Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волна остановившаяся

Продольные волны. Остановимся прежде всего на тех чертах волнового движения, которые сходны как для твёрдых тел, так и для газов и жидкостей, а затем перейдём к существенно отличным процессам, присущим лишь твёрдым телам. В твёрдых телах, как и в жидкостях, могут распространяться продольные упругие волны, в которых движение частиц совершается в направлении движения волны. Механизм образования упругой продольной волны в твёрдом теле ничем не отличается от механизма образования упругой или звуковой волны в жидкости и газе. В газе или жидкости упругая волна возникает благодаря упругости среды и инерции её частиц, так же обстоит дело и при образовании упругой волны в твёрдом теле.  [c.357]


В ряде приближенных решений, в особенности для начальных периодов движения грунтовой среды, возможно применение методов теории упругости и теории распространения упругих волн. Остановимся на основных понятиях последней.  [c.108]

Для иллюстрации современного состояния теории нелинейных колебаний и волн остановимся здесь кратко лишь на двух ее направлениях — исследовании когерентных состояний и сложных детерминированных структур и анализе случайного (стохастического) поведения детерминированных систем. Взаимосвязь динамики и статистики волнует физиков уже на протяжении столетия, и, конечно, главным всегда был вопрос можно ли строго получить статистическое описание из динамического До недавнего времени ответ был отрицательным. Возникновение случайности в классической (неквантовой) динамической системе (не подверженной действию шумов) связывалось исключительно с ее сложностью — чрезвычайно большим числом степеней свободы (например, газ в сосуде), когда детерминированное описание просто теряет смысл, хотя в принципе и возможно. При этом переход к вероятностному описанию основывался на какой-либо гипотезе (например, эргодической). Появившаяся сейчас строгая теория позволяет утверждать, что нелинейные динамические системы могут в прямом смысле  [c.14]

Остановимся кратко на нелинейных эффектах, связанных с воздействием света большой интенсивности на коэффициент его поглощения fe(v) в том или ином веществе, что приводит к нарушению закона Бугера (см. 2.5). Возникающее нелинейное поглощение света определенной длины волны, обычно совпадающей с резонансными линиями исследуемого вещества, может быть использовано в диагностических целях или других приложениях и нашло широкое применение в современной спектроскопии.  [c.171]

Рассмотрев гравитационные волны, длина которых мала по сравнению с глубиной жидкости, остановимся теперь на противоположном предельном случае волн, длина которых велика по  [c.57]

Наконец, остановимся коротко на обратном предельном случае, когда длина волны рассеиваемого звука мала по сравнению с размерами тела. В этом случае все рассеяние, за исключением лишь рассеяния на очень малые углы, сводится к простому отражению от поверхности тела. Соответствующая часть полного  [c.419]

Остановимся кратко на пересечениях ударной волны с приходящим от постороннего источника слабым разрывом. Здесь могут представиться два случая в зависимости от того, является ли двил<ение за ударной волной сверх- или дозвуковым. В первом случае (рис. 104, а) слабый разрыв преломляется на ударной волне, проходя в пространство позади нее (сама же ударная волна в точке пересечения излома не имеет ее форма имеет лишь особенность более высокого порядка —того же характера,  [c.583]


Разобранные в настоящей главе случаи интерференции света дают возможность наблюдать это явление на специально осуществляемых опытах. Однако явление встречи двух или нескольких когерентных волн, между которыми наблюдается интерференция, имеет место, по существу, во всяком оптическом процессе. Распространение света через любое вещество, преломление света на границе двух сред, его отражение и т. д. суть процессы такого рода. Распространение света в веществе сопровождается воздействием световой электромагнитной волны на электроны (и ионы), из которых построено вещество. Под действием световой волны эти заряженные частицы приходят в колебание и начинают излучать вторичные электромагнитные волны с тем же периодом, что и у падающей волны. Так как движение соседних зарядов обусловливается действием одной и той же световой волны, то вторичные волны определенным образом связаны между собой по фазе, т. е. являются когерентными. Они интерферируют между собой, и эта интерференция позволяет объяснить явления отражения, преломления, дисперсии, рассеяния света и т. д. Мы познакомимся в дальнейшем с объяснением перечисленных явлений с указанной точки зрения. В настоящем же параграфе мы остановимся на одном частном случае из описанного ряда явлений.  [c.89]

Прежде чем говорить об особенностях конструктивного выполнения и функционирования голографических приборов, необходимо ознакомиться с физическими основами голографии. Но вначале остановимся на вопросах, касающихся природы света и его свойств. Это позволит дать ответ на вопрос каким же образом волна может нести в себе информацию о предмете  [c.7]

В заключение коротко остановимся на сравнении теоретических и экспериментальных данных. Оптические постоянные металла измеряются обычно в отраженном свете видимой области спектра. Значения постоянных, найденные для длины волны 5893 А (желтая Л-линия натрия), приведены в табл. 16.2.  [c.29]

В заключение коротко остановимся на экспериментах, подтверждающих существование механического ориентирующего действия световой волны (эффект Садовского). Если кристаллическая пластинка, вырезанная параллельно оптической оси, преобразует циркулярно поляризованный свет в линейно поляризованный, то она получает механический вращающий момент, направленный в сторону вращения электрического вектора световой волны. Если же пластинка преобразует линейно поляризованный свет в свет круговой поляризации, то она испытывает вращающий момент в противоположном направлении.  [c.187]

Мы рассмотрели выше картину распространения бегущих волн в стержне и струне. В системах такого типа распространение волн могло происходить только по одному определенному направлению. Вообще же в упругой сплошной среде, например в упругом теле больших размеров, в воде или в воздухе, волны могут распространяться по всем направлениям. При этом картина распространения волн принципиально остается прежней, однако возникает ряд новых вопросов, на которых мы сейчас и остановимся.  [c.704]

Остановимся еще на одном примере корабля не очень обтекаемой формы, который при своем движении порождает большие волны на поверхности воды. В этом случае сопротивление трения играет второстепенную роль по сравнению с волновым сопротивлением (затратой энергии на преодоление силы тяжести воды), и для обеспечения приближенного динамического подобия становится определяющим критерием число Фруда Fr =  [c.81]

Остановимся теперь на теории ударных волн. Представим -себе, например, что под влиянием резкого смещения поршня рис. 3.2) в трубе возникла и распространяется слева направо  [c.116]

Остановив ударную волну встречным потоком газа, мы получи-  [c.118]

Остановимся теперь на соотношениях, характеризующих плоскую ударную волну, возникающую при обтекании с гиперзвуковой скоростью вогнутого тупого угла. В плоской косой ударной волне изменение плотности, согласно (47) гл. III, будет  [c.110]

Уравнение (23-20) отвечает опытным данным для волнистого прыжка при 1,5<П 1<3. При 1<Пк <1,5, т. е. при весьма малой бурности потока, волнистый прыжок можно рассматривать как остановившуюся волну малой высоты а = к"—к.  [c.232]


Мы подробно остановимся только на дискретных спектрах атомов и молекул в оптическом диапазоне длин волн, которые возникают при переходах электронов в пределах внешней (валентной) оболочки, а так-  [c.794]

Остановимся на ограничении 8 -<а в описании процесса отражения поперечных волн. Формально это ограничение следует из вещественности коэффициентов в выражении для Q x,y,t), что необходимо для простейшей плоской волны (9.7). С механической точки зрения это означает, что 01 =  [c.437]

Рассмотрим некоторый слой (отсек) остановившейся жидкости, в области которого произошли повышение давления и расширение стенок трубы. Предположим, что за время At между сечениями / — 1 и 2—2 на длине Дх произошло расширение стенок трубы (рис. 118). Обозначим скорость распространения упругих деформаций (скорость распространения ударной волны) через с. Тогда  [c.187]

Гидравлический прыжок можно рассматривать как остановившуюся волну перемещения. Если, например, поток, находящийся в бурном состоянии, внезапно преградить, уровень воды перед преградой резко повысится (рис. 21.1). Создастся волна, которая будет распространяться вверх по течению (обратная положительная волна). Высота и скорость перемещения волны будут постепенно уменьшаться вверх по течению. При скорости волны с , равной средней скорости у, волна остановится и примет форму гидравлического прыжка. Такое возможно только в потоке, находящемся в бурном состоянии (Як >1). Если поток находится в спокойном состоянии (Як < 1), волна по мере удаления вверх по течению постепенно будет затухать, кривая свободной поверхности перед препятствием останется непрерывной, плавной. Гидравлический прыжок образуется при обтекании потоком, находящимся в бурном  [c.95]

Осредненный поток 145 Остановившаяся волна перемещения 377 Остойчивость судна 67 Ось плавания 66 Отверстие водосливное 405  [c.657]

В гл. 6 рассматриваются более подробно вопросы использования солнечной энергии для получения теплоты. В данной главе остановимся только на системах, предназначенных для преобразования солнечной энергии в электрическую. Начнем поэтому с рассмотрения тех характеристик, которые являются наиболее важными при этих процессах, прежде всего— спектр солнечного излучения. На рис. 5.6 показано, как распределена по длинам волн энергия солнечного излучения, падающего в единицу времени на единицу поверхности и приходящегося на единичный интервал длин волн. Спектр, измеренный на верхней границе земной атмосферы, очень хорошо совпадает со спектром излучения абсолютно черного тела при температуре 6000 К. Абсолютно черным телом называется физическое тело, которое излучает энергию во всем спектре и поглощает все падающее на него излучение независимо от длин волн. Таких тел в природе не существует, но существуют тела с очень близкими свойствами. Понятие абсолютно черного тела играет важную роль в физике. Так, решая задачу о распределении излучения абсолютно черного тела по длинам волн, Макс Планк впервые сформулировал принципы квантовой механики. В распределении солнечного излучения по длинам волн, измеренном вблизи поверхности Земли, имеются большие провалы, обусловленные поглощением излучения на отдельных частотах или в отдельных интервалах частот атмосферными газами — кислородом, озоном, двуокисью углерода — и парами воды.  [c.95]

Формулы (8.11), (8.12) [2, 14] являются обобщением (на случай приема телескопом) соотношения (7.2) для моментов интенсивности падающего и отраженного полей, полученного для точечного приемника. Выражения (8.8), (8.11) описывают эффект усиления средней интенсивности отраженной волны при ее фокусировке (см. п. 8.1), а (8.9), (8.12) характерргзуют усиление флуктуаций интенсивности сфокусированной отраженной волны. Остановимся далее на количественных оценках этого явления в плоскости фокуса.  [c.203]

Поскольку И = 1 + К, то полюсы и точки ветвления подынтегрального вьфаження в 02.11) будут расположены так же, как в (12.10). Не приводя пЬдробности исследования в комплексной плоскости, которое имеет совершенно такой же вид, как н в случае отраженных волн, остановимся сразу на результатах расчетов и их физическом смысле. При этом основной интерес представляют поправки к полуденному вьш1е результату геометрической акустики.  [c.257]

Так же как и в случае диэлектриков, необходимо исследовать отражение и проникновение (в металл) световых волн, падающих на границу раздела диэлектрик—металл. Аналогичное рассмотренне приводит к результатам (угол падения равен углу отражения, отношение синуса угла падения к синусу угла преломления равно относительному показателю преломления второй среды и т. д.), формально идентичным выводам рассмотрения распространения световой волны на границе раздела двух диэлектриков. Остановимся на некоторых характерных вопросах распространения света на границе раздела воздух—металл.  [c.61]

При построении изображения малого предмета в тонкой линзе мы пользовались параксиальным пучком света. Кроме того, лучи параксиального пучка составляли небольшие углы с главной оптической осью. Далее, падающий свет сч1ггали монохроматическим, а показатель преломления материала линзы — не зависящим от длины волны падающего света. На практике все эти условия не соблюдаются и возникают соответствующие недостатки оптических систем. Коротко остановимся на некоторых из них.  [c.186]

Остановимся более подробно на генерации второй гармоники. На первый взгляд могло казаться, что с условием возникновения второй гармоники мы уже достаточно знакомь[ и нет особой необходимости более подробно останавливаться на механизме генерации. Действительно, так может казаться HM Hfra на первый взгляд. Возникновение в каких-либо точках среды второй прмоникн еще не означает, что оно приведет к эффективному образованию соответствующей волны. Дело в том, что в отличие от линейной оптики, где из-за неизменности частоты вторичной волны фазовые скорости падающей и вторичной волн одинаковы и, следовательно, вторичные волны когерентны как с первичной, так и между собой. В нашем случае фазовая скорость первичной волны [Уф (ш) = = dn (q))] отличается от фазовой скорости [уф (2 з) = hi (2й))] вторичной. Причиной этому служит дисперсия Ы ( >) ф П 2(ii) света. В результате такого различия вторичные волны, возникшйе  [c.403]


С одним из выводов Допплера мы знакомы из курса механики. Остановимся теперь на другом выводе, основанном на применении преобразования Лореитца к оптике движущихся сред, используя при этом инвариантность фазы при переходе из одной системы координат в другую. Инвариантность фазы световой волны Ф = (oi — (kr), где г — трехмерный радиус-вектор, проведенный из начала координат в любую точку фронта волны, относительно преобразования Ло-рентца можно доказать путем непосредственного вычисления (доказательство поручается читателям).  [c.422]

Вывод основных соотно1пений для аномальной дисперсии приведен ниже при изучении действия электромагнитной волны на движение связанных электронов атома с учетом их торможения. В гл. 5 мы более подробно остановимся на экспериментальных исследованиях явления аномальной дисперсии в парах и газах, проводящихся методами интерферометрии.  [c.138]

В заключение остановимся на принципе действия интерференционных фильтров, получишпих за последние годы широкое распространение. Интерференционный фильтр — это устройство, позволяющее пропустить значительную часть светового потока в определенной узкой области длин волн. Ширина полосы пропускания Л/, обычно составляет несколько десятков ангстрем. Принцип действия подобного фильтра понятен, если представить себе интерферометр Фабри —Перо с очень ма- сьсм расстоянием I между пластинами.  [c.253]

Остановимся подробнее на описании этого интересного метода получения и восстановления голограммы. Для получения голограмм при облучении лазерным светом толсто( лойных фотографических пластинок используются встречные световые потоки опорной и предметной волны. После обработки фотопластинки в толще эмульсии возникает слоистая структура с расстоянием между слоями d = /./2, где /. — длина волны излучения лазера, используемого для освещения объекта и в качестве опорной волны. Если угол встречи опорной и предметной волны меньше  [c.359]

Оптический квантовый генератор является соверщен-но новым источником электромагнитных волн. Его излучение обладает уникальными свойствами, резко отличающимися от свойств известных источников ламп накаливания, люминесцентных ламп, электрической дуги, искры и т. д. Остановимся коротко на этих свойствах.  [c.280]

В заключение остановимся на вопросе о форме волн и о том особом месте, которое среди всевозможных по форме волн занимают гармонические волны. Прежде всего, при рассмотрении картины распространения бегущей волны в стержне мы пришли к выводу, что если на конец стержня действует гармоническая внешняя сила, заставляющая конец стержня совершать гармоническое движение, то и волна, бегущая по стержню, является гармонической. Этот вывод являлся непосредственным следствием того, что всякие упругие импульсы, независимо от их формы, распространяются по стержню с одинаковой скоростью и не изменяя своей формы. Правда, это последнее утверждение справедливо только при известных условиях, которые были оговорены в ИЗ, но эти условия часто соблюдаются, как в стержнях, так и во многих других упругих телах и средах, как твердых, так и жидких или газо разных, Тогд , если источник, возбуждающий волны, со-  [c.718]

Остановимся более подробно на некоторых общих свойствах одноразмерных неадиабатических волн и дадим, в частности, расчетные формулы для определения абсолютной скорости распространения волны. Из уравнений импульсов и неразрывностн следует, что в любом случае yдapJиoй волны (в пренебрежении силами трения) справедливо следующее соотношение  [c.227]

Остановимся теперь на упоминавшейся выше поправке Бузе-мана к формуле Ньютона для случая обтекания криволинейной поверхности. Ввиду того что слой газа, состоятций из частиц, заключенных между поверхностью тела и ударной волной, не бесконечно тонок, давление непосредственно за волной при криволинейной траектории частиц не равно давлению на поверхности разность этих давлений вызвана действием центробежной силы.  [c.123]

Внешне прыжок иапомпиает собой остановившуюся волну. Если поток внезапно перекрыть преградой (рпс. 23-2), то перед ней станет резко повышаться уровень, образуя как бы поддер.живаемую преградой волну.  [c.219]

Возрастая у преграды, эта волна будет распространяться вверх по течению с убываю1дей скоростью и высотой. В СПОК011НОМ потоке (Г1, <1) волна будет постепенно затухать н сойдет на нет, когда через преграду будет проходить расход, равный расходу прегражденного потока—перед шитом образуется кривая подпора типа а. В бурном потоке (П, >1) эта волна остановится и примет форму прыжка. Поэтому прыжок можно рассматривать как остановившуюся волну перемеще-— ни я.  [c.219]

Остановимся на одном примечательном обстоятельстве. В первых сериях опытов, описанных в данном параграфе, для мишоней и ударннков диаметров 90 мм для скоростей удара Ус, 2,7 — 3,0 км/с глубина зоны постоянного упрочнения бя получалась на 3—5 мм меньше (соответствующая точка для Vo = 2,8 км/с отмочена кружочком на рпс. 3.5.4), чем это показано соответствующим прямоугольником, в первых опытах зависимость бн(Уо) практически выходила на насыщение но Uo- Теоретические расчеты с возможными вариациями /у2, п, , М не давали такого эффекта ). Лишь затем анализ (см. рис. 3.5.5) показал, что насыщение зависимости 6(i o) связано с дву-мерны.ми эффектами, а именно, определяется боковой разгрузкой второй волны на которой происходит фазовый переход  [c.289]

Определение ударного давления и скорости распространения ударной волны. Рассмотрим объем жидкости (см. рис. 5.11), заключенный между задвижкой и сечением х—х, площадь которого а, а длина А1. Применим к рассматриваемому объему теорему механики об изменении количества движения или теорему импульсов. За время Д/, в течение которого фронт повышенного давления передвинулся от задвижки влево на Д/, остановившаяся масса жидкости в этом объеме потеряла следующее количество движения mv — pavAl. Импульс силы за время Д равен ApaAt. Слева от сечения X—X давление жидкости равно р, а справа—р+Ар. Произведение аАр — сила, остановившая объем жидкости аА1 за время Д . Приравнивая количество движения импульсу силы, получим  [c.68]

Для выяснения явлений, происходящих при гидравлическом ударе, рассмотрим горизонтальный трубопровод постоянного диаметра, по которому со средней скоростью v движется жидкость. Если быстро закрыть установленную на таком трубопроводе задвижку, то слой жидкости, находящийся непосредственно у задвижки, должен будет в момент ее закрытия остановиться, а давление — увеличиться (вследствие перехода кинетической энергии в потенциальную энергию давления). Так как жидкость сжимаема, то остановка всей ее массы в трубопроводе не происходит мгновенно граница объема, включающего в себя остановившуюся жидкость, перемещается вдоль трубопровода с некоторой скоростью с, называемой скоростью распространения волны давления. Рассмотрим (рис. 177) прилежащую к задвижке часть объема жидкости F At = FAS (где F — площадь сечения трубы). За время АТ этот объем, остановившись, потеряет количество движения pFASt .  [c.243]

При 1< Як1< 1,5 волнистый гидравлический прыжок (прыжок-волну) можно рассматривать согласно Ф. И. Пикалову как остановившуюся волну перемещения с малой высотой, равной а = к" Н.  [c.115]

ДОПОЛНИТЕЛЬНОЕ УТОЧНЕНИЕ ПОНЯТИЙ СПОКОЙНОГО И БУРНОГО ДВИЖЕНИЙ ЖИДКОСТИ. ГИДРАВЛИЧЕС КИЙ ПРЫЖОК КАК ОСТАНОВИВШАЯСЯ ВОЛНА ПЕРЕМЕЩЕНИЯ  [c.377]

Из более поздних работ остановимся на работе Стотта, Барановского и Мэрча [84], в которой было теоретически исследовано влияние валентности металла на характеристики вакансий. При этом было учтено, что электроны не свободны, а двпл утся в периодическом потенциальном поле решетки, т, е. их волновые функции являются не плоскими волнами типа а имеют блоховский вид  [c.109]


На рис. 37 показана последовательность восьми кадров, заснятых камерой Шардина в первом испытании. Из центрального стеклянного бруска трещина распространилась в оба смежных слоя матрицы и с каждой стороны остановилась около поверхности двух ближайших стеклянных брусков. Это распространение первоначальной трещины и ее остановка показаны на рис. 38 и 39. Хотя динамическая нагрузка была достаточно высока для того, чтобы инициировать трещину, из-за малой продолжительности нагружения энергия оказалась недостаточной для дальнейшего распространения трещины. Другими факторами, способствующими остановке треихины, являются нелинейная пластическая деформация у конца трещины, вызывающая затупление трещины [39], и отражения поперечных волн напряжения, исходящих от края трещины, от границ раздела стекла и пластмассы [62]. Наличие остановившейся или почти стационарной трещины в материале, поведение которого существенно зависит от скорости изменения деформации, приводит к увеличению податливости образца, так как вблизи края трещины развиваются  [c.542]


Смотреть страницы где упоминается термин Волна остановившаяся : [c.147]    [c.383]    [c.302]    [c.378]   
Справочник по гидравлике Книга 1 Изд.2 (1984) -- [ c.139 ]



ПОИСК



Останов



© 2025 Mash-xxl.info Реклама на сайте