Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ЗУБЧАТЫЕ ЦЕПИ - ИЗМЕРЕНИЕ

Исходным параметром при конструировании зубчатой цепи является шаг цепи t. Шаг — расстояние между осями двух валиков, расположенных в смежных звеньях, измеренное при натяжении цепи нагрузкой, способной выбрать зазоры в шарнирах.  [c.363]

Для зубчатой цепи с шарнирами скольжения средний шаг определяется на отрезке цепи длиной 50 звеньев путем деления измеренной длины отрезка на число звеньев. Средний шаг (дан в табл. 49) может иметь только положительное отклонение от номинала.  [c.744]


Схема измерения действительного шага звездочки для зубчатой цепи показана на фиг. 13, а.  [c.423]

ЗУБЧАТЫЕ ЦЕПИ - ИЗМЕРЕНИЕ  [c.424]

При измерении среднего и действительного шагов зубчатая цепь должна быть обезжирена, натянута нагрузкой измерения и лежать в горизонтальной плоскости Нагрузка измерения определяется по формуле Р = 0,01< к1 где О — разрушающая нагрузка. 1 ч н  [c.603]

Измерение толщины зуба звездочек зубчатых цепей производится штанген-зубомером на глубине г/=, где 1г — высота зуба. Теоретическая толщина определяется по формуле  [c.618]

Изложенное объясняет часто имеющее место большой различие результатов определения не только характера ошибки делительной цепи станка по накопленной ошибке окружного шага зубчатых колес, нарезанных на одном и том же станке, но и результатов нескольких последовательных измерений величины накопленной ошибки окружного шага одного и того же зубчатого колеса.  [c.647]

Кинематический принцип измерения применяется для контроля кинематических цепей, а также для кинематической проверки сложных плоских и пространственных кривых и поверхностей кулачков, коноидов, ходовых винтов, зубчатых колес, червяков, сложного режущего инструмента.  [c.266]

Сущность измерения приборами импульсного принципа действия заключается в установке на конечных валах, согласованность движения которых должна сравниваться, двух преобразователей, подающих сигналы через равные угловые повороты, а также в сопоставлении одновременности возникновения этих сигналов. Поскольку оба вала имеют разную частоту вращения, то в цепи передачи и измерения сигналов включается та или другая система настройки на заданное передаточное отношение. Преобразователи приборов измерения используют контактный, зубчатый, растровый, индуктивный, магнитный или оптический способ.  [c.269]

Пример. Рассмотрим технологический процесс обработки вала-шестерни по контролируемому параметру радиальное биение зубчатого венца , допуск на который, согласно техническим условиям, не должен превышать 0,12 мм. Технологическая цепь состоит из трех операций токарной, термической и шлифовальной. Для анализа технологической цепи были исследованы три выборки объемом 120 деталей каждая. При этом порядок измерения заранее пронумерованных деталей был неизменен на всех операциях.  [c.87]

Величина нагрузки контролировалась по прибору К-50, который предназначен для измерения потребляемой мощности в однофазных и трехфазных цепях переменного тока при равномерной и неравномерной нагрузке фаз. Предварительно зубчатые пары прирабатывались (с маслом) без нагрузки в течение 3 ч. Испытания проводились с указанной выше нагрузкой в течение 120 ч. Износ определялся через каждые 20 ч работы редуктора измерением толщины зубьев в трех сечениях по ширине. Измерения проводились на шести зубьях, расположенных равномерно по окружности. Температура масла в редукторах в процессе испытания не превышала 50 °С.  [c.118]


Погрешностью обката Р называется составляющая кинематической погрешности зубчатого колеса, а практически этим параметром стандарт устанавливает требования к кинематической точности зуборезного станка, на котором осуществляется окончательная обработка зубчатого венца. Измерение кинематической точности станка наиболее часто осуществляют с помощью кинематомеров. Принцип измерения кинематомерами аналогичен применяемому в электронных приборах для измерения кинематической погрешности. Кинематомером осуществляется замыкание конечных звеньев кинематической цепи обката — деления станка.  [c.119]

Во 2-м издании даны краткие сведения по отечественной истории развития взаимозаменяемости и технических измерений размеров в машиностроении и существенно расширен круг рассматриваемых вопросов (по чистоте и волнистости поверхности, по червячным и коническим зубчатым передачам и т. д.). Учитывая наличие в ряде втузов отдельного курса по математической статистике в технике, во 2-м издании вовсе не рассматриваются вопросы статистического контроля, а сведения из теории вероятностей даются лишь в небольшом объеме, необходимом для вероятностных расчетов зазоров и натягов в соединениях, а также для последующего изложения элементов теории ошибок измерений и расчета допусков в размерных цепях.  [c.4]

Менее точным, но комплексным и всегда доступным является измерение параметров зубчатого профиля путем наложения соответствующей цепи на зубья звездочки. При этом цепь должна располагаться по всей окружности звездочки без приложения усилий.  [c.222]

Примером может служить измерение при помощи оптического зубомера толщины зуба колеса при настройке размерных и кинематических цепей зубофрезерного станка. Из фиг. 114 видно, что при нарезании зубчатого колеса в качестве установочной технологической базы используется его торцовая поверхность, в качестве двойной опорной (центрирующей) базы — поверхность центрального отверстия и в качестве опорной — одна из скрытых баз в виде плоскости, мысленно проводимой через ось вращения колеса перпендикулярно установочной технологической базе.  [c.182]

Контроль углового и окружного шага. Погрешности окружного шага, вызванные ошибками кинематической цепи зубообрабатывающих станков и радиальным биением заготовки, влияют на плавность работы и контакт зубьев. Для контроля углового и окружного шага используют накладные и стационарные шагомеры. Накладные шагомеры базируются по окружности выступов или впадин. На эти окружности обычно устанавливают грубые допуски, поэтому накладные шагомеры не обеспечивают высокой точности измерений, и более предпочтительны стационарные шагомеры. Принцип действия стационарного шагомера показан на рис. 17.3. Проверяемое зубчатое колесо / устанавливают на оправке соосно с лимбом 2 и неподвижно относительно него. Лимб при повороте на каждый угол у фиксируют стопором 3. О точности окружного и углового шага судят по расстоянию между одноименными профилями зубьев по делительной окружности. Для этого стрелку индикатора устанавливают на нуль по первой паре зубьев. Затем каретку 4, несущую  [c.276]

Работа измерительных приборов, предназначенных для определения кинематической погрешности зубчатых колес и передач, заключается в непрерывном сравнении мгновенных передаточных отношений и перемещении ведомых звеньев двух связанных между собой механизмов принятого в качестве образцового и содержащего проверяемое зубчатое колесо, сопрягаемое с измерительным колесом. При этом определяется кинематическая погрешность проверяемого зубчатого колеса, погрешностью измерительного колеса пренебрегают. При необходимости установить кинематическую погрешность зубчатой передачи с образцовым механизмом сравнивают колебание мгновенного передаточного отношения этой передачи. В качестве образцового механизма могут быть использованы гладкие фрикционные диски или электрические цепи в измерительных приборах, основанных на импульсных методах измерения с использованием магнитных или оптических преобразователей.  [c.105]


В том случае, когда кинематическая и циклическая погрешности зуборезных станков определяются по данным измерения окружного шага, следует учесть, что погрешность окружного шага зубчатого колеса зависит от соотношения чисел зубьев этого колеса и делительного колеса зуборезного станка, на котором зубчатое колесо нарезалось. При равном или кратном числе зубьев этих колес полностью исключается влияние на нарезаемое зубчатое колесо погрешностей отдельных звеньев делительной цепи станка, составляющих циклическую погрешность станка. Для того чтобы измеряемый параметр зубчатого колеса наиболее полно отразил кинематическую и циклическую погрешности станка, необходимо нарезать пробное зубчатое колесо с числом зубьев и диаметром делительной окружности, рекомендуемыми ГОСТ 658—67 и ГОСТ 659—67.  [c.252]

При определении циклической погрешности зубофрезерного станка по данным измерения пробного зубчатого колеса рекомендуется для этой цели нарезать два косозубых колеса с правым и левым направлениями зубьев. Проверка циклической погрешности на зубчатых колесах с разным направлением зубьев дает возможность обнаружить причины, вызывающие эту погрешность при вращении стола станка в разных направлениях. Число зубьев пробного зубчатого колеса не должно быть равно или кратно числу зубьев делительного колеса станка. Угол наклона зубьев р должен быть —30°. Ширину зубчатого венца Ь нужно выбрать с таким расчетом, чтобы на длине зуба укладывалось не менее 1,5 длин волн, возникающих на его боковой поверхности из-за циклической погрешности кинематической цепи станка.  [c.253]

Измерение погрешности обката. Под погрешностью обката понимают составляющую кинематической погрешности зубчатого колеса. Ее определяют при вращении его на технологической оси и при исключении циклических погрешностей зубцовой частоты и кратных ей более высоких частот. Этим показателем устанавливается требование к точности непосредственно процесса зубообработки за один оборот колеса. Практически эта погрешность Может определяться, как погрешность кинематической цепи деления зубообрабатывающего станка. Определение погрешности обката относительно технологической оси, т. е. оси, вокруг которой  [c.170]

Второе направление автоматизации средств измерения зубчатых колес, т. е. замена механических кинематических цепей оптоэлектронными, осуществляется обязательно с использованием вычислительной техники не только для обработки результатов измерения, но и в виде программ, устанавливающих взаимосвязь перемещений элементов прибора при измерении. Типичным примером таких средств измерения являются современные приборы для измерения кинематической погрешности (БВ-5089, БВ-5094). Принцип действия этих приборов заключается в том, что сравниваются кинематические перемещения поверяемой зубчатой пары и элементов прибора, создающих номинальное передаточное отношение. В современных приборах механические кинематические цепи заменены устройствами в виде фотоэлектрических преобразователей, выдающих импульсы, промежутки между которыми пропорциональны углу поворота измеряемых колес. Вычислительные устройства в этих приборах осуществляют сопоставление углов поворотов и определяют параметры кинематической погрешности.  [c.189]

Кинематическая погрешность делительной цепи зубообрабатывающего станка (из-за неточности его червячного делительного колеса) вызывает несогласованность угловых поворотов обрабатываемого колеса и перемещения зубообрабатывающего инструмента, в результате чего возникает погрешность обката Р зубчатого колеса. Она является составляющей кинематической погрешности колеса и определяется при его вращении на технологической оси при исключении циклических погрешностей зубцовой частоты и кратных ей более высоких частот. Под технологической понимают ось колеса, вокруг которой оно вращается в процессе окончательной механической обработки зубьев по обеим их сторонам. Величину Р можно определить измерением кинематической погрешности зуборезного станка, используемого для окончательной обработки зубьев. Погрешность обката ограничивается допуском Р , выраженным в тех же единицах, что и допуск на кинематическую погрешность колеса. Допуск принят равным допуску на колебание длины общей нормали Ру .  [c.261]

Другой разновидностью датчика с переменным магнитным сопротивлением является индукционный тахогенератор, который используется для измерения угловой скорости вращения вала. Он состоит из зубчатого ферромагнитного колеса, которое вращается вместе с валом, и приемного устройства, состоящего из постоянного магнита, вокруг которого намотана катушка. В катушке возникает импульсное напряжение всякий раз, когда мимо нее проходит зубец колеса (Рис. 8.11). Устройство представляет собой магнитную цепь с воздушным зазором. Размер зазора зависит от того, будет вблизи магнита проходить зубец колеса или углубление между зубцами. Магнитное сопротивление цепи изменяется каждый раз, когда мимо магнита проходит зубец. Следовательно, магнитный поток, проходящий через катушку, будет колебаться вокруг некоторой средней величины. Эти колебания близки по форме к синусоидальным. Такие изменения магнитного потока наводят в цепи переменную э.д.с. И частота, и амплитуда этой э.д.с. будут пропорциональны угловой скорости вращения колеса. Если колесо содержит п зубьев и вращается с угловой скоростью со, то выражение для магнитного потока в катушке можно записать в виде  [c.73]


Измерение толщнны зуба t звездочек зубчатых цепей производится штан-h  [c.754]

Innenentfernung f расстояние между воображаемой вершиной конуса (плоско о зубчатого колеса) н внутренней окружностью колеса, измеренное по образующей делительного конуса Innenfuhrung f I. внутренняя [стержневая] направляющая (тарельчатой пружины) 2. внутренние паправляюш,ие пластины (зубчатой цепи)  [c.114]

Точность деталей проверяют универсальными инсгруметами и приборами дчя измерения длин, углов, некруглости, ще-[Х)ховатости поверхности и приборами для измерений отдельных деталей — зубчатых колес, резьб >1, по цпипников качения. К сложным проверкам огносят проверку прямолинейности и плоскостности, а также точности кинема гических цепей.  [c.477]

Освоение производства приборов и новой техники измерения шло настолько быстро, что к 1940 г. на некоторых предприятиях были внедрены методы автолштического контроля изделий. Массовое производство изделий можно осуществить лишь при определенной системе допусков на отклонения параметров. До 1935 г. разработка допусков велась научно-исследовательским сектором завода Калибр и одним из управлений ВСНХ. В 1935 г. было организовано Научно-исследовательское бюро взаимозаменяемости под руководством проф. И. Н. 1 ородецкого. Почти все государственные стандарты на допуски изделий и калибров для их контроля разрабатывались в этом бюро [7]. Эта же организация стала ведущей в области разработки измерительных приборов для машиностроения. Одновременно развернулись работы по взаимозаменяемости и технике измерений в научно-исследовательских организациях различных отраслей промышленности. Решения поставленных задач исследования все в большей степени обосновывались теоретическими положениями. Так, в работах Б. С. Балакшина [16] и И. А. Бородачева [30] при исследовании размерных цепей расчет допуска на замыкающее звено выполнен на основе теории вероятностей. В 1950 г. были опубликованы результаты исследований проф. Н. А. Калашникова [881 по вопросам точности зубчатых колес. Вопросы точности стали рассматриваться не только по отношению к готовому изделию, но и по отношению к технологическому процессу их изготовления. В 1939 г. проф. В. М. Кован и А. Б. Яхин рассмотрели теоретические вопросы технологии машиностроения.  [c.45]

Испытания с определением износа по изменению размера деталей. При исследовании износостойкости цепей (втулочно-роликовых, зубчатых и др.), работающих в условиях запыленности или загрязнения, стендовые испытания получили щиро-кое распространение [39], [76], [162]. Участки исследуемых цепей устанавливают на стенд, воспроизводящий условия работы цепей удельную нагрузку на проекцию втулки, скорость движения цепи, степень загрязненности смазки. Для моделирования условий запыленности стенд окружают специальным кожухом, внутри которого создается необходимая среда. О величине износа цепи судят по изменению ее размера. После изнашивания производится измерение удлинения цепи, явившегося следствием увеличения зазоров, и определяется удлинение шага цепи, которое обычно вычисляется в процентах к первоначальной величине шага. Ф. И. Пичак [162] испытывал на износостойкость втулочно-роликовые цепи сельскохозяйственных машин на стенде, который был выполнен на основе типового 52  [c.52]

Измерение колебания длины общей нормали. Длиной общей нормали называется расстояние между двумя параллельными охватывающими губками, касательными к двум разноименным профилям зубьев. При этом между губками располагается примерно z/9 зубьев. Колебание длины общей нормали в пределах одного колеса характеризует составляющую кинематической погрешности колеса, зависящую от неточностей цепи обката зубообрабатывающего станка. Второй составляющей кинематической потрешности колеса является радиальное биение зубчатого венца. Колебание длины общей нормали не зависит от радиального биения зубчатого венца колеса [23] и измеряется с помшцью нормалемеров, имеющих неподвижную координирующую плоскую и параллельную ей подвижную измерительные губки. Различие в длине общ й нормали в различных участках колеса воздействует на стрелку отсчетного устройства рис. 9.11) или же отсчитывается по шкале в микрометрических нормалемерах (рис. 9.12). Методы и средства поверки нормалемеров изложены в ГОСТ 8.169—75.  [c.247]

Прибор может служить для измерения угла поворота объекта. При укреплении на оправке прибор можно применить для тех же целей, что и лимб с микроскопом, описанный выше для контроля передаточных отношений кинематических цепей станков, контроля зубчатых колес, делительных дисков и других объектов. Для многих из этих измерений требуется нулевой контактный прибор, который входит в комплект автоколлимациониого лимба. Этот прибор оснащен микронной отсчетной головкой и устройством для изменения направления измерительного усилия.  [c.214]

Математическое выражение связи движений ведущего и ведомого элементов (начального и конечного звеньев) кинематической цепи станка называется уравнением кинематического баланса. В него входят составляющие, характеризующие все элементы цепи от начального до конечного звена, в том числе и преобразующие движение, например вращательное в поступательное. В этом случае в уравнение баланса входит единица измерения параметра (шаг ходового винта — при использовании передачи винт — гайка или модуль — при использовании передачи зубчатое колесо—рейка), определяющего условия этого преобразования, миллиметр. Этот параметр позволяет также согласовывать характеристики движения начального и конечного звеньев кинематической цепи. При  [c.113]

Запись кинетики малых деформаций производится фотоэлектрическим устройством 5. Для этой цели между источником света и фотоэлементом установлена рамка с фигурной щелью, которая через систему рычагов соединена с внутренним цилиндром так, что ее линейные перемещения пропорциональны углу поворота цилиндра (деформации материала). Перемещение рамки вызывает изменение светового потока, поступающего на фотоэлемент, и изменение вследствие этого его анодного тока. Величина анодного тока регистрируется трехшлейфовым осциллографом на фотобумаге. Для проверки начального положения рамки и тарировки ее перемещения в цепь фотоэлемента через электронный усилитель б включен миллиамперметр. Измерение больших деформаций осуществляется фотоэлектронным способом в сочетании с оптической системой 7. В последнем случае рамка заменяется зубчатым диском. Отметки времени воспроизводятся на фотобумаге в виде прямой, прерывающейся через каждую секунду. Длина отрезка этой прямой зависит от скорости движения фотобумаги и может изменяться от 0,15 до 110 см1сек.  [c.164]

Контроль силы затяжки по величине получил наибольшее распространение вследствие его простоты, доступности, высокой производительности и относительно высокой точности. При ручной затяжке контроль осуществляют с помощью динамометрических или предельных ключей, при использовании ручных резьбозавертывающих машин, полуавтоматических и автоматических установок — с помощью встраиваемых предельных устройств (фрикционных, кулачковых, зубчатых, шариковых и др. муфт), которые после достижения заданного момента разрывают силовую цепь. Конструкция ключей обеспечивает при ручной затяжке подачу светового или звукового сигналов после достижения заданного При механизированной сборке пневматическими гайковертами имеются следующие примерные диапазоны погрешностей измерения момента затяжки в гайковертах с жестким приводом 20 % с фрикционной муфтой вместе с муфтой выключения 10%, с автоматически расцепляющейся муфтой 5%, с двумя пневмодвигателями 3%.  [c.212]


Для измерения функции кинематической погрешности при зацеплении пары колес (одно из которых может быть измерительным) применяются аналоговые приборы, с механической связью. Кинематическая погрешность определяется сравнением поворотов ведомых звеньев двух цепей, из которых одна состоит из контролируемой зубчатой передачи (КЦ), другая — из механизма прибора, обеспечивающего точную передачу (ТЦ) с заданным передаточным отношением (рис. 44, а). На этом принципе основана работа приборов БВ-5033 для колес й = 5-4-40 мм, т = 0,2-ь1 мм и БВ-5053 для колес с ар= 10-=-200 ви = 60-ь 160, выпускаемых ЧЗМИ.  [c.682]

В книге приведены справочные сведения по единицам измерения, механике, теории механизмов и машин, теплотехР1Нке, электротехнике, электронике, сопротивлению материалов, взаи1МОзаменяемостп, допускам и посадкам, размерным цепям, валам, осям, муфтам, подшипникам качения и скольжения, зубчатым, червячным, ременным, цепным и фрикционным передачам, вариаторам, винтовым механизмам, резьбовым, шпоночным, зубчатым (шлицевым), клиновым, бесшпоночным соединениям. пружинам, рессорам, смазочным и уплотнительным устройствам.  [c.2]

Вопросы взаимозаменяемости, точностных расчетов машин и механизмов, назначения допусков на них и технические измерения получили свое развитие в трудах ряда советских ученых. Была создана наука о точности, разработаны методы инженерных расчетов точности машин, приборов и технологических процессов и новые методы и средства технических измерений и контроля качества продукции. Эти труды находят широкое применение при научных исследованиях качества продукции, анализах точности изделий и их производства. Работы советских ученых обеспечили выпуск различных нормалей, государственных стандартов и международных рекомендаций, связанных с точностными расчетами, назначением допусков, метрологией и техническими измерениями. Внедрение этих работ в промышленность, их широкое распространение внутри страны и за границей во многом определило развитие взаимозамёняемости и технических измерений в Советском Союзе и за ру-белшм. Утверждены государственные стандарты (ГОСТ 16319—70 и 16320—70) на точностные расчеты размерных цепей, в основу которых положена теория размерных цепей, разработанная заслуженным деятелем науки и техники д-ром техн. наук проф. Б. С. Балакшиным, а также работы других ученых и многолетний опыт практического применения этой теории в промышленности. В последние годы выпущен ряд новых государственных стандартов на допуски и посадки различных сопряжений (гладких цилиндрических, конических, резьбовых, зубчатых и других). Многие из этих стандартов соответствуют международным рекомендациям СЭВ и 150. Так, например, государственные стандарты на допуски резьбовых и зубчатых сопряжений соответствуют рекомендациям, принятым международными организациями СЭВ и 150. В настоящее время ведется большая подготовительная работа в СССР и в Международных организациях 150 и СЭВ по переводу допусков из системы ОСТ на гладкие цилиндрические соединения в систему 150 и наоборот.  [c.3]

Для измерения кинематической точности механизмов станков за последние годы появились методы и приборы (кинематометры), которые позволяют установить изменения передаточного отношения, возникающие в основном из-за погрешностей зубчатых передач. Проверка точности кинематических цепей особенно важна для зуборезных станков.  [c.381]

Измерение профиля. Появление отклонений профиля связано в основном с погрешностями режущего инструмента (фрезы) или заправки шлифовального круга, а также вибрациями станка. В процессе измерения прибор воспроизводит эвольвентную кривую. В универсальном эвольвентомере КЭУ ЧЗИП (рис. 9.14) кинематическая цепь состоит из эвольвентного кулака и рычажной передачи настройка на различные радиусы основной окружности проверяемого зубчатого колеса выполняется с помощью концевых мер длины.  [c.176]

По конструкции измерительного устройства различают круговые и линейные датчики положения [5, 7]. Наибольшую точность могут обеспечить линейные датчики (типа линейного сельсина или индукгосина), которые монтируют непосредственно на подвижных узлах станка. Круговые датчики (вращающиеся сельсины, иначе называемые вращающимися или поворотными трансформаторами) устанавливают на каком-либо узле ютематической цепи подачи, обычно на шариковом ходовом винте. Они могут приводиться во вращение также от измерительной рейки, закрепленной на подвижном узде, через связанное с рейкой зубчатое колесо. В этом случае на точность измерений влияют погрещности кинематической цепи между подвижным узтом и датчиком.  [c.275]


Смотреть страницы где упоминается термин ЗУБЧАТЫЕ ЦЕПИ - ИЗМЕРЕНИЕ : [c.386]    [c.304]    [c.56]    [c.88]    [c.38]    [c.2]   
Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.0 ]

Справочник машиностроителя Том 1 Изд.2 (1956) -- [ c.0 ]



ПОИСК



Цепи Шаг — Измерение

Цепи приводные втулочные — Измерение зубчатые — Выбор параметров цепи



© 2025 Mash-xxl.info Реклама на сайте