Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Магнитное сопротивление среды

Магнитное сопротивление среды 5 Метод баланса 131  [c.321]

ЭЛЕКТРИЧЕСКОЕ И МАГНИТНОЕ СОПРОТИВЛЕНИЯ УЧАСТКА ФЕРРОМАГНИТНОЙ СРЕДЫ  [c.30]

Электрическое и магнитное сопротивление участка двухслойной среды определим, использовав общие формулы (1-2.3) и (1-26)  [c.40]

Из полученного соотнощения видно, что вещественная часть Я магнитного сопротивления определяет собой реактивную мощность и составляющую магнитодвижущей силы, совпадающую по фазе с магнитным потоком Ф . В то же время мнимая часть Х , определяет активную мощность — потери в среде — и составляющую магнитодвижущей силы, совпадающую по фазе с напряжением и , уравновешивающим э. д. с., наведенную на поверхности среды. Обычно в электрических аппаратах эта составляющая  [c.11]


Электрическое и магнитное сопротивления участка ферромагнитной среды  [c.55]

Электрическое и магнитное сопротивления участка двухслойной среды определим, использовав общие формулы (1-20) и (1-23)  [c.65]

Как работал Галилей над проблемой падения тел эти шестнадцать лет, с 1592 до 1608 г., мы не знаем и, видимо, не узнаем. И все-таки можно утверждать, что за это время он должен был выполнить работу, исключительно важную и трудную, и открытие закона (1) было только одним из ее результатов. Укажем остальные. Прежде всего/Галилей с полной ясностью расчленил те два фактора, которые одновременно действуют при падении тел то, что заставляет все тела стремиться к общему центру всех тяжелых тел, т. е. к центру земного шара, и сопротивление среды, в которой движется падающее тело.[Что, собственно, представляет собой первый фактор (тяготение, по современной терминологии), Галилей не уточняет. По отдельным замечаниям в его трудах и письмах можно сделать вывод, что он допускал гипотезу о магнитной природе тяготения.  [c.84]

Здесь [I — магнитная проницаемость среды в пространстве, где имеется магнитное поле п — полное число витков — магнитное сопротивление. Для замкнутой тороидальной катушки или длинного соленоида практически все поле находится внутри катушки, и, следовательно, f представляет собой магнитную проницаемость вещества внутри катушки. Формула (IV. 14) аналогично формулам (IV. 10) и (IV. 12) поясняет методы создания индуктивных измерительных преобразователей возможно воздействие на (i, и Aj,.  [c.124]

Поток связан с энергией электрический ток -— с мощностью, которая равняется его производной. Поток проникает в окружающую среду, тогда как ток ограничен определенными путями, следовательно, параметры магнитной цепи должны определяться экспериментально, в то время как параметры электрической цепи легко рассчитываются. Достоверность аналогии состоит в том, что математические формы выражений, связывающих энергию и поток, магнитодвижущую силу и магнитное сопротивление, и выражений, связывающих электрическую мощность, ток, напряжение и сопротивление, являются формально одинаковыми. Электрические проводники в магнитном поле имеют особо важное значение в измерительной технике. Среди явлений, возникающих при этом, отметим следующие  [c.128]

Магнитное поле существует в пространстве, окружающем постоянные магниты и проводники, по которым течет электрический ток. Электрический ток и магнитное поле всегда существуют вместе и не отделимы друг от друга. Если ток, текущий по проводнику, создает вокруг этого проводника магнитное поле, то вокруг проводников, намотанных в виде катушки, тот же ток будет создавать более сильное магнитное поле. Намагничивающая сила катушки с током будет равна произведению тока на число витков катушки. Магнитный поток, проходящий через сердечник катушки, замыкается через пространство, окружающее катушку, и на своем пути встречает сопротивление среды, называемое магнитным сопротивлением. Магнитное сопротивление прямо пропорционально длине пути, по которому замыкается магнитный поток, и обратно пропорционально магнитной проницаемости ( л) и поперечному сечению магнитопровода.  [c.67]


Для электромагнитной волны, падающей на металлическую поверхность характерны два вида потерь. Волна частично отражается от поверхности, а ее неотраженная часть преломляется в среде экрана и по мере распространения ослабляется. Это явление характерно для ближнего и дальнего электрического и магнитного полей. Потери на отражение зависят от вида поля и полного волнового сопротивления среды.  [c.336]

Удельное сопротивление на границе сред изменяется непрерывно, постепенно уменьшаясь с ростом глубины. Магнитная проницаемость имеет на границе значение Ц2, зависящее от степени магнитного насы-  [c.36]

Аморфные магнитные материалы. В последнее время уделяется большое внимание вопросам получения и применения аморфных магнитных материалов (АММ). Такие материалы получаются при быстром охлаждении из расплавленного состояния без кристаллизации. Быстрое охлаждение расплавленного сплава достигается различными технологическими приемами, среди которых есть непрерывные или полунепрерывные методы. Аморфная структура получается при скорости охлаждения расплава до 10 °С/с. Современными методами можно изготовить из аморфного материала проволоку или ленту различного профиля непосредственно из расплава со скоростью до 1800 м/мин. АММ обладает очень высокими магнитными характеристиками наряду с повышенным сопротивлением. Перспективными высокопроницаемыми материалами являются аморфные сплавы железа и никеля с добавками хрома, молибдена, бора, кремния, фосфора, углерода или алюминия с магнитной проницаемостью до 500, коэрцитивной силой Не около 1 А/м и индукцией насыщения В., от 0,6 до 1,2 Тл.  [c.99]

Удельное сопротивление на границе сред изменяется непрерывно, постепенно уменьшаясь с ростом глубины. Магнитная проницаемость имеет на границе значение ра, зависящее от степени магнитного насыщения стали, и увеличивается е глубиной (см. гл. 3).  [c.60]

На сопротивление деформации и пластичность металлов и сплавов кроме термомеханических условий деформации существенное влияние оказывают такл<е различные условия окружающей среды потоки высоких энергий, магнитные и электрические поля, гидростатическое давление, ультразвуковые колебания и т, д. Рассмотрим кратко влияние этих условий на реологическое поведение металлов и сплавов.  [c.34]

В своем капитальном труде Н. С. Курнаков рассматривает измеримые физические свойства веществ, применяемые в физико-химическом анализе. Общее число таких свойств достигает 30. Среди них тепловые свойства — плавкость и растворимость, теплота образования, теплоемкость, теплопроводность электрические свойства — электрическое сопротивление, электродвижущая сила, термоэлектрическая сила, диэлектрическая проницаемость объемные свойства — удельный вес и удельный объем, объемное сжатие, коэффициент теплового расширения. При физико-химическом анализе измеряются также основные оптические свойства объектов исследования, свойства, основанные на молекулярном сцеплении (вязкость, твердость, давление истечения, поверхностное натяжение и др.)) магнитные свойства и многие другие. В физико-химическом анализе широко применяется изучение микроструктуры систем, позволяющее определить их фазовый состав. В последние десятилетия физико-химический анализ пополнился таким важным методом исследования, как рентгенография, который позволяет установить параметры и структуру кристаллографических решеток твердых фаз изучаемой системы  [c.159]

ЗАКОН [периодический Менделеева свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов Планка описывает мощность излучения черного тела как функцию температуры и длины волны подобия Рейнольдса коэффициенты, необходимые для вычисления гидравлического сопротивления геометрически подобных тел, равны, если равны соответствующие числа Рейнольдса в этом случае оба потока подобны полного тока <для токов проводимости циркуляция вектора напряженности магнитного поля постоянного электрического тока вдоль замкнутого контура пропорциональна алгебраической сумме токов, охватываемых этим контуром для магнетиков циркуляция вектора магнитной индукции вдоль замкнутого контура пропорциональна алгебраической сумме токов, охватываемых этим контуром обобщенный циркуляция вектора напряженности магнитного поля постоянного электрического тока вдоль замкнутого контура пропорциональна алгебраической сумме токов, охватываемых этим контуром и током смещения ) постоянства <гранных углов в кристаллографии по величине двугранных углов в кристалле можно установить, к какой кристаллической системе и к какому классу относится данный кристалл состава каждое химическое соединение, независимо от способа его получения, имеет определенный состав ) преломления (света отношение синусов углов падения и преломления на границе двух сред равно отношению скоростей света в этих средах Снеллиуса отношение синусов углов падения и преломления луча электромагнитных волн на границе раздела двух диэлектрических сред равно относительному показателю преломления двух сред (второй среды по отношению к первой) )  [c.235]


Основная допустимая погрешность преобразования давления в электрический ток при нормальных условиях (отсутствии магнитных полей и вибраций, температуре окружающей среды +20 3°, сопротивлении линии вместе с нагрузкой 1 ком, номинальном напряжении сети 127 или 220 в) не превышает 1% от диапазона изменения выходного тока.  [c.18]

Таким образом, вещественная часть магнитного сопротивления определяет собой реактивную мощность и составляющую магнитодвижущей силы, совпадающую по фазе с магнитным потоком Фм. В то же время мнимая часть определяет активную мощность — потери в среде — и составляющую МДС, совпадающую по фазе с напряжением i7 ,, уравновешивающим ЭДС, наведенную на поверхности среды. Обычно в электрических аппаратах эта составляющая мала, тогда как при индукционном нагреве она определяет процесс. Например, в рассматриваемой полубесконечной среде с р = onst и р, = onst имеем R,n = Х -  [c.16]

Гармоническое колебание. Возвращаясь к равномерному круговому движению точки 1 , рассмотрим двшкение проекци г ее на один из диаметров, например, проекции Р точки Р на ось X. В то время как точка Р в своем движении делает некоторое число оборотов по окружности, точка Р,. совершает столько же колебаний от А до В, и обратно. Прямолинейное движение точки Р называется гармоническим колебанием, оно имеет очень большое значение, так как дает кинематическое отображение самого важного типа многих физических колебательных явлений (упругих, звуковых, световых), когда можно пренебречь так называемыми пассивными сопротивлениями (трением, вязкостью, сопротивлением среды и т. п.). Супщетвуют также явления (особенно в оптике и в теории электричества, например, в теории вращающихся магнитных полей), при которых физическое значение получают как колебательное движение точки Р , так и равномерное вращение вектора 01 . Заметим, далее, что всякое периодическое движение может быть разложено на  [c.126]

Значительно большее влияние в этой области частот оказывают магнитные нелинейности, к-рые могут менять С.-э. не только количественно, но и качественно. Их действие проявляется при условии u) fT 1, где Шд = eHjm — циклотронная частота носителей. В режиме магн, нелинейности С.-э. необходимо учитывать тензорный характер сопротивления среды в магн. поле. Зависимость диагональных компонент сопротивления р от Я (мазнетосопротивление) аналогична влиянию электрич. нелинейностей. Недиагональные компоненты тензора сопротивления (см. Холла эффект) наиб, ярко проявляются в нестационарной задаче о проникновении в плазму постоянного магн. поля, включаемого в нек-рый момент времени I = 0. Тогда глубина проникновения поля в плазму меняется со временем 6 hp(E, В режиме не-  [c.542]

Ф. взаимодействуют не только друг с другом, но и с др. квазичастицами с электронами проводимости в металлах и полупроводниках, с магнонами в магнитно-упорядоченных средах (см. Спиновые волны). Испускание и поглощение Ф. электронами—осн. механизм электрич. сопротивления металлов и полупроводников (см. Рассеяние носителей заряда, Электрон-фоношюе взаимодействие). Обмен электронов Ф. приводит к притяжению электронов друг к другу и, в свою очередь, к образованию куперовских пар (см. Купера эффект)—осн. носителей незатухающего сверхпроводящего тока (см. Сверхпроводимость).  [c.339]

Как уже говорилось, реальными мы считаем силы, вызывающие ускорение материальных точек и тел относительно абсолютной системы координат, пли (что одно и то же) инерциальной системы отсчета. Эти силы выражают меру механического взаимодействия тел и могут быть различны по своей природе это силы тяготения, электрические и магнитные силы, силы упругости и пластичности, силы сопротивления среды, давления ветра или даже света. Надо сказать, что нередко обнаруживается общность сил, казалось бы, совершенно различных. Так, силы упругости могут трактоваться как проявление сил электрических, возникающих при взаимодействии атомов и молекул. Сила прилипания (адгез1ш) клеев к гладкой поверхности тоже относится к электрическим силам. В конечном счете, реальная физическая сила измеряется производимым ею ускорением единицы массы в инерциальной ( абсолютной ) системе отсчета.  [c.35]

Таким образом, процесс перехода гранулированного металла в сверхпроводящее состояние является двухстадийным он начинается с возникновения сверхпроводящих частиц при температуре которое сопровождается аномалиями теплоемкости, магнитной восприимчивости и отклика образца на злектромагнитное поле, затем в игру вступает джозефсоновская связь, приводящая к дальнейшему уменьшению сопротивления среды до нуля при температуре Т Р-С увеличением pjv значение понижается. Обе температуры и могут существенно различаться (см. рис. 131). При достаточно большом значении pjv джозефсоновская связь разрушается, но туннелирование одиночных злектронов из частицы в частицу может осуществляться. В таком случае характер нормального сопротивления образца изменяется от металлоподобного с положительным термическим коэффициентом к активационному, показывающему отрицательный термический коэффициент (845].  [c.284]

Движение космического аппарата относительно центра масс (вращательное движение) происходит под действием уже знакомых нам природных сил — гравитационных, магнитных, сил сопротивления среды, светового давления [1.45]. При этом оно оказывается гораздо более чувствительным к некоторым слабым внешним воздействиям, чем движение центра масс по траектории, которое вообще их не замечает. Известны случаи временной потери космическим аппаратом ориентации из-за удара микрометеорита, ничуть не сказавшегося на траектории.  [c.85]


Сингх [710] рассмотрел влияние вращения магнитного поля и сжимаемости на возмущения, вызываемые медленными пульсациями сферической частицы из электропроводного вещества в электропроводной вязкой среде и на коэффициент сопротивления.  [c.487]

В другой монографии [84] на основе введения понятия о вихревых силах сопротивления в сплошных средах и использования известного принципа независимого наложения на сисзему внешних сил предложены обобщающие соотношения, выражающие аналогию между количеством движения, массы и энергии. При проверке предложенных соотношений использован практически весь известный экспериментальный материал, накопленный в мировой практике. На основе этих соотношений предложены методики гидравлических, тепло- и масс1)обменных расчетов одно- и двухфазных сред при движении в условиях внешних воздействий (колебаний, сил инерции, электрических, магнитных и скрещенных электрических и магнизных полей и др.) для внутренних и внешних гидродинамических задач.  [c.47]

Обогрев химических реакторов. При обогреве химических реакторов (Т = 100—400 °С) важна малая тепловая инерция индукционного способа и возможность равномерного нагрева больших поверхностей. Особенно эффективен индукционный обогрев при температурах свыше 200—250 °С. Емкости реакторов достигают десятков кубометров, давления — 10 МПа (автоклавы). Мощность системы обогрева достигает 300 кВт, частота 50 Гц. Удельные мощности обычно не превышают 10 Вт/см . Дальнейшего увеличения мощности без сильного насыщения стали можно достичь, покрывая стенку реактора тонким слоем меди. При этом получается двухслойная среда (см. гл. 3) и напряженность магнитного поля на границе слоев падает. Одновременно возрастает коэс )фицнент мощности устройства. Активное сопротивление и КПД незначительно снижаются. Индукторы часто секционируются для создания автономных температурных зон, регулируемых по сигналам от термопар (рис. 13-9). Для уменьшения взаимного влияния секции разделяются магнитными фланцами 4. Секционирование позволяет также равномерно загрузить фазы сети. Обмотки, 3 делают многослойными из прямоугольного провода с теплостойкой изоляцией. Тепловая изоляция 2 может прокладываться как между корпусом реактора / и обмотками 3, так и снаружи для обеспечения допустимой температуры электроизоляции.  [c.225]

Сплав альфенол является относительно дешевым материалом, и широко применяется для магнитной звукозаписи, так как у него велико сопротивление истиранию. Этот сплав имеет также удовлетворительные антикоррозионные свойства в некоторых агрессивных средах. Термическая обработка сплава следующая отжиг при 1000° С, охлаждение с печью до 600° С и последующее охлаждение на воздухе.  [c.150]

В формулу (9-10) входят рд и р, которым трудно приписать определенные значения. При закалке прогрев производится на глубину, меньшую чем горячая глубина проникновения, и металл становится неоднородным. Примем за удельное сопротивление его среднее значение при температуре 750—770° С Ра 8-10 ом-м. Относительную магнитную пpoницaeмo tь положим равной единице, что представляет довольно грубое приближение, так же, как и применение формул (2-1) и (9-9), полученных для однородной проводящей среды. Тогда получим  [c.147]

Плоскополяриаованное колебание Е можно представить в виде двух круговых противоположно направленных колебаний (рис. 11.21, а) Е,, поляризованного по кругу вправо, и Еа, поляризованного по кругу влево. В каждый момент времени эти составляющие образуют с плоскостью колебаний АА равные углы и в сумме дают вектор Е, лежащий в этой плоскости. Если такие колебания попадают в среду, в которой скорость распространения право-и левополяризованной составляющих оказывается неодинаковой, например е, < Са, то колебание Ej будет отставать от колебания Ез и по выходе из среды между ними возникнет разность фаз S. Складываясь, колебания Ei и Е дают снова плоскополяризованное колебание Е, но с плоскостью колебаний ВВ, повернутой относительно начального положения этой плоскости АА на угол 6/2 в направлении вращения более быстро распространяющегося колебания Ej (рис. 11.21, б). Такое явление поворота (вращения) плоскости колебаний или соответственно плоскости поляризации плоскополяризованной электромагнитной волны происходит при прохождении ее через намагниченный ферро- и ферримагнетик в направлении приложенного намагничивающего поля Н (в продольном магнитном поле). Это явление было открыто Фарадеем и называется эффектом Фарадея В металлических ферромагнетиках, сильно поглощающих электромагнитные волны, явление Фарадея можно наблюдать лишь в тонких пленках. В ферритах с высоким удельным электрическим сопротивлением, слабо поглощающим энергию электромагнитной волны, эффект Фарадея может быть реализован в образцах длиной в  [c.307]

Общая для всего мира тенденция улучшения рабочих параметров ГТД за счет увеличения степеней сжатия как следствие приводит к появлению большого числа коротких лопаток с собственными частотами колебаний даже по первой форме в области высоких звуковых частот циклов. Увеличение частоты / при данном ресурсе эксплуатации Тэ автоматически приводит к росту циклической наработки N. Поскольку ресурс Тэ также имеет тенденцию к росту, увеличивается относительное число усталостных повреждений среди возможных нарушений работоспособности деталей ГТД. Стала актуальной проблема оптимизации технологии коротких лопаток и связанных с ними элементов дисков по характеристикам сопротивления усталости на высоких звуковых частотах и эксплуатационных температурах, которые, как и частота нагружения, становятся все более высокими. Из-за жестких требований к весу деталей и сложности их конструкции в каждой из них имеет место около десятка примерно равноопасных зон, включающих различные по форме поверхности и концентраторы напряжений гладкие участки клиновидной формы, елочные пазы, тонкие скругленные кромки, га.лтели переходные поверхности), ребра охлаждения, малые отверстия, резьба и др. Даже при одинаковых методах изготовления, например при отливке лопаток, поля механических свойств, остаточных напряжений, структуры и других параметров физико-химического состояния поверхностного слоя в них получаются различными. К этому следует добавить, что из-за различий в форме обрабатывать их приходится разными методами. Комплексная оптимизация технологии изготовления таких деталей по характеристикам сопротивления усталости сразу всех равноопасных зон без использования ЭВМ невозможна. Поэтому была разработана система методик, рабочих алгоритмов и программ [1], которые за счет применения ЭВМ позволяют на несколько порядков сократить число технологических испытаний на усталость, необходимых для отыскания области оптимума методов изготовления деталей, а главное строить математические модели зависимости показателей прочности и долговечности типовых опасных зон деталей от обобщенных технологических факторов для определенных классов операций с общим механизмом процессов в поверхностном слое. Накапливая в магнитной памяти ЭВМ эти модели, можно применять их для прогнозирования наивыгоднейших режимов обработки новых деталей, которые в авиадвигателестроении часто меняются без трудоемких испытаний на усталость. Построение  [c.392]

Диссипативная функция Релея. Если среди заданных сил имеются силы, зависящйе от скорости, то они могут оказать влияние на члены Qr в уравнениях Лагранжа (6.2.1). В некоторых случаях, когда силы являются гироскопическими (например, в задаче о движении заряженной частицы в магнитном поле, см. 10.6), они могут быть учтены путем присоединения к выражению для L соответствующих линейных членов. В этом параграфе мы рассмотрим другой класс задач, связанных с силами, зависящими от скорости. Речь будет идти о силах сопротивления, или диссипативных силах, действующих на каждую частицу в направлении, противоположном ее скорости. Мы ограничимся исследованием простого случая, когда сила сопротивления пропорциональна скорости. Уравхгения движения (2.2.12) запишутся теперь в форме  [c.196]


Из уравнения (159) видно, что разность результирующих потоков у поверхности нагрева и у ограждающей поверхности будет тем больше, чем больше коэффициент отражения (рк) ограждающей поверхности. Чем больше рк, тем меньше расход тепла с охлаждающей водой, поэтому для рефлекторных печей состояние отражающей поверхности имеет решающее значение. Относительно низкая температура отражающей поверхности нужна для сохранения высокого коэффициента отражения (рис. 144). Хотя в принципе возможны и пламенные рефлекторные печи, если окажется возможным тем или иным способом (например, с помощью магнитного поля) не допускать непосредственного контакта пламени с отражающей поверхностью, но практически пока нашли применение только рефлекторные электрические печи сопротивления (см. рис. 143). Пользуясь тем, что в безокисли-тельной среде уменьшение коэффициента отражения Рк Для некоторых сплавов происходит медленно, рефлекторные печи можно делать с малым внешним охлаждением при условии, если ограждающая поверхность будет состоять из поставленных друг за другом отражающих экранов (см. рис. 143, б). Так, существуют вакуумные печи [159] для термообработки, экраны которых выполнены из стали, легированной молибденом и танталом. Вполне пог ятно, что чем больше вакуум, тем лучше работают указанные печи, если только не происходит испарения легирующих элементов в вакууме.  [c.258]

ВОСПРИИМЧИВОСТЬ — характеристика (диэлектрика, показывающая его способность поляризоваться в электрическом поле магнетика, показывающая его способность намагничиваться в магнитном поле) ВЯЗКОСТЬ [—свойство жидкостей и газов оказывать сопротивление перемещению одной их части относительно другой динамическая — количественная характеристика сопротивления жидкости или газа смещению одного слоя относительно другого кинематическая— отнощение динамической вязкости к плотности жидкости или газа магнитная — отставание во времени изменения магнитных характеристик ферром нетика от изменения напряженности внешнего магнитного поля объемная — величина, характеризующая процесс перехода внутренней энергии в тепловую при объемных деформациях среды (вторая вязкость) структурная — вязкость, связанная с возникновением структуры в дисперсных системах ударная — поглощение механической энергии твердыми телами в процессе деформации и разрущения под действием ударной нагрузки]  [c.228]

КОЛЕБАНИЯ (вынужденные [возникают в какой-либо системе под влиянием внешнего воздействия переменного пружинного маятника (характеризуется переходным режимом и установившимся состоянием вынужденных колебаний резонанс выявляется резким возрастанием вынужденных механических колебаний при приближении угловой частоты гармонических колебаний возмущающей силы к значению резонансной частоты) электрические осуществляют в электрическом колебательном контуре с включением в него источника электрической энергии, ЭДС которого изменяется с течением времени] гармонические относятся к периодическим колебаниям, а изменение состояния их происходит по закону синуса или косинуса затухающие характеризуются уменьшающимися значениями размаха колебаний с течением времени, вызываемых трением, сопротивлением окружающей среды и возбуждением волн когерентные должны быть гармоническими и иметь одинаковую частоту и постоянную разность фаз во времени комбинационные возникают при воздействии на нелинейную колебательную систему двух или большего числа гармонических колебаний с различными частотами кристаллической решетки является одним из основных видов внутреннего движения твердого тела, при котором составляющие его частицы колеблются около положений равновесия крутильные возршкают в упругой системе при периодически меняющейся деформации кручения отдельных ее элементов магнитострикционные возникают в ферромагнетиках при их намагничивании в периодически изменяющемся магнитном поле модулированные имеют частоту, меньшую, чем частота колебаний, а также определенный закон изменения амплитуды, частоты или фазы колебаний неавтономные описываются уравнениями, в которые явно входит время некогерентные характерны для гармонических колебаний, частоты которых различны незатухающие не меняют свою энергию со временем нормальные относятся к гармоническим собственным колебаниям в линейных колебательных системах  [c.242]

Во мн. типичных случаях энергия бегущей В. делится поровну между двумя её разл. видами (кинетич. и потеиц., электрич. и магнитной). В этом смысле описание В. с помощью двух ф-ций, даваемое, в частности, ур-ния.чи типа (4), оказывается адекватным физ. картине. Отношение ф-Ций ф/-ф—Zj, для бегущей В, (напр., напряжения и тока в электрич. линии передачи, нолей о/Я в бегущей плоской эл.-магн. В. или ptv — в акустической), по anajrornn с явлениями в электрич. цеиях, паз. волновым сопротивлением (х а р а к т е р и с т и ч. импедансом). Эта величина определяет условия отражения и прохождения В. на границах раздела двух сред. В нек-рых неравновесных средах (электронные и плазменные потоки, сдвиговые течения жидкости) плотность энергии отд. В. может принимать отрицат. значения (В. с отрицат, энергией), т. е, нонвленне В. уменьшает суммарную энергию всей системы, к-рая, однако, всегда остается положительной.  [c.318]

Металловедением называется наука, изучающая внутреннее строение и свойства металлов и сплавов в их взаимосвязи. К числу свойств металлов и сплавов относятся механические (прочность, вязкость и твердость), химические (сопротивление действию агрес-, сивной среды), физические (магнитные, электрические, объемнее и тепловые), технологические (жидкотекучесть, штампуемоеть, обрабатываемость режущим инструментом, прокаливаемость).  [c.7]


Смотреть страницы где упоминается термин Магнитное сопротивление среды : [c.447]    [c.539]    [c.72]    [c.242]    [c.66]    [c.6]    [c.7]    [c.48]    [c.67]    [c.279]    [c.643]   
Установки индукционного нагрева (1981) -- [ c.15 ]



ПОИСК



Сопротивление (среды)

Сопротивление магнитное

Электрическое и магнитное сопротивления участка ферромагнитной среды



© 2025 Mash-xxl.info Реклама на сайте