Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Хром, добавки

Характеристики сопротивления материалов коррозионному растрескиванию, требования 256 Хранение материалов 311 Хром, добавки 56  [c.487]

В сталях, содержащих хром, добавки рассматриваемых элементов повышают жаростойкость, так как, соединяясь с углеродом, они оставляют хром в твердом растворе.  [c.21]

Например, если ограничение коррозии достигнуто методами, тормозящими анодный процесс (легирование сплава хромом, добавка окислителей или анодных ингибиторов в раствор), то нерационально одновременно применять методы, тормозящие катодный процесс (устранение катодных включений в сплаве, уменьшение аэрации раствора или добавка в раствор катодных ингибиторов).  [c.17]


Чистый хром обладает малой пластичностью (см. табл. 54). Особенно резко он охрупчивается при загрязнении азотом. Легирование заметно повышает пластичность и жаропрочность хрома. Например, добавка рения улучшает деформируемость хрома. Наиболее сильно упрочняют хром добавки (до 1%) Т1, N5, Та или 2г, а также до 10% Такие сплавы пригодны для работы при 980—1095° С. Существующие сплавы на основе хрома все же хрупкие, особенно на холоде.  [c.153]

В случае присутствия в 5-н. растворе азотной кислоты трехвалентного хрома добавка кремния в сталь не является эффективной и при содержании его более 3% потери вследствие коррозии резко возрастают (рис. 142).  [c.228]

НИХ анионов движется к катоду. Здесь происходит коагуляция золя, вследствие чего электрод покрывается плотной пленкой, которая препятствует дальнейшему восстановлению анионов СгО " до металла. В подобном случае только с повышением плотности тока до весьма заметных размеров становится возможным дальнейшее осаждение хрома, но в совершенно неудовлетворительной форме (в виде черной губки) со значительными включениями труднорастворимых соединений хрома. Добавка ионов препятствует процессу образова-  [c.58]

В сталях, содержащих хром, добавки рассматриваемых элементов повышают жаростойкость.  [c.583]

Хром легируют с целью снижения вредного влияния примесей внедрения, Для этого используют элементы с большим химическим сродством к примесям 2г, НГ, V и Ьа очищают матрицу хрома от азота, образуя нитриды. ЫЬ, Та, Т1 и 2г хорошо связывают углерод, а Т1, 2г, V, С1 и Ьа очищают хром от кислорода. Для повышения жаропрочности хром легируют титаном, ванадием, иттрием, цирконием, вольфрамом н никелем. Добавки вводят в количествах, ие превышающих их растворимость в твердом хроме. Добавки РЗМ измельчают структуру, повышают коррозионную стойкость и температуру рекристаллизации.  [c.405]

Применение нержавеющей стали с добавками титана или ниобия, т. е. элементов, имеющих большее сродство к углероду, чем хром добавка титана в сварочную проволоку дает хорошие результаты, однако он имеет тенденцию к окислению при введении в электрод добавка в электрод ниобия дает лучшие результаты.  [c.202]

Большинство никелевых жаропрочных сплавов для работы при повышенных температурах содержат 5—30% хрома. Добавки хрома увеличивают прочность, сопротивление окислению и сопротивление вредному действию серы.  [c.177]

Все аустенитные жаропрочные стали содержат большое количество хрома и никеля, а также добавки других элементов.  [c.470]

Сплавы титана, содержащие алюминий и хром, обладают в 3 н. растворе соляной кислоты при 15° С и в I 1. растворе серной кислоты при 50° С меньшей коррозионной стойкостью, чем нелегированный титан с повышением содержания в этих сплавах хрома и алюминия скорость их коррозии увеличивается. Наиболее эффективно способствуют повышению коррозионной стойкости титана в ряде агрессивных растворов добавки Мо, Та, N5,  [c.286]


Высокие литейные свойства имеют сплавы, содержащие в структуре эвтектику. Эвтектика образуется в сплавах, в которых содержание легирующих элементов больше предельной растворимости в алюминии, Поэтому содержание легирующих элементов в литейных сплавах выше, чем в деформируемых. Чаще применяют сплавы А1—Si, Л1—Си, А1 —Mg, которые дополнительно легируют небольшим количеством меди и магния (А1—Si), кремния (А1—Mg), марганца, никеля, хрома (Л1 —Си). Для измельчения зерна, а следовательно, улучшения механических свойств в сплавы вводят модифицирующие добавки (Ti, Zr, Н, V и др.). Механические свойства некоторых литейных сплавов алюминия приведены в табл. 23.  [c.333]

Показано, что добавка до 5 % хрома (при 0,08 % С) снижает коррозионные потери в воде Панамского канала к концу первого года испытаний [45]. Резкое возрастание скорости коррозии наблюдается на третьем-четвертом году эксплуатации, а после 16 лет хромистые стали теряют на 22—45 % больше массы, чем сталь, содержащая 0,24 % С.  [c.126]

Малые добавки- в низколегированных сталях не оказывают заметного влияния на скорость общей коррозии в воде и почве, однако состав стали играет большую роль в работе гальванических пар, определяющих коррозионную стойкость при гальванических контактах. Например, в большинстве природных сред стали с малым содержанием никеля и хрома являются катодами по отношению к углеродистой стали вследствие повышения анодной поляризации. Причина этого объяснена на рис. 6.15. И углеродистая, и низколегированная сталь, взятые в отдельности, корродируют с приблизительно одинаковой скоростью / ор, ограниченной скоростью восстановления кислорода. При контакте изначально различные потенциалы обеих сталей приобретают одно и то же значение гальв-  [c.127]

Легирование металлов. Легирование стали небольшими количествами меди, фосфора, никеля и хрома особенно эффективно для защиты от атмосферной коррозии. Добавление меди более эффективно в умеренном, чем в тропическом морском климате добавки хрома и никеля в сочетании с медью и фосфором повышают стойкость как в умеренном, так и в тропическом климате (табл. 8.5). Скорость коррозии конструкционных сталей в тропиках (например, в Панаме) в два и более раза выше, чем в умеренном климате (например, Кюр Бич), главным образом вследствие более высоких средних температур и относительной влажности.  [c.180]

Наиболее эффективными легирующими компонентами, повышающими устойчивость железа к окислению на воздухе, являются алюминий и хром, особенно если использовать их с добавками никеля и кремния. Отмечено, что сплав 8 % А1—Fe обладает такой же устойчивостью к окислению, как и сплавы 20 % Сг— 80 % Ni [55]. К сожалению, применение стойких к окислению А1—Fe-сплавов ограничено их низкими механическими свойствами, малой прочностью защитных оксидных пленок и способностью алюминия образовывать нитриды, вызывающие охрупчивание. Некоторые из этих недостатков А1—Fe-сплавов преодолеваются посредством легирования хромом.  [c.204]

Добавки редкоземельных металлов, как правило, благоприятно влияют на стойкость к окислению хрома и его сплавов, включая газотурбинные сплавы [60], причем наиболее благоприятна добавка иттрия. Имеются данные [61, 62], что добавление 1 % иттрия в сплав 25 % Сг—Fe повышает верхнюю температурную границу устойчивости сплава к окислению до 1375 °С. Сообщается, что легирование иттрием замедляет скорость окисления, увеличивает пластичность оксида металла, изменяет коэффициент температурного расширения металла или его оксида, однако основной функцией этой добавки является снижение скорости отслоения оксида при цикличном нагревании и охлаждении сплава [63]. Предполагается [64], что в твердых растворах иттрий заполняет вакансии, предотвращая их слияние на границе раздела металл — оксид, что, в свою очередь, снижает пористость оксида, предотвращая его отслоение от металла.  [c.207]

Полифосфаты натрия часто применяют в концентрациях 10—100 мг/л, добавляя иногда для усиления защитного действия соли цинка. Значение pH доводят до 5—6, для того чтобы свести к минимуму возможность появления питтинга и образования наростов, а также уменьшить отложение накипи. Полифосфаты медленно разлагаются до ортофосфатов, которые в присутствии ионов Са и Mg осаждаются в виде нерастворимых ортофосфатов кальция и магния, приводя к образованию накипи на более горячих частях системы. В отличие от хроматов, они способствуют росту водорослей, в связи с чем становятся необходимы специальные добавки — альгициды. Ингибирующие комплексы, содержащие фосфаты, менее эффективны, чем составы с хрома-тами, но фосфаты при небольших концентрациях менее токсичны, и их оптимальная защитная концентрация ниже, чем для хроматов.  [c.281]


К этой группе (табл. 3) относятся наплавки и наплавочные сплавы, содержащие, кроме углерода и хрома, добавки титана в количестве до 1,4%. Сравнение свойств материалов группы III с материалами группы I, имеющими примерно такое же содержание углерода и хрома, позволяет заключить, что в результате введения титана в количестве от 0,7 до 1,4% 1) значительного повышения твердости не наблюдается 2) износостойкость несколько повышается при всех методах испытания на изнашивание более заметно для материалов, содержащих около 20%i Сг 3) ударная вязкость с введением титана незначительно снижается 4) введение титана измельчает зерно, пе изменяя сугцественио типа структуры.  [c.43]

Для получения наиболее высоких показателей механических и эксплуатационных свойств серого чугуна можно рекомендовать комплексную добавку из молибдена в количестве 0,2—0,4 и 0,05% силикомишметалла. Экономически более предпочтительны комплексы с марганцем и хромом. Добавки 0,2—0,4% марганца и хрома совместно с добавками 0,05% силикомишметалла позволяют при хороших технологических свойствах металла обеспечивать высокие механические и эксплуатационные свойства отливок из серого чугуна.  [c.92]

Положительное влияние оказывает хром, добавка которого в сталь 15М в количестве 0,3—0,5% устраняет чувствительность к графитизации (стали марки 15ХМ, 12МХ).  [c.45]

При защите металлов от коррозии наиболее эффективен метод, который тормозит основную контролирующую стадию данного электрохимического процесса, т. е. когда основной фактор защиты данного метода совпадает с контролирующим фактором данного коррозионного процесса. При одновременном применении нескольких методов защиты металла от коррозии, как привило, легче достичь более полной защиты, если все эти методы действуют преимущественно на основную контролирующую стадию электрохимического коррозионного процесса. Например, при уменьшении коррозии металла добавлением анодных ингибиторов (пассиваторов) усиление эффекта защиты достигается также введением катодных присадок в сплав или дополнительной анодной поляризацией, т. е. рядом методов, тормозящих анодный процесс. Наоборот, одновременное применение нескольких методов, действующих на различные контролирующие стадии электрохимической коррозии, будет, как правило, менее эффективным, а иногда и вредным. Например, если ограничение коррозии металла достигнуто методами, тормозящими анодный процесс (легирование стали хромом, добавкой окислителей или анодных ингибиторов в раствор), то нерационально одновременно применять методы, тормозящие катодный процесс (устранение катодных включений в сплаве, уменьше-  [c.48]

Из красителей широко распространен неаполитанский желтый краситель Pb2Sb407, дающий интенсивную желтую окраску эмали. Красный цвет эмали достигается введением в ее состав сернистого кадмия с добавкой селена или серы. Сине-зеленый цвет достигается добавкой к эмали от 1 до 1,5% окиси алюминия, кобальта и хрома, чисто зеленый цвет — введением от 2 до 5% окиси хрома. Добавка до 0,03% хлорного золота придает эмали золотой цвет. От смеси окислов кобальта и алюминия (до 5%) эмаль приобретает оттенок от голубого до зеленого.  [c.253]

Особенно большой интерес представляют углеродистые стали, легированные медью и хромом. Добавка к углеродистым сталям 0,25—0,35 о меди (фиг. 141) достаточна для значительного повышения их коррозионной стойкости в промышленной атмосфере, не содержащей хлорионов. В морской воде медистая сталь имеет менее заметное преимущество, по сравнению с обычной углеродистой сталью. Такие же результаты получаются при действии на медистую сталь растворов сернокислых солей, щелочных растворов и др.  [c.187]

Других классов сталей, О беспечили им такое широкое распространение. В основном коррозионную устойчивость и жаростойкость сообш,ает этим сталям хром. Добавки никеля в умеренных количествах оказывают малое влияние на коррозионную устойчивость в средах пассивирующего характера, но заметно повышают коррозионную стойкость этих сталей в неокислительных и в слабо окислительных средах. Помимо этого, добавка иикеля существенно улучшает ряд технологических свойств, а также обеспечивает хорошую свариваемость этих сталей и повышает их прочность и вязкость, особенно при повышенных температурах.  [c.501]

При испытаниях надрезанных образцов на удар хрупкие раз-рутончя переходят в вязкие при повышепии температур испытания. Снижает температурный интервал перехода в хрупкое состояние некоторое увеличение содержания в стали углерода и для ферритпых сталей — азота (примерно в количествах /цщ от концентрации хрома). Такие добавки уменьшают склонность к росту зерна при высоких температурах и улучшают сварочные свойства сталой.  [c.261]

Увеличение содержания хрома в аустенитных сталях ухудшает их штампуемость, а добавки ниобия и титана улучшают пластические свойства сталей как ферритного, так и аустенитного классов. Введение молибдена до 2 Ж также повышает штампуемость, а введение вольфрама до 4 и ванадия до I на штампуемость влияния не оказывает. Добавка до 1,4 кремния не влияет на штампуемость. Увеличение содержания углерода ухудшает шшотические своПства, поэтому он не должен превышать О,25...О,30 % 3.  [c.10]

Пружины, рессоры и подобные им детали изготавливают из конструкционных сталей с повышенным содержанием углерода (но, как правило, все же более низким, чем у инструментальных сталей) — приблизительно в пределах 0,5—0,7% С, часто с добавками марганца и кремния. Для особо ответственных пружин применяют сталь 50ХФ, содержащую хром и ванадий и обладающую наиболее высокими упругими свойствами.  [c.404]

Растворение металлических элементов замещения в молибдене или других металлах в общем случае ухудшает пластичность и повышает порог хладноломкости. Небольшие добавки элементов замещения, играя роль рас-кислителей, могут снижать температуры перехода из пластичного состояния в хрупкое. Такими элементами являются, в частности, алюминий, церий, титан, цирконий, добавка которых в количестве 0,1—0,5% снижает температурный порог хрупкости. Значительное легирование примесями замещения всегда повышает порог хладноломкости. Исключение составляет рений (так называемый срениевый эффект ), который снижает порог хладноломкости молибдена, вольфрама и хрома (рис. 392). Чтобы получить ощутимое положительное влияние рения на свойства металла VI группы, необходимо вводить этот элемент в больших количествах (30—50%).  [c.532]


Перепассивацию наблюдали у низколегированных сталей в HNO3 высокой концентрации, у не-ржавеюш,их сталей в нагретых до 50—100° С 30%-ных растворах HNO., с добавками КгСггО,, при анодной поляризации никеля в растворах K2SO4, у хрома, никеля, хромистых и хромоникелевых сталей в растворах H SO и пр.  [c.313]

Насколько сильно пре . .тствуют добавки, например хро.ма, диффузии водорода в металл, можно видеть из следуюидпх данных проникновение водорода в углеродистую сталь (0,157о С) за один и тот же промежуток времени при отсутствии хрома составляет 0,9 мм, при содержании 1% Сг — 0,3 мм, а при содержании 5% Сг — 0,1 мм. На рис. 118 пока,зап.а зависимость глубины проникновения водорода в хромистую сталь от температуры газа и содержания хрома в металле. Карбиды хрома не  [c.151]

На рис. 152 показано влияние содержания меди на коррозионную стойкость углеродистой стали в атмосфере. Из опытов известно, что целесообразно сочетание легирования стали медью и хромом. Легирование стали небольшими количествами хрома (до 2%) повышает только ггрочиость силава. С доба[ кон хро.ма до 8% повышается стойкость стали Б газовых средах при высоки, температурах. П 1 рис. 15.3 видно, что при таком содержании хрома применение этой стали г, ус.ловиях воздействия главным образом сероводорода на различных стадиях крекинг-процесса весьма эффективно. Еще лучшие результаты в атмосфере воздуха и окнс. 1Яю-щих газов дает добавка кремния к стали, содержащей хром (рис. 154).  [c.207]

С возрастанием содержания никеля увеличивается область существования у-фазы, аустенитная структура делается устойчивой при достаточном содержании никеля уже при низких температурах. Повышение содержания хрома, наоборот, уменьшает область существования у-фазы. Для получения стали аустенитного класса в системе Ре — Сг —N1, как это видно из диаграммы па рис. 160, достаточно добавки 8% N1 при содержании хрома 187о-  [c.218]

Особого внимания заслуживают сплавы циркония с добавками олова, железа и хрома, так называемые циркалои. Известный сплав цнркалой-2, содержащий 1,57о Sn 0,127о Fe, 0,09% Сг и 0,05% Si, обладает более высокой коррозионной стойкостью и прочностью по сравнению с цирконием при повышенных температурах, При легировании циркония молибденом и ниобием он еще более упрочняется.  [c.290]

Препятствует обезуглероживанию повышение содержания углерода (происходит самоторможение), добавки алюминия, хрома, вольфрама, марганца. Эти элементы затрудняют дисффуэис, а хром и алюминии образуют защитные окисные пленки.  [c.18]

Никель чувствителен к агрессивным воздействиям, особенно в промышленной атмосфере. Из-за потускнения металла ве едст-вие образования пленки основного сульфата никеля, уменьшающего зеркальный блеск поверхности, покрытия постепенно теряют отражательную способность [4]. Для того чтобы уменьшить потускнение, на никель электроосаждением наносят очень тонкий (0,0003—0,0008 мм) слой хрома. Отсюда возник термин хромовое покрытие , хотя в действительности оно в основном состоит из никеля. Оптимальные условия защиты достигаются, если в покровном хромовом слое образуются микротрещины. Чтобы получить этот эффект, в гальванические ванны для электроосаждения хрома вводят соответствующие добавки. Тонкий никелевый слой, осажденный из электролита, содержащего блескообразователи (обычно соединения серы), в свою очередь наносится на вдвое или втрое более толстый матовый слой, электроосажденный из обычной ванны никелирования. Многочисленные трещины в хроме способствуют инициации коррозии во многих местах поверхности, что уменьшает в конечном итоге глубину коррозионных разрушений, которые в противном случае протекали бы в нескольких отдельных точках. Блестяпщй никель, содержащий небольшие количества серы, является анодом по отношению к нижнему слою никеля, в котором серы меньше, и поэтому выступает в качестве протекторного покрытия. Развитие любого питтинга, образующегося под хромовым покрытием, происходит в основном вширь, а не за счет роста в глубь никелевых слоев. Таким образом, предотвращается коррозия основного металла. Система многослойных покрытий обладает более высокой защитной способностью, чем однослойные хромовые или никелевые покрытия той же толщины [51.  [c.234]


Смотреть страницы где упоминается термин Хром, добавки : [c.252]    [c.196]    [c.30]    [c.23]    [c.588]    [c.66]    [c.182]    [c.218]    [c.228]    [c.234]    [c.15]    [c.330]    [c.370]   
Достижения науки о коррозии и технология защиты от нее. Коррозионное растрескивание металлов (1985) -- [ c.56 ]



ПОИСК



Добавки

Сталь автоматная с содержанием хрома 17 —19% и добавкой азота

Хрома

Хромали

Хромиты

Хромомарганцовоникелевая сталь с содержанием хрома 17—19% и добавкой азота



© 2025 Mash-xxl.info Реклама на сайте