Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Зубчатые Параметры — Измерение

Колесо зубчатое — Параметры 231 — Показатели точности 232 —233 — Измерение 231—257 Компараторы для отверстий 202 Контроль — Определение 108  [c.365]

Желательно использовать методы контроля, обеспечивающие непрерывное измерение контролируемого параметра по всему колесу. Например, измерение кинематической погрешности колеса предпочтительнее измерения накопленной погрешности шага, или измерение колебания измерительного межосевого расстояния за оборот колеса предпочтительнее измерения радиального биения зубчатого венца, или измерение погрешности обката предпочтительнее измерения колебания длины общей нормали.  [c.160]


При автоматизации производства зубчатых колес обычно используют автоматизированные средства измерения, о которых говорилось выше, иногда в виде группы приборов, подключенных к управляющей ЭВМ. С помощью этих приборов осуществляется выборочное измерение, иногда с участием операторов и, как правило, от ЭВМ получают статистические показатели, характеризующие точность изготовления в масштабе текущего времени (среднее значение, среднее квадратическое, систематическое функциональное отклонение). Редко встраиваются приборы непосредственно в автоматические линии по производству зубчатых колес. Объясняется это прежде всего тем, что при оценке точности зубчатых колес имеют место весьма тесные корреляционные связи погрешности нормируемых элементов колес с погрешностью определенных частей технологического процесса, поэтому целесообразнее осуществлять наблюдение за точностью технологического процесса и, в частности, путем выборочного измерения зубчатых колес вместо измерения всех изготовленных колес. Встраиваются в автоматические линии приборы для приемочного контроля в двухпрофильном зацеплении. Эти приборы просто автоматизируются и позволяют комплексно определять точность технологического процесса и годность изделия и, прежде вего, выявляется отсутствие нарушения таких неустойчивых параметров технологического процесса, как погрешность установки заготовки на станке и стойкость режущего инструмента.  [c.190]

Дополнительно в отношении передач нормируется отклонение межосевого расстояния. Измерение этого параметра осуществляется измерением расположения посадочных мест п корпусе передачи и не имеет специфики, связанной с зубчатым венцом.  [c.343]

Отсюда видно, что шаг зацепления всегда выражается через радиус НЛП через диаметр окружности несоизмеримым числом, так как в правую часть входит трансцендентное число л. Это затрудняет подбор размеров зубчатых колес % при проектировании колес и практическое их измерение. Поэтому для определения основных размеров зубчатых колес в качестве основной единицы принят некоторый параметр, называемый модулем зацепления. Модуль зацепления измеряется в миллиметрах и обозначается буквой т. Величина модуля равна  [c.429]

Для контроля цилиндрических, конических и червячных колес, червяков и зубчатых пар инструментальные заводы выпускают зубоизмерительные приборы (см. том 4). Назначение, номенклатура, пределы измерения и другие технические характеристики зубоизмерительных приборов нормируются стандартами ГОСТ 5368—73 Приборы для контроля цилиндрических зубчатых колес. Типы. Основные параметры ,  [c.693]


Несмотря на многообразие этих приборов большинство из них состоит из чувствительного элемента, преобразователя движения чувствительного элемента (датчика) в удобный для измерения параметр, усилителя преобразованного сигнала от датчика (в механических приборах это множительный зубчатый или шарнирно-рычажный механизм, в электромеханических — электронный усилитель ит. д.) и измерительного устройства (отсчетного или регистрирующего).  [c.354]

Шаг зубьев р так же, как и длина окружности, включает В себя трансцендентное число л, а потому шаг — также число трансцендентное. Для удобства расчетов и измерения зубчатых колес в качестве основного расчетного параметра принято рациональное число р/д, которое называют модулем зубьев т и измеряют в миллиметрах  [c.114]

Таким образом, из нормируемых в стандарте для цилиндрических зубчатых колес параметров можно выбрать такой комплекс измерения, при котором в полную меру используется прибор для комплексного двухпрофильного контроля. Если добавить к этому, что принцип измерения и конструкция прибора чрезвычайно просты, то станет ясным, почему приспособления для комплексного двухпрофильного 192  [c.192]

В конических зубчатых колесах нормируется разность окружных шагов и отклонение окружного шага. Нормирование последнего параметра введено как бы по аналогии с основным шагом для цилиндрических зубчатых колес, измерение которого в конических колесах не представляется возможным.  [c.204]

Однако развитие массового производства потребовало введения наряду с калибрами более совершенных средств измерения, обладающих высокой точностью и широким диапазоном измерения. Непригодность предельных калибров стала очевидной, например, при освоении массового производства зубчатых колес, потребовавших применения контрольных приспособлений для измерения основных параметров зацепления.  [c.257]

Измерение зубчатых колес по всем приведенным в ГОСТ параметрам является необязательным.  [c.621]

Средства контроля и измерения параметров зубчатых и червячных передач представлены в табл. 47.  [c.126]

Способы нарезания цилиндрических зубчатых колес 577 Средства измерения параметров зубчатых и червячных передач 126, 127  [c.761]

Исходным параметром при конструировании зубчатой цепи является шаг цепи t. Шаг — расстояние между осями двух валиков, расположенных в смежных звеньях, измеренное при натяжении цепи нагрузкой, способной выбрать зазоры в шарнирах.  [c.363]

Комплексный метод измерения сводится к прямому измерению эксплуатационного параметра, определяемого суммой нескольких элементарных параметров. Для обычных в машиностроении соединений (гладких, резьбовых, зубчатых, шлицевых и др.) комплексный метод направлен к ограничению предельных контуров проверяемого объекта, определяемых величинами и расположением полей допусков отдельных элементов этого объекта.  [c.662]

В целях единого оформления чертежей на зубчатые колеса в характеристиках зацепления указаны все параметры, необходимые для расчета и изготовления нормальных и корригированных зубчатых колес в метрической и дюймовой системах измерения.  [c.362]

Комплексный метод измерения характеризуется измерением такого параметра, действительное значение которого отражает погрешности ряда других параметров изделия (например, контроль зубчатых колес методом обкатки при однопрофильном зацеплении). Наиболее часто применяется комплексный метод контроля, позволяющий одновременно контролировать несколько параметров путем сравнения действительного контра контролируемого изделия с предельными (например, контроль гладких, резьбовых и шлицевых изделий предельными калибрами, контроль на проекторах).  [c.504]

В стандартах на допуски зубчатых передач все предельные отклонения заданы для случая контроля точности колеса относительно его рабочей оси. При переходе на вспомогательную базу (наружный цилиндр заготовки, торец колеса и др.) необходимо учитывать погрешности, вносимые этой базой в результате измерения. Средства измерения параметров зубчатых и червячных передач приведены в табл. 14.  [c.520]


Пример. Рассмотрим технологический процесс обработки вала-шестерни по контролируемому параметру радиальное биение зубчатого венца , допуск на который, согласно техническим условиям, не должен превышать 0,12 мм. Технологическая цепь состоит из трех операций токарной, термической и шлифовальной. Для анализа технологической цепи были исследованы три выборки объемом 120 деталей каждая. При этом порядок измерения заранее пронумерованных деталей был неизменен на всех операциях.  [c.87]

Погрешностью обката Р называется составляющая кинематической погрешности зубчатого колеса, а практически этим параметром стандарт устанавливает требования к кинематической точности зуборезного станка, на котором осуществляется окончательная обработка зубчатого венца. Измерение кинематической точности станка наиболее часто осуществляют с помощью кинематомеров. Принцип измерения кинематомерами аналогичен применяемому в электронных приборах для измерения кинематической погрешности. Кинематомером осуществляется замыкание конечных звеньев кинематической цепи обката — деления станка.  [c.119]

Поверхность вершин зубьев служит базой при измерении параметров зубчатого венца, поэтому допуск на внешний диаметр рекомендуется назначать по табл. 5.26.  [c.159]

Из приведенных соотношений видно, что шаг зацепления выражается через диаметр делительной окружности несоизмеримым числом, так как в формулы входит трансцендентное число п. По этой причине для удобства определения основных размеров зубчатых колес и возможности их измерения вводится основной расчетный параметр, который назван модулем зубчатого зацепления.  [c.250]

В странах, где до сего времени существует не метрическая система измерений, а дюймовая (как, например, в США и Англии), основным параметром при проектировании зубчатых колес является не модуль, а питч — р.  [c.251]

В табл. 5.11 приведены возможные средства измерения цилиндрических зубчатых колес. Типы, основные параметры и нормы точности приборов для контроля цилиндрических зубчатых колес см. ГОСТ 5368—81.  [c.420]

Если невозможно назначить Ra например, нет средств измерения), указывается Rz или Rmax предпочтительнее Ra). Одновременно назначать два параметра нeльз . На поверхностях, имеющих малые размеры или сложную форму, например переходных поверхностях валов или зубьев зубчатых колес, впадинах резьбы, по услс-впям измерения нужно гфименять параметр Rz.  [c.228]

Для обеспечения сопряжения эвольвентных зубчатых колес, изгот ов-ленных в различных условиях, необходимо, чтобы любое колесо соответствовало требованиям, стандарта, устанавливающего основные параметры зацепления. Стандарт на параметры зубчатой рейки установлен на основании свойства сопряженности пря.молинейнрго профиля рейки с эвольвентой окружности. Реечный контур ] (рис. 10.10), положенный в основу стандарта, т. е. принятый в качестве базового для определения теоретических форм и размеров зубчатых колес, называется теоретическим исходным контуром, или исходным контуром. Прямая а — а, перпендикулярная осям симметрии зубьев рейки, по которой их толщина равна ширине впадин, называется делительной. Расстояние между одноименными профилями, измеренное по делительной или любой другой параллельной ей прямой, называется шаго.и исходного контура Р, а расстояние между этими же профилями, измеренное по нормали,— основным шагом Pj исходного контура. Они связаны соотношением  [c.101]

Освоение производства приборов и новой техники измерения шло настолько быстро, что к 1940 г. на некоторых предприятиях были внедрены методы автолштического контроля изделий. Массовое производство изделий можно осуществить лишь при определенной системе допусков на отклонения параметров. До 1935 г. разработка допусков велась научно-исследовательским сектором завода Калибр и одним из управлений ВСНХ. В 1935 г. было организовано Научно-исследовательское бюро взаимозаменяемости под руководством проф. И. Н. 1 ородецкого. Почти все государственные стандарты на допуски изделий и калибров для их контроля разрабатывались в этом бюро [7]. Эта же организация стала ведущей в области разработки измерительных приборов для машиностроения. Одновременно развернулись работы по взаимозаменяемости и технике измерений в научно-исследовательских организациях различных отраслей промышленности. Решения поставленных задач исследования все в большей степени обосновывались теоретическими положениями. Так, в работах Б. С. Балакшина [16] и И. А. Бородачева [30] при исследовании размерных цепей расчет допуска на замыкающее звено выполнен на основе теории вероятностей. В 1950 г. были опубликованы результаты исследований проф. Н. А. Калашникова [881 по вопросам точности зубчатых колес. Вопросы точности стали рассматриваться не только по отношению к готовому изделию, но и по отношению к технологическому процессу их изготовления. В 1939 г. проф. В. М. Кован и А. Б. Яхин рассмотрели теоретические вопросы технологии машиностроения.  [c.45]

Высокое качество сборки обеспечивается автоматическим измерением основных параметров собираемого редуктора и системой централизованной передачи полученных данных для учета при выполнении последующих операций. Для выдерживания параметров готовых редукторов в заданных пределах (зазора в зубчатой передаче, пятна контакта, общего коэффициента трения) во время сборки на различных операциях выполняются измерения с помощью контрольноизмерительных устройств. Осуществляется выдача результатов измерений в памяаь центральной системы управления и адаптивное управление процессом сборки (коррекция параметров сборки с учетом результатов измерения параметров предыдущей операции). Взаимодействие системы управления и рабочих позиций показано на схеме (рис. 35).  [c.437]


Представлены результаты моделирования на ЭВМ трех групп задач машиноведения. К первой из них относятся важные задачи автоматизации технологического проектирования деталей и узлов машин ко второй — расчеты динамики и оптимизация параметров механических и пневматических систем, включая зубчатые передачи, манипуляторы, оневмовиброопоры, пневмоприводы, электрические машины и, наконец, к третьей группе — задачи исследования точности измерений линейных и угловых величин.  [c.2]

Исследование данного прибора показало, что среднее квадратическое отклонение результатов измерения им отдельных окружных шагов составляет о =0,1 мкм. Сравнение этой величины со средними квадратическими отклонениями, получаемыми при измерении отдельных шагов зубоизмерительными приборами фирм Карл Цейс (0,6 мкм), Хофлер (0,4 мкм), Матрикс (0,4 мкм) и созданными на Московском заводе шлифовальных станков приборами Л-1 (0,2 мкм) и Л-2 (0,4 мкм), свидетельствует о существенно более высокой точности описанного прибора. Об зтом же свидетельствуют показанные на рис. 6 графики случайных ошибок определения погрешностей окружных шагов, полученные при многократном измерении зубчатого колеса с параметрами z = 60, те = 4 приборами Карл Цейс (а), Хофлер (б), Л-2 (в), Матрикс (г), Л-1 (5) и описанным прибором (в).  [c.203]

Д.чя распознавания элементов существующих виптовы.х зубчатых колес необходимо установить следующие исходные параметры, поддающиеся непосредственному измерению А z z , a .iu- дк, о-  [c.523]

Выборочный контроль предназначен для контроля отдельных элементов зубчатого зацепления после фрезерования, долбления, шевингования и окончательно изготовленных зубчатых колес. Выборочный контроль осуществляет контролер специальными приборами с записывающим устройством, установленными в комнате, хорошо защищенной от шума, рядом с участком изготовления зубчатых колес. В лаборатории контролируют погрешность профиля, погрешность направления зуба, разность шагов, радиальное биение, колебание МОР, уровень звукового давления, пятно контакта, отклонения длины общей нормали. Основными параметрами, которые определяют геометрию профиля зуба, являются погрешности профиля и направления зуба. Оба эти параметра измеряют на четырех равнорасположенных по окружности зубьях с обеих сторон профиля на одном приборе. После зубофрезерования и зубодолбления погрешности профиля и направления зуба обычно контролируют один раз в смену, а также после замены инструмента и наладки станка. В процессе шевингования контроль погрешностей профиля и направления зубьев осуществляют чаще, особенно по мере затупления ше-вера. Контроль проводят в начале смены, после замены инструмента, а также каждой 100-й детали с каждого станка. Результаты измерения контролер вносит в таблицу для каждого станка, что позволяет постоянно анализировать его работу. Пятно контакта и уровень звукового давления после шевингования проверяют у тех же зубчатых колес, у которых измеряли профиль и направление зуба. Разность шагов, радиальное биение и отклонение длины общей нормали контролируют по мере необходимости. Для контроля деформации в процессе термической обработки измеряют два зуба, расположенных под углом 180°. Погрешность профиля зуба измеряют в трех сечениях по длине зуба (середине и двух крайних), а погрешность направления - в трех сечениях по высоте (середине, головке и ножке).  [c.355]

Зубоизмерительные приборы по СТ СЭВ 3004—81 в зависимости от вида измеряемых колес обозначаются для цилиндрических колес — С, конических — К, червячных — G, червяков — 2 и разных колес — R. В зависимости от измеряемых параметров используют 14 групп, которые имеют следующие номера приборы для измерения кинематической погрешности — 1 шага — 2 радиального биения зубчатого ьетаа — 3 смещения исходтого контура — 4 измерительного межосевого расстояния и межосевого угла — 5 шага зацепления — 6 профиля зуба — 7 направления зуба — 8 контактной линии — 9 длины общей нормали— 10 толщины зуба — 11 пятна контакта — 12 осевого шага — 13 и погрешности обката — 14. Многие зубоизмерительные приборы совмещают в себе возможность проверки колес различного вида и измерение колес по двум или более параметрам.  [c.234]

Средства измерения параметров зубчатых и червпчных колес  [c.521]

Для измерения направления зуба прямозубых колес практически не изготовляются специальные приборы, а используются различные приспособления или приборы, в которых измерительный узел перемещается параллельно оси центров и в последние устанавливается колесо. Измерение направления зуба узких косозубых колес производится на специальных приборах — ходомерах. Принцип измерения направления зуба косозубых зубчатых- колес заключается в том, что приборо воспроизводится винтовая линия с номинальными параметрами и сравнивается с реальной винтовой линией.  [c.125]

Математическое выражение связи движений ведущего и ведомого элементов (начального и конечного звеньев) кинематической цепи станка называется уравнением кинематического баланса. В него входят составляющие, характеризующие все элементы цепи от начального до конечного звена, в том числе и преобразующие движение, например вращательное в поступательное. В этом случае в уравнение баланса входит единица измерения параметра (шаг ходового винта — при использовании передачи винт — гайка или модуль — при использовании передачи зубчатое колесо—рейка), определяющего условия этого преобразования, миллиметр. Этот параметр позволяет также согласовывать характеристики движения начального и конечного звеньев кинематической цепи. При  [c.113]

На рис. 290 приведен рабочий чертеж прямозубого цилиндрического зубчатого колеса со стандартным модулем. На чертеже должны быть указаны диаметр окружности выступов Dg и диаметр начальной окружности dg, причем величина Dg должна быть дана с указанием нижнего отклонения. Для измерения толщины зубьев штангензубоме-ром на отдельном эскизе (Вид К) указываются наибольшая допустимая толщина зуба и нижнее отклонение от нее, а также высота, на которой производятся измерения. На рабочем чертеже приводится таблица параметров (форма 1).  [c.231]

При измерении толщины зуба на базе рабочей оси наименьшее отклонение. и допуск на толщину зуба Т<, выбираются цо табл. 5.22, 5.23. При измерениях на базе наружного цилиндра Есч пр и Тс пр рассчитываются по формулам табл. 5.26 (вариант 2 табл. 5.26). При измерениях толщийы зуба по постоянной хорде на базе наружного цилиндра заготовки, но с учетом его действительного размера (вариант 3 табл. 5 26), в таблице параметров на чертёжё зубчатого колеса "указывают высоту до постоянной хорду в виде формулы  [c.457]

Измерение окружного и основного щагов производится на специальном настольном приборе — угловом щагомере с помощью лимба и микроскопа. Прибором можно также измерять длины общей нормали и биение зубчатого венца. Точностные параметры прибора позволяют контролировать цилиндрические и конические зубчатые колеса 4-й и 5-й степеней точности. Принципиальная схема углового шагомера и положение наконечников при измерении представлены на фиг. 189.  [c.368]



Смотреть страницы где упоминается термин Зубчатые Параметры — Измерение : [c.143]    [c.284]    [c.326]    [c.333]    [c.4]    [c.373]    [c.564]    [c.118]    [c.411]   
Справочник технолога машиностроителя Том 2 Издание 2 (1963) -- [ c.741 ]



ПОИСК



Измерения диаметров — Погрешности параметров зубчатых и червячных

Колесо зубчатое — Параметры 231 — Показатели точности 232—233 — Измерение

Методы и средства измерения параметров зубчатых колес и передач

Приборы для для измерения параметров зубчатых

Работа N9 7. Измерение параметров зубчатых колес

Средства измерения параметров зубчатых и червячных передач

Цепи приводные втулочные — Измерение зубчатые — Выбор параметров цепи



© 2025 Mash-xxl.info Реклама на сайте