Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения температурные (термические)

При этом между двумя физическими законами (3.45) и (3.46) имеется прямая аналогия. Сохранение заряда в электрической системе соответствует сохранению тепла в термической системе. Если в электрической системе величина электрического тока связана с напряжением с помощью закона Ома, то в термической системе величина теплового потока зависит от напряженности температурного поля Т в соответствии с уравнением (3.30), т. е. следует закону Фурье. Другими словами, закон Ома в электрической системе является аналогом закона Фурье в тепловой системе.  [c.107]


Уже при первом знакомстве с рядом особенностей поведения материалов под нагрузкой (например, осмысливание двух типов разрушения, вязкого и хрупкого) приходится иметь в виду начальные напряжения в материале при оценке комплекса свойств материала, предназначаемого для конструкций, работающих при высоких и резко изменяющихся температурах, важно понимать природу температурных (термических) напряжений. Как начальные напряжения, так и температурные (термические) напряжения могут быть уяснены лишь после ознакомления со свойствами статически неопределимых систем. Излагая идеи методов оценки надежности (в смысле прочности) конструкции и оставаясь при этом в рамках осевой деформации элементов последней, для того чтобы подчеркнуть различие методов, приходится анализировать поведение именно статически неопределимой системы.  [c.168]

Таким образом, в статически неопределимых системах при изменении температурного поля возникают усилия (напряжения), называемые температурными (термическими).  [c.179]

Сделанные до сих пор оценки теоретической прочности при сдвиге идеальных монокристаллов выполнены в предположении, что кристалл испытывает чистый сдвиг и сила, нормальная к плоскости скольжения, отсутствует. Учет растягивающих и сжимающих напряжений должен сильно повлиять на величину Ттах-Приведенные оценки теоретической прочности относились к температуре абсолютного нуля. Однако теоретическая прочность зависит от температуры по двум причинам. Во-первых, следует учитывать температурное изменение упругих постоянных, параметров решетки и поверхностной энергии и, во-вторых, термические флуктуации. При температуре, отличной от 0° К, в кристалле имеется конечная вероятность возникновения дислокаций под действием приложенных напряжений и термических флуктуаций [49, 50], что, как показывает расчет, приводит к небольшому уменьшению прочности с температурой. Между тем это противоречит хорошо известному экспериментальному факту о значительном понижении прочности с температурой. Последнее обусловлено влиянием температуры на свойства структурных де-  [c.281]

Дислокации в кристаллах германия и кремния являются в основном продуктом пластической деформации кристалла, происходящей в результате возникающих в нем термических напряжений. Возникновение термических напряжений в кристаллах обязано значительному радиальному температурному градиенту в охлаждающемся кристалле, когда большая часть тепла слитка теряется при охлаждении через его боковую поверхность. Корка слитка претерпевает при этом более быстрое термическое сжатие, чем центральные зоны слитка, вследствие чего в кристалле возникают пластические сдвиги, приводящие к образованию дислокаций.  [c.512]


Закалка в одной среде схематично показана на фиг. 60 в виде кривой 1. Такая закалка проще по выполнению, но ее можно применять не для каждой стали и не для любых деталей. Быстрое охлаждение деталей переменного сечения в большом интервале температур способствует возникновению температурной неравномерности и больших внутренних напряжений, называемых термическими.  [c.140]

В настоящей главе динамическая задача термоупругости рассматривается без учета взаимодействия полей деформации и температуры, т. е. предполагается (в соответствии с классификацией задач термоупругости 1.8) несвязанной. Такая динамическая задача при упругих Я,, Lt и термическом ат коэффициентах, зависящих от температуры, сводится к решению уравнения (1.8.9) при определенных начальных и граничных условиях, которые задаются либо в перемещениях, либо в напряжениях температурное поле Т предполагается известным из решения соответствующей нестационарной задачи теплопроводности (глава третья). При постоянных упругих и термическом коэффициентах уравнение (1.8.9) переходит в (1.8.6) Представление общего решения этого уравнения известно.  [c.251]

Нужно отметить, что механизм термической усталости во многом подобен механизму усталости при механическом воздействии, так как в обоих случаях причинами разрушения являются одни и те же факторы воздействие переменных многократных напряжений и знакопеременные пластические деформации. Поэтому для определения закономерностей термической усталости часто используют вспомогательные данные о поведении изучаемого материала при изотермическом циклическом нагружении (Я. Б. Фридман, 1962). Однако существуют и различия между ними, не позволяющие в ряде случаев заменить испытания на термическую усталость испытаниями на механическую усталость. Дело в том, что за счет изменения температуры в течение каждого цикла происходит постоянное изменение различных физических свойств материала (модуля упругости, предела текучести и др.), приводящее, в свою очередь, к изменению сопротивления материала воздействию термических напряжений. Для термической усталости характерна локализация деформации в зонах с наибольшим температурным перепадом даже в однородном поле напряжений (термическая концентрация) из-за неравномерности температурного поля, возникающего в деталях. Отметим также, что сопротивление механической усталости при невысоких температурах и не слишком малых частотах  [c.417]

В практике эксплуатации различной аппаратуры из керамики коррозионное трещинообразование наиболее часто наблюдается в конструкциях или узлах, в которых имеются остаточные напряжения после термической (обжиг, пайка с металлом) или механической (шлифование) обработки, напряжения, связанные с монтажом или сборкой, а также приложенные извне нагрузки, в условиях эксплуатации аппаратуры при повышенном давлении, изменениях температурного режима и др.  [c.46]

Типичным случаем является возникновение остаточных температурных (термических) напряжений при неравномерном охлаждении изделия по сечению, например при закалке и т. п. (рис. 83,а). Поверхностный слой цилиндрического сплошного образца охлаждается и уменьшает свой объем быстрее, чем его внутренняя часть, и сжимает последнюю ( эффект обруча ), В результате во внутренней части возникнут временные напряжения сжатия, в поверхностном слое — напряжения растяжения Ор (рис, 83,6). При Ор От (при данной температуре) в этом слое произойдет пластическая деформация— необратимое изменение размеров. Когда периферийный слой уже охладился, центральная часть еще охлаждается и стремится уменьшить свой объем. Этому препятствует уже охладившийся периферийный слой. В центральной части образца возникнут остаточные напряжения растяжения, в периферийном слое — сжатия (рис, 83,б). Величина остаточных напряжений тем больше, чем выше разность температур по ечению и, следовательно, чем больше скорость охлаждения.  [c.192]


Для предотвращения появления температурных (термических) напряжений и короблений деталей СА лопатки закрепляются, как правило, в наружном силовом корпусе и соединяются с внутренним корпусом, обеспечивая либо свободу температурных деформаций деталей СА, либо незначительный уровень термических напряжений, а это возможно при соединении лопаток СА с внутренним корпусом, обладающим малой жесткостью, либо через податливый конструктивный элемент.  [c.182]

Длительное действие термических напряжений. Температурные напряжения, возникающие в деталях машин при высоких температурах, обычно действуют в каждом цикле в течение некоторого времени. Длительность и форма температурного цикла являются одним из основных факторов, определяющих сопротивление материала термической усталости, поскольку с увеличением длительности действия температурных напряжений изменяется процесс накопления повреждений [15].  [c.74]

Закономерности формирования химического состава металла шва изложены в разд. III Физико-химические и металлургические процессы при сварке . Материал первых двух разделов дает описание тех физических и температурных условий, которые создаются над поверхностью металла и в самом металле в процессе сварки. В этом плане материал первых двух разделов представляет собой как бы описание того физического фона, от которого зависит протекание реакций, переход различных легирующих элементов в металл шва или их удаление и окисление. Вопросы защиты металла шва и массообмена на границе металл— шлак и металл — газ — центральные в разд. III. Эти процессы предопределяют химический состав металла шва, а следовательно, во многом и его механические свойства. Однако формирование свойств сварного шва, а тем более сварного соединения, определяется не только химическим составом металла. Характер кристаллизации шва во многом влияет на его свойства. Свойства околошовной зоны и в определенной мере металла шва существенно зависят от температурного и термомеханического циклов, которые сопровождают процесс сварки. Для многих легированных сталей и сплавов эта фаза формирования сварного соединения предопределяет их механические свойства. Процесс сварки может создавать в металле такие скорости нагрева и охлаждения металла вследствие передачи теплоты по механизму теплопроводности, которые часто невозможно организовать при термической обработке путем поверхностной теплопередачи. Образование сварного соединения сопровождается пластическими деформациями металла и возникновением собственных напряжений, которые также влияют на свойства соединений. Эти вопросы рассматриваются в IV, заключительном разделе учебника — Термодеформационные процессы и превращения в металлах при сварке .  [c.6]

Термодеформационный цикл сварки характеризует изменение температуры и напряженно-деформированного состояния точки тела в процессе сварки. При его воспроизведении на образце можно создать такое же температурное и напряженно-деформированное состояние, какое существует в процессе сварки. Для этого необходимо выполнить следующие требования 1) образец изготавливается из металла свариваемого объекта 2) термический цикл образца должен совпадать с термическим циклом при сварке 3) характер деформирования образца определяется компонентами деформаций, возникающими при сварке, и упругими свойствами металла.  [c.414]

При стационарном тепловом процессе, рассматриваемом ниже, предполагают, что полная деформация тела является суммой упругой деформации, связанной с напряжениями обычными соотношениями, и чисто теплового расширения, соответствующего известному из классической теории теплопроводности температурному полю. В теории термоупругости обычно накладывается ограничение на величину термического возмущения приращение температуры предполагается малым по сравнению с начальной абсолютной температурой. Снятие этого ограничения не нарушает предположения о малости деформаций (перемещений), но  [c.90]

В статических задачах термоупругости температурное поле является стационарным. Задачи, в которых не учитывают эффект связанности температурного поля деформаций, а также силы инерции, обусловленные нестационарным температурным полем, называют квазистатическими. В этих задачах тепловые напряжения в упругом теле в рассматриваемый момент времени определяются при известном температурном поле (время здесь является параметром). При решении задач термоупругости в качестве основных неизвестных принимают компоненты вектора перемещений или тензора напряжений. В соответствии с этим различают постановку задачи термоупругости в перемещениях или в напряжениях. Во всех случаях, если это особо не оговаривается, упругие и термические коэффициенты предполагают постоянными.  [c.91]

Нагнетательные скважины для термического воздействия на пласт, а также эксплуатационные скважины представляют собой многоколонные конструкции, состоящие из сочетания последовательно расположенных слоев металла, жидкости или газа, цементного камня и горной породы. Для определения прочностных показателей элементов ствола скважины необходимо знать их температурное поле, особенно нестационарное температурное поле в первые моменты ведения процесса, так как в эти моменты температурный градиент достигает наибольшего значения и, следовательно, наибольшие напряжения в элементах скважины.  [c.269]


В связи с описанным процессом представляет интерес явление, которое получило название разупрочнения при легировании и заключается в уменьшении критического напряжения сдвига в о. ц. к. кристаллах при добавлении небольшого количества легирующего элемента. Разупрочнение при легировании обычно наблюдается при комнатной температуре и ниже, т. е. в той температурной области, где термически активируемое преодоление барьеров Пайерлса в значительной степени определяет величину критического напряжения сдвига (рис. 134).  [c.221]

Теория пленочной конденсации Нуссельта основывается на следующих основных предпосылках течение конденсата ламинарное напряжение трения на поверхности пленки пренебрежимо мало перенос теплоты лимитируется термическим сопротивлением пленки конденсата физические параметры конденсата постоянны. Для обеспечения лучшего согласия с экспериментом вводят поправки на интенсифицирующее воздействие волнового движения пленки (ву) и изменение физических параметров в зависимости от температуры (е<). Формулы для расчета среднего коэффициента а на вертикальной стенке высотой Н записываются в различных модификациях. Если задан температурный напор то определяющим критерием является приведенная высота поверхности 7  [c.58]

В циклах водной очистки поверхностей нагрева котла происходит резкое охлаждение не только слоя золовых отложений и шлака, а также оксидной пленки и металла. Возникающие при этом температурные градиенты являются источником дополнительных термических напряжений, вызывающих разрушение ок-  [c.204]

В течение определенного времени на заданном расстоянии от наружной поверхности трубы термические напряжения достигают максимальных значений. Наибольшие термические напряжения при этом не соответствуют моменту достижения максимального температурного перепада. Так, например, если температурный перепад на наружной поверхности труб достигает своего максимального значения через 0,3 с (рис. 5.15), то термические напряжения имеют наибольшие значения в момент времени 0,18 с (рис. 5.16). После достижения максимума термические напряжения снижаются, несмотря на продолжающееся увеличение перепада температуры на наружной поверхности трубы. С увеличением расстояния от наружной поверхности трубы снижаются максимальные термические напряжения с одновременным уменьшением времени до их наступления.  [c.213]

По мнению многих исследователей [8—111, появление в покрытиях остаточных напряжений вызывается несколькими причинами различием коэффициентов термического расширения материалов покрытия и основного металла (температурные остаточные напряжения) изменением удельного объема структурных фаз неравномерностью распределения порошкового материала в плазменной  [c.185]

Образованные в результате реакций (2.19) и (2.20) сидячие дислокационные конфигурации (см. рис. 2.10) вызываютШоявление температурной зависимости сопротивления движению дислокаций. Обусловлено это тем, что для движения винтовой дислокации внешнее напряжение и термическая активация должны обусловить протекание процесса редиссоциации, т. е. образования перетяжек [831 на расщепленной дислокационной линии, после чего только она получит возможность перемещаться. Фактически достаточно подтянуть к центру расщепления хотя бы один из дефектов упаковки. Данная модель редиссоциации винтовых дислокаций [82, 83] объясняет не только температурную зависимость прочностных характеристик, но и асимметрию скольжения в  [c.48]

Для обработки черных металлов и материалов, чувствительных к локальным температурным напряжениям и термическим ударам, налажен промышленный выпуск материалов эльбор-Р (композит 01), исмит и гексанит-Р (композит 10), частицы которых крепят в металлических матрицах методами, аналогичными рассмотренным выше например, абразив запрессовывают в порошковую композицию, после чего проводят инфильтрацию жидким металлом. Такие материалы с 1964 г. (эльбор-Р) и с 1972 г. (гексанит-Р) применяют на операциях резания при тонкой, чистовой и получистовой обработке деталей из сталей (в том числе закаленных твердостью HR 60 и более), чугуна, литых постоянных магнитов, ферритов и др. производительность труда увеличивается до 5 раз. Освоен выпуск шлифовальных кругов из эльбора и на основе гексанита-А.  [c.147]

Металлы с окружающей средой взаимодействуют и в изотермических условиях. Различные случаи описаны в специальной литературе и здесь не рассматриваются. Ниже изложены некоторые примеры воздействия среды на формоизменение при термоциклировании. Это воздействие может вызывать размерную нестабильность металлов или накладываться на другие механизмы необратимого формоизменения. Иллюстрацией этого положения служит описанная выше роль окисления в развитии растворноосадительного механизма роста графитизированных сплавов. Взаимодействие с окружающей средой часто является причиной нестабильности коэффициента роста во время испытания. С появлением на поверхности образцов слоя с иными физико-механическими свойствами изменяются условия теплопередачи, появляются внутренние напряжения, возникают термические деформации даже в отсутствии температурных градиентов и т. д.  [c.151]

Обеспечение свободь тепловых деформаций. Следует избегать осевой фиксации деталей в двух точках. При наличии температурных деформаций в случае такой фиксации могут появиться термические напряжения, вызванные торможением смежности.  [c.379]

При создании современных турбин ГТД различного назначения с высокими начальными параметрами, большими неравномерностями полей температуры, скорости, плотности в потоке газа важной является проблема снижения термических напряжений в пере лопатки путем уменьшения неравномерности температуры. Уже при начальной температуре газа Г = 1500 К минимальное значение местного коэффициента запаса прочности может достигнуть своего допустимого значения в самой холодной точке поперечного сечения пера. Наиболее горячие части лопатки — кромки, а наиболее холодные — средние части выпуклой и вогнутой поверхностей с минимумом температуры nmin перемычке между охлаждающими каналами. Традиционный метод уменьшения температурной неравномерности заключается в снижении температуры кромок двумя основными способами интенсификацией теплообмена в кромочных каналах турбулизаторами течения (ребрами, лунками, закруткой, струйным натеканием на стенку, пульсирующей подачей охладителя и т. п.) или понижением температуры воздуха, охлаждающего кромки, путем спутной закрутки или в теплообменнике. Эффективным может быть выдув охладителя на поверхность пера. Однако в авиадвигателях выдув может затруднять отключение охладителя на крейсерских режимах полета самолета. В ГГУ, работающих на тяжелых сортах топлива, происходит отложение твердых частиц на перфорирюванной поверхности, что приводит к  [c.366]

Нагрев и охлаждение металлов вызывают изменение линейных размеров тела и его объема. Эта зависимость выражается через функцию свободных объемных изменений а, вызванных термическим воздействием и структурными или фазовыми превращениями. Часто эту величину а называют коэффициентом линейного расширения. Значения коэффициентов а в условиях сварки следует определять дилатометрическим измерением. При этом на образце воспроизводят сварочный термический цикл и измеряют свободную температурную деформацию ёсв на незакрепленном образце. Текущее значение коэффициента а представляют как тангенс угла наклона касательной к дилатометрической кривой дг в/дТ. В тех случаях, когда полученная зависимость Вс Т) значительно отклоняется от прямолинейного закона, в расчет можно вводить среднее значение коэффициента ср = tg0 p, определяемое углом наклона прямой линии (рис. 11.6, кривая /). Если мгновенные значения а = дгс /дТ на стадиях нагрева и охлаждения существенно изменяются при изменении температуры, то целесообразно вводить в расчеты сварочных деформаций и напряжений переменные значения а, задавая функции а = а(Т) как для стадии нагрева, так и для стадии охлаждения. 4В  [c.413]


Стали типа 15Х5М относятся к числу термически стабильных. Однако при длительном воздействии высокой температуры в сварных разнородных соединениях могут образовываться переходные прослойки, обусловленные диффузионно м перераспределением в них диффузионно-подвижных Э1 с,ментов. Исследования, проведенные Н.М. Королевым во ВНИИнефтемаше, показали, что интенсификацию диффузионных процессов вызывают циклические термические напряжения, обусловленные различием температурных коэффици-ешов линейного расширения аустенитного шва и основного металла. Помимо термических напряжений действуют также напряжения, возникающие вследствие наличия закаленных участков в околошовных зонах. Мартенситная пересыщенная структура закалки всегда обладает более высокой свободной энергией, чем равновесные фазы с таким же номинальным составом, т.е. околошовные зоны термического влияния закаливающейся стали характеризуются более структурнонапряженным состоянием. Как известно, напряженное состояние металла значительно влияет на скорость диффузионных процессов и их коррозионную стойкость.  [c.155]

Для стационарных тепловых режимов качество изоляции улучшается с уменьшением коэффициента теплопроводности, а для нестационарных — с уменьшением коэффициента температуропроводности. Важными качествами таких покрытий являются высокая температура плавления, способность противостоять термическим напряжениям, которые возникают при больших температурных градиентах, хорошая сцепляемость (адгезия) с материалом заш,и-щаемой стенки.  [c.468]

ТЕОРИЯ температурной зависимости ДЕФОРМИ-РУЮЩЕГО НАПРЯЖЕНИЯ ДЛЯ Г. П. У. И Г. Ц. К. МОНОКРИСТАЛЛОВ. Наиболее важными термически активируемыми процессами, связанными с пересечением дислокаций при их движении, являются  [c.214]

Сопротивление скольжению Тл, как впервые отметил Зегер, обусловливает температурную зависимость критического напряжения сдвига металлов с г. п. у. и г. ц. к. решеткой. Сопротивление Тп складывается из температурно-независимой (тс) и температурнозависимой (тя) составляющих, при этом тс обычно отождествляется с сопротивлением дислокаций в параллельных плоскостях скольжения (полях дальнодействия), а ts — с пересечением дислокаций леса. Преодоление дислокаций леса существенно облегчается термической активацией. Для металлов с о. ц. к. решеткой температурная зависимость Тл слабее, чем температурная зависимость тП—н, и в отличие от г. п. у. и г. ц. к. кристаллов ее практически можно не учитывать.  [c.220]

Показаны особенности термической обработки крупногабаритных изделий на металлургических предприятиях. Рассмотрены температурные поля и поле напряжений крупногабаритных изделий в Apojiee e термической обработки, аналитические и эксперименталь-ице с1]0с0бы их определения, вопросы влияния водорода на свойства йталн. Описаны физические исследования, необходимые для обоснованного назначения оптимальных режимов термической обработки. Дан анализ режимов предварительной и окончательной термической обработки крупногабаритных изделий.  [c.63]

Для объяснения прочностных свойств ОЦК-металлов в интервале 0,15—0,2 Тпл (см. рис. 2.8) предлагались различные модели и механизмы, анализ которых позволяет выделить три основных фактора, реально претендующих на достаточно полное описание наблюдаемой зависимости напряжение Пайерлса — Набарро [77—80], примесное упрочнение [75, 76, 81] и термически активируемая редиссоциация винтовых дислокаций [82, 83]. Можно также рассматривать, что часто и делается в отношении металлов с другими типами решетки, температурную зависимость напряжения, необходимого для движения дислокаций со ступеньками [8], механизм пересечения дислокаций леса [8, 84] и др. Но они не согласуются с экспериментальными данными о том, что степень деформации не влияет на температурную зависимость напряжения течения [26], хотя согласно указанным механизмам  [c.44]

В работе [78] получено выражение для скорости дислокации с учетом прямых и обратных термически активируемых скачков дислокационной линии. Решая это выражение относительно напряжения, авторы [78] нашли уравнение для критического напряжения сдвига, которое в зависимости от температурного интервала может быть представлено одним из двух нижеприведенных выражений. Для относительно высоких температур, когда зЬ (ату/гГ) vxlkT, имеет место экспоненциальная зависимость  [c.46]

Экспериментальные данные [57] по температурной зависимости пределов упругости стя и неупругости стл для железа показывают (рис. 2.42), что только увеличение стя в области температур ниже 50 К можно считать результатом вклада напряжения Пайерлса. Выше 50 К термическая активация сводит на нет вклад напряжения Пайерлса в прочностные характеристики железа и поэтому основную роль здесь уже должны будут играть примеси и процесс редиссоциации дислокаций [82, 83]. В пользу последнего свидетельствует значительный рост напряжения ол после возрастающих степеней пластической деформации (рис. 2.42).  [c.97]

Анализ напряженного состояния поверхности охлаждаемых рабочих лопаток показал, что растягивающие суммарные напряжения, обусловленные действием центробежных сил и термическими напряжениями из-за неоднородности температурного поля, невелики. Вследствие этого наибольшую вероятность имеет разрушение покрытий в результате накапливающихся растягивающих деформаций, вызываемых при охлаждении термическими напряжениями из-за несоответствия КТР. Чтобы этого не происходило, должны соблюдаться условия КТР покрытия КТР сплава во всем температурном интервале ниже температуры хрупко-вязкого перехода в покрытии. В таком случае в них при охлаждении возникают неопасные сжимающие напряжения, не переходящие в растягивающие при нагревании. Если данное условие не может быть выполнено, необходимо, чтобы при температурах ншке температуры хрупко-вязкого перехода покрытие обладало запасом пластичности, достаточным для релаксации напряжений, обусловленных несоответствием 1ГГР.  [c.186]

Термическая усталость — это разрушение материала под дейст-виел1 циклических изменений температуры, которые возбуждают переменные температурные напряжения. Однократное изменение температуры с высокой скоростью носит название теплового удара. При тепловом ударе, так же как при термоциклировании, возникшие температурные поля и обусловленные ими температурные напряжения могут привести к разрушению образца. Термическую усталость относят к разновидности малоцикловой низкочастотной усталости. Вопросы разрушения металлургического оборудования при термической усталости рассмотрены в работах М. А. Тылкина [40, 218, 219].  [c.128]


Смотреть страницы где упоминается термин Напряжения температурные (термические) : [c.73]    [c.326]    [c.39]    [c.376]    [c.376]    [c.151]    [c.165]    [c.217]    [c.219]    [c.213]    [c.220]    [c.95]    [c.46]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.168 , c.216 , c.287 , c.310 , c.323 , c.327 , c.359 ]



ПОИСК



Напряжение температурное

Напряжение термическое

Пример анализа температурных полей и термических напряжений



© 2025 Mash-xxl.info Реклама на сайте