушение. Различать эти понятия необходимо для понимания построения и последующего применения критериев прочности композиционных материалов.  [c.63]

Большой интерес среди инженеров вызвала серия экспериментальных исследований, проведенных Фойхтом и его учениками с целью разъяснить понятия, относящиеся к прочности материалов. Работая на образцах, вырезанных из крупных кристаллов каменной соли, Фойхт нашел, что сопротивление растяжению весьма сильно зависит от ориентации оси образца относительно кристаллографических осей. Оно зависит также и от характера поверхности образца. Фойхт показал, что легкое травление боковой поверхности стеклянных образцов приводит к резкому повышению их сопротивления. Равным образом им было показано, что при неоднородном поле напряжений сопротивление в точке зависит не только от величины напряжений в этой точке, но также и от степени их изменений от точки к точке. Сравнивая, например, предельные сопротивления растяжению изгиба для каменной соли и для стекла, он находит, что наибольшее напряжение разрушения при изгибе почти вдвое превышает соответствующее напряжение при разрыве. Много испытаний было проведено им в условиях сложного напряженного состояния с той целью, чтобы проверить теорию Мора. Все эти испытания выполнялись на хрупких материалах, и результаты их не совпадали с теорией. Фойхт пришел к заключению, что вопрос о физической сущности прочности слишком сложен и что построить единую теорию, которую можно было бы с успехом применять ко всем видам строительных материалов, невозможно.  [c.413]

Хорошо известно из истории науки, что из простейших задач механики развились многие весьма содержательные математические дисциплины. Так, задача о форме кривой наибыстрейшего ската в однородном поле силы тяжести (задача о брахистохроне) привела к созданию вариационного исчисления, а затем и функционального анализа. Обобщения основных понятий механики (момента силы, работы силы, напряжения, деформации) составляют, в сущности, реальное основание векторного и тензорного анализа. Мы думаем, что конкретные задачи механики и физики обогащали математику идейным содержанием и оттачивали ее логические построения не меньше, чем абстрактные, предельно формализованные исследования в чисто внутренних областях математики. Абстрактные исследования содержательны и эвристичны при условии, что в их основе лежат (или предугаданы) некоторые количественные закономерности объективно существующих форм движения материи.  [c.10]

Койтера и др. Понятие полной пластичности было введено в ра боте Хаара и Кармана (1904 г.). Состояние полной пластичности описывается в рамках условия пластичности Треска-Сен Венана и предполагает совместное достижение двумя главными максималь ными касательными напряжениями предельного значения. Соглас но представлениям обобгцеппого ассоциированного закона (Рейсс, Прагер, Койтер) при состоянии полной пластичности имеет место максимальная свобода пластического течения. Представления о сво боде пластического течения при условии полной пластичности были эазвиты так же А.Ю. Игалипским. Па фиг. 2 стрелками показаны направления векторов сг, в, устанавливаемые согласно обобгценному ассоциированному закону течения.  [c.4]


При простых нагружениях-разгружениях понятие деформационного нагружения (1Э > 0) соответствует понятию активного процесса деформирования (( Лф > > 0), а понятие деформационного разгружения ( /Э < 0) — понятию пассивного деформирования (с Лф < 0), т.е. пропорциональной разгрузке. Понятию силового простого нагружения ёа > 0) соответствует понятие активного процесса нагружения с1Вф > 0), а понятию простого разгружения (с сг < 0) — понятие пассивного процесса разгружения ёВф < 0). Более того, силовое и деформационное нагру-жения-разгружения и активные и пассивные процессы деформирования и напряжения соответствуют друг другу. При сложных процессах такого соответствия не наблюдается. Поэтому для каждой точки К на траектории нагружения либо деформирования не могут иметь места четко выраженные предельные поверхности нагружения /(ст) = О и деформирования Р Э) =0, четко разделяющие области упругих и пластических деформаций, какие вводятся в современной теории течения. Существование таких поверхностей является следствием представлений (22). Вместо предельных поверхностей, разделяющих области упругих и пластических деформаций, мы рассматриваем предельные поверхности энергетического уровня, разделяющие области активных и пассивных процессов пластического деформирования и нагружения, т. е. области полного и неполного пластического и полного и неполного упругого деформирования. Естественно, что этим поверхностям принадлежат особые точки, в которых имеют место состояния полной пластичности. Области же полного упругого либо полного пластического состояний разделены целым переходным упругопластическим слоем неполной пластичности либо неполной упругости.  [c.398]

Постепенное развитие во времени дефектов структуры -зародышей разрушения — под влиянием заданного напряженного состояния, иногда значительно более слабого, чем то предельное в обычном смысле, которое приводит к мгновенному разрушению, лежит в основе современных физических представлений о длительной статической прочности и об усталостной прочности — выносливости тел при циклических нагружениях. С этой же современной кинетической трактовкой явлений деформации и разрушения, а также самого понятия прочности, связаны и правильные представления о механизме адсорбционного понижения прочности и родственных ему явлений, которые сфор-  [c.8]


Смотреть страницы где упоминается термин Понятие о предельных напряжениях : [c.274]    [c.171]    [c.628]    [c.71]    [c.143]    [c.35]    [c.334]    [c.134]    [c.206]   
Смотреть главы в:

Техническая механика  -> Понятие о предельных напряжениях



ПОИСК



Напряжение Понятие

Напряжение предельное



© 2025 Mash-xxl.info Реклама на сайте