Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тело абсолютно сложное

Реальные движения тел настолько сложны, что, изучая их, необходимо отвлечься от несущественных для рассматриваемого движения деталей (в противном случае задача так усложнилась бы, что решить ее практически было бы невозможно). С этой целью используют понятия (абстракции, идеализации), применимость которых зависит от конкретного характера интересующей нас задачи, а также от той степени точности, с которой мы хотим получить результат. Среди этих понятий большую роль играют понятия материальной точки и абсолютно твердого тела.  [c.8]


Итак, второе начало классической термодинамики есть утверждение о существовании и возрастании некоторой функции состояния тел и сложных систем — энтропии. Дифференциал энтропии есть полный дифференциал дЗ, определяемый в обратимых процессах как отношение подведенного извне элементарного количества теплоты б(3 обр к абсолютной температуре тела Т  [c.56]

Рассмотрим теперь более сложную задачу о стержне с заделанным концом, другой конец которого испытывает удар движущейся массой (рис. 245)1). Обозначим через М. массу движуш,егося тела, отнесенную к единице площади поперечного сечения стержня, а через — начальную скорость тела. Если считать тело абсолютно твердым, то скорость частиц на конце стержня в момент соударения ( = 0) будет равна а начальное напряжение сжатия, согласно формуле (279),  [c.503]

Итак, укажем еще раз, относительное движение есть движение по отношению к подвижной системе отсчета, а абсолютным движением мы будем называть движение относительно неподвижной системы отсчета. Основная задача кинематики в случае сложного движения точки состоит в том, чтобы, зная относительное движен 1е точки и переносное движение, т. е. движение подвижной системы отсчета, найти абсолютное движение точки и, следовательно, определить ее траекторию, скорость и ускорение в этом движении. Обратно, всякое движение точки или тела относительно данной условно неподвижной системы отсчета можно рассматривать как сложное и разложить на составляющие движения (относительное и переносное) для этой цели необходимо выбрать систему подвижных осей, движение которой известно, и найти движение точки или тела относительно этой подвижной системы. Этот прием разложения движения точки и.пи тела на составляющие движения является полезным в тех случаях, когда при соответствующем выборе подвижной системы отсчета относительное и переносное движения оказываются более простыми, чем изучаемое движение точки или тела относительно неподвижной системы отсчета. Мы воспользуемся этим приемом в следующих главах, где будем изучать случаи движения твердого тела более сложные, чем те, которые были рассмотрены в предыдущей главе.  [c.291]

Принцип существования энтропии есть утверждение второго начала классической термодинамики о существовании некоторой функции состояния тел и сложных систем — энтропии дифференциал энтропии есть полный дифференциал dS), определяемый в обратимых процессах как величина отношения подведенного извне элементарного количества тепла (6Q 6p) к абсолютной температуре тела (Г)  [c.54]


Лучистая энергия возникает за счет энергии других видов в результате сложных молекулярных и внутриатомных процессов. Природа всех лучей одинакова. Они представляют собой распространяющиеся в пространстве электромагнитные волны. Источником теплового излучения является внутренняя энергия нагретого тела. Количество лучистой энергии в основном зависит от физических свойств и температуры излучающего тела. Электромагнитные волны различаются между собой или длиной волны, или числом колебаний в секунду. Если обозначить длину волны через X, а число колебаний через N, то для лучей всех видов скорость w в абсолютном вакууме буд т равна w к-N = 300 000 км сек.  [c.458]

При решении задач, в которых рассматривается сложное движение точки или тела, необходимо уметь правильно расчленить сложное (составное), или так называемое абсолютное движение, на переносное и относительное.  [c.241]

Настоящий параграф посвящен решению следующей задачи в каждый данный момент времени при различных частных предположениях о характера относительного и переносного движений найти вид того результирующего сложного движения, которому соответствует распределение абсолютных скоростей точек тела в этот момент. Таким образом, здесь будет идти речь о сложении мгновенных (бесконечно малых) перемещений тела. Так как распределение скоростей точек твердого тела в данный момент зависит от его поступательной и угловой скорости в этот момент, то рассматриваемую задачу можно еще назвать задачей о сложении мгновенных поступательных и угловых скоростей тела ). Заметим, что если мы имели бы в виду сложение не мгновенных, а конечных перемещений тела, то соответствующие теоремы получили бы в общем случае совершенно иную формулировку.  [c.139]

Пользуясь выражениями для скоростей точек твердого тела при его движении вокруг неподвижной точки и в общем случае движения тела в пространстве, можно установить правило нахождения абсолютного ускорения точки в ее сложном движении в общем случае — теорему о сложении ускорений для точки. Эта теорема доказана в частном случае, когда переносное движение принято поступательным.  [c.181]

Абсолютным движением тела называют его сложное или результирующее движение по отношению к неподвижной системе отсчета.  [c.190]

Движение точки по отношению к неподвижной системе отсчёта, называемое абсолютным движением, является сложным, состоящим из относительного и переносного движения. 2. Всякое сложное движение тела можно свести к совокупности поступательных и вращательных движений, являющихся основными видами движения твёрдого тела.  [c.84]

Понятие об идеальных связях не было известно автору Аналитической механики — Ж. Лагранжу. Рассматривая вопрос об обосновании и доказательстве принципа возможных перемещений, Ж. Лагранж отмечает, что этот принцип, хотя и очень прост по своему выражению, но не очевиден, чтобы его можно принять как аксиоматическое утверждение без доказательства. Ж. Лагранж отмечает, что принцип возможных перемещений основывается на двух принципах, установленных раньше. Один из них — принцип действия рычага, исследованный еще Архимедом второй — аксиома о параллелограмме сил. Если вспомнить геометрическую статику (ч. III т. I), то становится ясным, что эти два принципа содержат два основных понятия статики — понятие о силе, как о векторе, и к тому же скользящем в случае действия силы на абсолютно твердое тело, и понятие о моменте силы. Ж- Лагранж указывает сначала, что принцип возможных перемещений объединяет эти два понятия статики (принципы рычага и параллелограмма сил). Далее он предлагает доказательство, основанное на замене сил, приложенных к материальным точкам системы, реакциями подвижных блоков сложного полиспаста. Это доказательство не было признано достаточным, и Фурье предложил более совершенное.  [c.108]


Применим основные теоремы динамики системы к изучению движения абсолютно твердого тела. Как известно из кинематики, движение свободного абсолютно твердого тела можно рассматривать как сложное движение. Переносным движением можно считать поступательное движение, определяемое движением полюса относительным является движение тела относительно полюса.  [c.399]

В общем случае нахождение абсолютного ускорения представляет собой сложную задачу. Поэтому мы ограничимся только частным случаем, когда движущаяся система отсчета вращается относительно неподвижной , вокруг неподвижной оси с постоянной угловой скоростью. Примером этого случая могут служить движения тел в земной вращающейся системе отсчета. (Годовое движение Земли относительно Солнца происходит с гораздо меньшей угловой скоростью, и поэтому в большинстве случаев его можно не принимать во внимание.)  [c.345]

Теорема сложения скоростей является важной теоремой механики. Необходимо решить большое количество задач, чтобы хорошо усвоить, что относительное движение рассматривается по отношению к некоторому твердому телу (или к системе подвижных осей) и что движение этого твердого тела создает переносное движение точки. Ряд интересных задач на сложные движения точки порождаются тем, что абсолютное движение точки может быть представлено в виде нескольких сложных движений, в которых переносные или относительные скорости не являются полностью Заданными.  [c.31]

Любое сложное движение абсолютно твердого тела можно разложить на два основных вида движения поступательное и вращательное.  [c.13]

При сложном напряженном состоянии пластическая деформация может происходить при самых разнообразных соотношениях между напряжениями. В этом случае деформацию элемента тела в данный момент называют а кт и в н о й, если интенсивность напряжений сг,- имеет значение, превышающее по абсолютной величине все предыдущие ее значения пассивной, если интенсивность напряжений а,- по абсолютной величине меньше хотя бы одного из предыдущих ее значений. (Понятие об интенсивности напряжений о,- дано в 2.) При активной деформации пластическая деформация возрастает, а при пассивной остается постоянной. Активную деформацию называют процессом нагружения, а пассивную —иногда разгрузкой.  [c.259]

Частным случаем движения является состояние покоя. Покой всегда имеет относительный характер, так как покоящееся тело рассматривается как неподвижное по отношению к некоторому другому телу, которое, в свою очередь, может перемещаться в пространстве. Абсолютно неподвижных тел в природе нет и не может быть. Например, мы говорим, что станина машины или фундамент сооружения находится в покое. Они де ствительно неподвижны относительно Земли, но вместе с ней совершают сложное движение вокруг Солнца. I-  [c.5]

Для определения результирующих потоков излучения необходимо располагать данными по коэффициентам излучения. Коэффициент излучения является сложной функцией, зависящей от природы излучающего тела, его температуры, состояния поверхности, а для металлов — от степени окисления этой поверхности. Для чистых металлов с полированными поверхностями коэффициент излучения имеет низкие значения. Так, при температуре 100 °С коэффициент излучения по отношению к его величине для абсолютно черного тела не превышает 0,1. Металлы характеризуются высокой отражательной способностью, так как из-за большой электропроводности луч проникает лишь на небольшую глубину. Для чистых металлов коэффициент излучения может быть найден теоретическим путем. Относительный коэффициент (степень черноты) полного нормального излучения для них связан с удельным электрическим сопротивлением рэ зависимостью  [c.385]

Проведем через нее три подвижные оси, движущиеся поступательно. Тогда движение твердого тела может быть разложено на движение по отношению к подвижным осям Охуг и переносное, которое будет поступательным и определяется движением точки О тела. Сложное центробежное ускорение равно нулю в случае поступательного переносного движения поэтому ускорение точки М тела равно геометрической сумме относительного ускорения, равного ускорению при движении тела вокруг неподвижной точки, и переносного ускорения, представляющего собой ускорение точки О. Пусть w—ускорение точки О, и р, q, /- — проекции на оси переменного вращения w тела проведем ось z параллельно оси вращения в рассматриваемом ее положении и в сторону вектора (о тогда проекции абсолютного ускорения точки /И (с координатами х, у, г) будут  [c.111]

Второе начало классической термодинамики формулируется как объединенный принцип существования и возрастания некоторой функции состояния тел и сложных систем — энтропии (термин энтропия предложен Р. Клаузиусом en— в, внутрь и trope или tropos — обращение, путь в целом — обращение внутрь, мера обесценения энергии). Дифференциал энтропии есть полный дифференциал dS, определяемый в обратимых процессах как отношение подведенного извне элементарного количества теплоты SQ gp к абсолютной температуре Т. (в обратимых процессах внутренний теплообмен отсутствует, 5Q = 0).  [c.47]


Сложение поступательных движений. Если тело движется относительно подвижных осей Охуг (см. рис. 209), а эти оси совершают одновременно переносное движение по отношению к неподвижным осям Ох у г1, то результируюшее (абсолютное) движение тела называется сложным (с.м. 89).  [c.229]

Такого рода собственные колебания (гармоники, модаг) присущи любому упругому тепу, хотя их форма и спектр частот могут быть весьма сложными. По смыслу они аналогичны нормальным колебаниям в связанных системах (см. о. 120-122) в обоих случаях произвольное колебание системы является их суперпозицией. В связанной системе масса системы сосредоточена в телах (пружины невесомы), а упругость - в пружинах (тела абсолютно твердые) поэтому ее называют системой с сосредоточенными параметрами. Такая система состоит из конечного числа тел, она имеет конечное число колебательных степеней свободы и, соответственно, конечное число нормальных колебаний. В сплошном массивном упругом теле (стержень, струна) упругие и инертные свойства, характеризуемые, соответственно, модулями упругости и плотностью вещества, распределены по телу непрерывно. Его можно рассматривать как совокупность бесконечного шсла бесконечно малых элементов соответственно, оно имеет бесконечное число колебательных степеней свободы и как следствие - бесконечное число собственных колебании, как показано на примере закрепленной струны.  [c.139]

Производная dKo/di определяет скорость точки К конца вектора Ко относительно неподвижной в пространстве (латинской) системы координат. Рассмотрим теперь движение этой точки К как сложное движение. Производная df(o/dt определяет абсолютную скорость точки К. Переносной является скорость той точки тела, с которой совпадает в данный момент точка К, а эта скорость равна (а X Гк = (й X Ко, так как радиус-вектор г , проведенный из неподвижной точки к точке К, равен как раз вектору Ко- Относительной скоростью точки К служит скорость ее по отношению к греческой системе координат, связанной с телом. Обозначим скорость конца вектора Ко по отношению к этой греческой системе (dKo/dt). Тогла в силу формулы (61) и обычных представлений о сложном движении имеем  [c.193]

В природе отсутствуьэт абсолютно твердые тела. Каждое тело деформируется в какой-то мере в результате приложенных воздейств и г. Но эти деформации могут быть настолько незначительными, что для их обнаружения необходимы особые сложные современные приборы. Во многих случаях на движение твердых тел такие малые дефор.мации не влияют.  [c.7]

Рассмотрим теперь условия равновесия абсолютно твердого тела под действием пространственной несходящейся совокупности сил. Подчеркнем, что под равновесием в случае твердого тела понимается его относительный покой в данной системе координат, а не движение по инерции , которое в случае твердого тела, не подверженного действию внешних сил и пар, в зависимости от его формы и распределения в нем массы может быть очень сложным.  [c.50]

В настоящей главе мы имели дело с прямолинейными колебаниями материальной точки, причем такими, которые описываются линейными дифференциальными уравнениями. Такие колебания называют линейными. Они наиболее просты с математической стороны и поэтому вынесены в начало этого тома. (В некотором роде исключением является случай прямолинейных колебаний при наличии кулонова трения, которые следует отнести к нелинейным колебаниям, описываемым кусочно-линей-ными уравнениями.) Более сложные случаи колебаний системы материальных точек и абсолютно твердых тел, как линейных, так и нелинейных, будут рассмотрены в шестом отделе курса (гл. XXXII—XXXIV).  [c.103]

Одним из видов сложного движения твердого тела является вращение вокруг подвижной оси уу, которая, в свою очередь, вместе с телом, вращается вокруг неподвижной оси хх, параллельной уу. В этом случае сложное движение тела можно рассматривать как абсолютное вращение вокруг оси гг, параллельной данныг.1 осям. Относительное и переносное вращения могут происходить в одну и разные стороны. Рассмотрим различные случаи.  [c.186]

Пусть твердое тело движется относительно системы координат O x y z, которая в свою очередь движется относительно не-иодвиясной системы координат Oxyz. Обозначим через v i относительную скорость точки М тела в его движении относительно трехгранника О х у ъ и через кы переносную скорость той же точт и. Абсолютная скорость v m точки М в сложном движении будет согласно теореме о сложении скоростей (и. 1.2 гл. XI) рав на геометрической сумме  [c.222]

Чтобы упростить рассмотрение, мы, во-первых, воспользуемся той терминологией, которая была введена в 15 (когда шла речь о сложных движениях ). При этом мы будем называть относительным движением движение рассматриваемого тела в неинерциальной системе отсчета, абсолютным движением — движение этого тела в инерциальной системе отсчета и переносным движением —движение неинерциальной системы отсчета относительно инерциальиой. Конечно, в свете принципа относительности движения первый и второй термины совершенно условны, и чтобы подчеркнуть их условность, мы поместили их в кавычки.  [c.343]

Рассмотрим твердое тело, совершающее поступательное движение со скоростью v относительно дви кущейся системы отсчета iS i эта последняя пусть движется поступательно со скоростью Vj относительно второй системы S2, которая, в свою очередь, находится в поступательном /(впжеиии со скоростью Vj относительно системы S3, и т. д. При этих условиях но теореме сложения скоростей в сложном движении абсолютная скорость  [c.38]

Мы предположим, что скользящие векторы со и Wi пересекаются в одной точке О. Абсолютная линейная скорость v точки М твердого тела будет по теореме о слогкении скоростей в сложном движении равна  [c.39]

Так называемые статистические теории прочности были разработаны первоначально в целях описания результатов испытаний на усталость и предсказания прочности элементов машин, находящихся под действием переменных нагрузок. Краткие сведения об усталости были сообщены в одном из параграфов предпоследней главы ( 19.10). Здесь мы заметим, что результаты испытаний обнаруживают большой разброс, и поэтому современная точка зрения на расчет изделий состоит в том, что мы не можем с абсолютной достоверностью гарантировать прочность изделия, а можем лишь утверждать, что вероятность его разрушения достаточно мала. В основе одной из таких статистических теорий лежит гипотеза слабого звена. Существо этой гипотезы состоит в следующем. Тело мыслится составленным из большого числа структурных элементов, каждый из которых имеет свою локальную прочность. Разрушение всего тела в целом происходит тогда, когда выходит из строя хотя бы один структурный элемент. Для массивных тел такое предположение чрезмерно упрощает фактическое положение дел для разрушения тела как целого, вероятно, необходимо, чтобы вышла из строя некоторая группа элементов, именно так строятся более сложные и совершенные теории. Но для моноволокна гипотеза слабого звена правильно отражает существо дела. Прямое микроскопическое обследование поверхности волокна — борного, угольного или иного — показывает, что на волокне всегда имеются разного рода дефекты — мелкие и крупные. Эти дефекты расположены случайным образом. Прочность образца волокна длиной I определяется прочностью его наиболее слабого дефектного места и, таким образом, является случайной величиной. Результаты испытаний партии из некоторого достаточно большого числа волокон п представляются при помощи диаграмм, подобных изображенной на рис. 20.3.1. Число волокон, разорвавшихся при напряжен1[и, ле-  [c.689]


В 1951 г. при изучении ядерных спинов в чистых кристаллах фтористого лития LiF было обнаружено, что при сложном воздействии сильного магнитного поля или высокочастотного импульса ядериые спины ориентируются в пространстве против поля, г. е. так, как если бы абсолютная температура была отрицательной величиной. Это был первый случай реализации состояний тела с отрицательной абсолютной температурой.  [c.96]

Ньютон (1642—1727). На основе более ранних исследований Леонардо да Винчи и Галилея Ньютоном были сформулированы основные уравнения движения. Были введены такие фундаментальные понятия, как импульс и действующая сила. Ньютонов закон движения решил задачу о движении изолированной частицы. Он мог также рассматриваться как общее решение задачи о движении, если только согласиться разбивать любую совокупность масс на изолированные частицы. Возникла, однако, трудность, связанная с тем, что не всегда были известны действующие силы. Эта трудность была частично преодолена с помощью третьего закона Ньютона, провозгласившего принцип равенства действия и противодействия. Это исключило неизвестные силы в случае движения твердого тела, однако движение механических систем с более сложными кинематическими условиями не всегда поддавалось ньютонову анализу. Последователи Ньютона считали законы Ньютона абсолютными и универсальными законами природы, интерпретируя их с таким догматизмом, к которому их создатель никогда бы не присоединился. Это догматическое почитание ньютоновой механики частиц помешало физикам отнестись без предубеждения к аналитическим принципам, появившимся в течение XVHI века благодаря работам ведущих французских математиков этого периода. Даже великий вклад Гамильтона в механику не был оценен современниками из-за преобладающего влияния ньютоновой формы механики.  [c.387]


Смотреть страницы где упоминается термин Тело абсолютно сложное : [c.169]    [c.32]    [c.304]    [c.139]    [c.134]    [c.132]    [c.294]    [c.65]    [c.71]    [c.210]    [c.39]    [c.81]    [c.57]    [c.655]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.513 , c.515 , c.517 ]



ПОИСК



Морошкин Ю. Ф. Вопросы геометрии сложного движения абсолютно твердого тела

Сложные тела



© 2025 Mash-xxl.info Реклама на сайте