Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сила вихревая

Осевая сила вихревого потока по сравнению с силой, создаваемой механическими системами, не гасит осевых вибраций детали. При введении ориентируемой детали в вихревую трубу, имеющую соответствующие параметры, В системе возможно образование воз-  [c.399]

Теорема 2. В идеальной жидкости, находящейся под действием потенциальных массовых сил, вихревая трубка не разрушается и всегда остается вихревой трубкой.  [c.96]


Решение этой задачи хорошо известно 12], его можно выразить через характеристики волнового уравнения. При напряжениях, обусловленных силами вихревых токов, G имеет вид  [c.105]

Учитывая (200), формулу для среднего значения силы вихревого сопротивления можно записать в виде  [c.360]

Принцип метода заключается в измерении э. д. с. вихревых токов, возникающих в образце при его перемагничивании. Электродвижущая сила вихревых токов связана с изменением магнитного потока тем же законом электромагнитной индукции, что и э. д. с. в витках измерительной катушки. Если определить тем или иным способом э. д. с. вихревых токов и найти размеры и положение контура вихревых токов, то расчет индукции ничем не будет отличаться от описанного выше в настоящей главе.  [c.122]

Под действием этой силы вихревая решетка должна начать перемещаться. Предположим, что этому перемещению препятствует вязкая сила, которая пропорциональна скорости. Пусть для одного вихря  [c.396]

Второй и третий законы Гельмгольца составляют в совокупности принцип сохранения вихревой трубки. Поперечное сечение трубки и угловая скорость могут изменяться, но их произведение (точнее, интеграл по сечению) — интенсивность — всегда остается постоянным. При потенциальности массовых сил вихревая трубка не может ни разорваться, ни исчезнуть. Она может продольно расщепиться на отдельные ветви, что не противоречит указанным теоремам. Из этих законов следует важное свойство интенсификации завихренности в вихревых трубках малого поперечного сечения. Оно состоит в том, что если некоторый участок трубки в процессе движения, скажем, в силу каких-либо причин удвоил свою длину, то из сохранения его объема следует, что площадь поперечного сечения уменьшилась наполовину, а среднее  [c.38]

Сила вихревых токов зависит от конструкции магнита, материала и размеров колпачка, но в конечном счете она прямо пропорциональна породившей И Х ЭДС, а следовательно, и скорости вращения магнита, т е.  [c.246]

В электронагревательных устройствах теплота выделяется в самой заготовке либо при пропускании через нее тока большой силы — в контактных устройствах, либо при возбуждении в ней вихревых токов — в индукционных устройствах. При индукционном нагреве (рис. 3.5) заготовку 1 помещают внутрь многовиткового индуктора 2, выполненного из медной трубки прямоугольного сечения. По индуктору пропускают переменный ток, и в заготовке, оказывающейся в переменном электромагнитном поле, возникают вихревые токи. Теплота в нагреваемом металле выделяется в основном вследствие действия вихревых токов в поверхностном слое, толщина которого достигает 30—35 % ее радиуса. Толщина этого слоя уменьшается с ростом частоты тока в индукторе, поэтому для достижения более равномерного нагрева по сечению заготовки с увеличением ее диаметра частоту тока уменьшают (от 8000 Гц для заготовок малых диаметров до 50 Гц для заготовок диаметром до 180 мм).  [c.62]


Электромагнитная штамповка по принципу создания импульсно воздействующих на заготовку сил отличается от ранее рассмотренных (рис. 3,47, б). Электрическая энергия преобразуется в механическую аа счет импульсного разряда батареи конденсаторов через соленоид , вокруг которого при этом возникает мгновенное магнитное поле высокой мощности, наводящее вихревые токи в трубчатой токопроводящей заготовке 3. Взаимодействие магнитных полей вихревых  [c.114]

В качестве магнитно-мягкого материала применяют низкоуглеродистые (0,05— 0,005 % С) железокремнистые сплавы (0,8—4,8 % Si). Кремний, образуя с железом твердый раствор, сильно повышает электросопротивление, а следовательно, уменьшает потери на вихревые токи, повышает магнитную проницаемость, немного снижает коэрцитивную силу и потери на гистерезис. Однако кремний понижает магнитную индукцию в сильных полях и повышает твердость и хрупкость стали, особенно при содержании 3—4 %.  [c.309]

Индукционный нагрев токами высокой частоты (ТВЧ), заключающийся в том, что обрабатываемая деталь помещается внутрь специального индуктора (медной трубки, изогнутой по форме нагреваемой детали, со значительным воздушным зазором). В трубке для охлаждения циркулирует вода. Через индуктор пропускают ТВЧ большой силы (при /=500 гц—10 Мгц). -Возникающее при этом электромагнитное поле индуктирует вихревые токи, нагревающие поверхность детали. Глубина нагретого слоя зависит от частоты тока / и продолжительности нагрева т. Чем выше /, тем меньше его проникновение в глубину детали. Чем продолжительнее т, тем больше глубина  [c.134]

Вследствие вихревых токов движение тормозится силой, пропорциональной скорости. Сила сопротивления движению равна /еаФ Н, где й = 0,001, V — скорость в м/с, Ф — магнитный поток между полюсами Л/ и S. В начальный момент скорость пластинки равна нулю и пружина не растянута. Удлинение ее на 1 м получается при статическом действии силы в 19,6 Н, приложенной в точке В. Определить движение пластинки в том случае, когда Ф — 10 V6 Вб (вебер — единица магнитного потока в СИ).  [c.246]

С низкочастотной неустойчивостью связывают прецессионное движение приосевого вихря [109]. Действительно, при симметричном расположении вихревого ядра (рис. 3.20,а) момент сил трения распределен равномерно по всей его поверхности.  [c.124]

При работе вихревой трубы на сравнительно больших ц необходимо учитывать офаниченные возможности вводимой с газом первичной кинетической энергии. Воспользуемся теоремой живых сил для выделенного контрольного объема Q (см. рис. 4.9). Предположим, что внутри П компоненты тензора напряжения и вектора скорости — непрерывные дифференцируемые функции  [c.203]

Работа сил вихревого электрического и эля по перемещению электрическ1 х зарядов и является работой сторонних сил, источником оде индукции.  [c.189]

Вихрелое олектричсское поле отличается от электростатического поля тем, что оно не связано с электрическими зарядами, его линии напряженности прадстав-ляют собой замкнутые линии. Работа сил вихревого электрического поля при движении электри-  [c.189]

Таким образом, силу вихревых токов, действующую на сферическую ферромагнитную частацу в магнитном поле (с магнитной индукцией в данной точке поля Bg = определим по следующей формуле  [c.96]

Первоначально решения, полученные с использованием НМГЭ, были применимы только к задачам обтекания при отсутствии подъ-шной силы. Хесс [151 обобщил эти результаты, создав приближенную методику решения задачи обтекания с подъемной силой посредством введения (в дополнение к поверхностным источникам) создающих подъемную силу вихревых полосок на обеих частях границ (рис. 5.10) и в присоединенном вихревом следе. Им также было учтено влияние пограничного слоя при помощи принадлежащей Лайтхиллу [23] аппроксимации вытеснения пограничного слоя.  [c.155]

Кольцевой магнитный экран 7, выполненный из мягкой стали, служит для увеличения магнитного потока, проходящего через картущку, что повышает чувствительность прибора. С увеличением температуры воздуха повышается сопротивление картушки, что снижает силу вихревых токов, и поэтому картушка и стрелка будут повертываться на меньший угол.  [c.204]


В рассмотренной схеме прямоугольного крыла циркуляция вдоль размаха принята постоянной в соответствии с предположением, что подъемная сила каждого элементарого участка крыла одинакова, В действительности подъемная сила вдоль размаха крыла той же прямоугольной формы изменяется. Это изменение невелико в средней части крыла и более заметно у боковых кромок. Для крыла произвольной формы в плане изменение циркуляции носит ярко выраженный характер и обусловлено неодинаковыми размерами участков и, следовательно, различными значениями подъемной силы. Вихревую схему обтекания крыла с формой в плане, отличной от прямоугольной, можно получить, если заменить крыло ке одним П-образным вихрем, а системой П-образных вихрей, образующей вихревую пелену (рис. 6.4.2). Вдоль каждого вихря циркуляция будет постоянной, но при переходе от одного вихря к другому изменяется. Для сечения, расположенного в середине  [c.244]

При данном числе оборотов магнита показания тахометра зависят от величины индукции в воедушном зазоре между колпачком и магнитом, величины вихревых токов в колпачке и величины противодействующего момента, создаваемого, спиральной пружиной. Прибор градуируется при температурах +20 +5 С. Если температура, окружающая прибор, будет выше, то это вызовет увеличение электрического сопротивления колпачка, некоторое уменьшение магнитной индукции и одновременно уменьшение упругости пружины. Однако прямой пропорциональности между этими изменениями нет. Вращающий момент уменьшается из-за уменьшения силы вихревых  [c.371]

ТОКОВ И уменьшения магнитной индукции больше, чем противодействующий момент из-за уменьшения упругостй пружины. Изготовить колпачок из материала с малым температурным коэффициентом сопротивления, например, из манганина, нельзя, так как эти сплавы обычно обладают высоким электрическим сопротивлением. Для колпачка нужен материал с малым удельным сопротивлением, чтобы обеспечить возможно большую силу вихревых токов. Обычно колпачок изготовляется из легированной меди.  [c.371]

Открыто-вихревой насос с глухими каналами может также работать на смеси н идкости и газа. При этом газ под действием цепт И)-бежных сил отделяется от жидкости и скапливается в цеитральпой части ячеек колеса. При ого Bpantennn газ переносится к напорному отверстию и вытесняется из него нсидкостью, выходящей из капала.  [c.229]

Из теории турбулентности известно [25], что перенос взвешенных в потоке частиц осуществляется главным образом крупномасштабными вихревыми образованиями, присущими турбулентному потоку. Величина образований обусловлена порядком размера потока и поэтому перенос частиц осуществляется по всей глубине потока. Крупные вихри (крупномасштабная турбулентность) захватывают и переносят взвешенные частицы различных размеров. При отсутствии центробежных сил (на поворотах, ответвлениях п т. п.), а также специфических особенностей пылегазовой смеси (уплотнение пыли в местах поворота, залнпание ее на поверхностях, комкование и 1. д.), поля концентрации (запыленности) должны меняться незначительно в сравнительно широком диапазоне изменения скоростей и размеров частиц и при сравнительно небольших концентрациях (щ < < 0,3 кг/кг) и мало влияют на характер полей скоростей всего потока. Это подтверждается опытами ряда исследователей [45]. (Вопросы осаждения аэрозольных частиц на стенках сравнительно длинных труб и каналов в соответствии с миграционной теорией осаждения [97 ] здесь не рассматривается.) В проведенных опытах [45] изучалось распределение концентрации (х, кг/кг) и плотности пылевого потока [ , кг/(м -с) ] в рабочей камере модели аппарата при различных условиях подвода и раздачи потока по сечению. Для запыливаиия потока воздуха применялась зола тощего угля с фракционным составом, приведенным ниже, и плотностью р = = 2,16 г/см .  [c.312]

На пружине, коэффициент жесткости которой = 19,6 Н/м, подвешены магнитный стержень массы 50 г, проходящий через соленоид, и медная пластинка массы 50 г, проходящая между полюсами магнита. По соленоиду течет ток / => = 20sin8nif А, который развивает силу взаимодействия с магнит-, ным стержнем 0,016лг Н. Сила торможения медной пластинки вследствие вихревых токов равна киФ , где = 0,001, Ф = 10 VS Вб и о —скорость пластинки в м/с. Определить вынужденные колебания пластинки.  [c.255]

Вихревая труба (вихревой энергоразделитель) работает следующим образом. Сжатый газ поступает внутрь трубы из магистрали через закручивающий сопловой ввод 4 в виде интенсивно закрученного вихревого потока, перемещающегося вдоль камеры энергетического разделения трубы / от соплового ввода 4 к дроссельному устройству 3. Центробежные силы, действующие на элементы газа в закрученном потоке, приводят к образованию радиального фадиента статического давления, который под воздействием диссипативных моментов уменьшается по мере удаления от соплового ввода 4 к дросселю 3. В результате в приосевой области камеры энергоразделения 1 формируется осевой градиент давления, направленный от дросселя 3 к диафрагме 5. Осевой фадиент давления формирует возвратное течение от дроссе-  [c.42]

Предположим, что под воздействием малого возмущения вихревое ядро отклонилось на расстояние ОО, от оси (см. рис. 3.20, . В этом случае осевая симметрия нарушается и периферийный вихрь 2 оказывается деформированным. Как следствие этого в тех областях, где радиальный размер свободного вихря уменьшился (точка А), осевые скорости и их фэдиент возрастают, что приводит к интенсификации образования КВС и увеличению сил трения. В диаметрально противоположной обла-  [c.124]

Рассматривая неустойчивость потоков в вихревой трубе, авторы работ [95, 96] предлагают модель, в которой агентами энергопереноса являются КВС, причем при анализе для удобства авторы оперируют с тороидальной формой. Согласно предлагаемой модели, КВС в результате взаимодействия друг с другом и с основным потоком перемещаются к центру или к периферии. В первом случае они расширяются, теряют устойчивость, замедляют вращение и передают механическую энергию ядру, обеспечивая тем самым его квазитвердую закрутку, во втором случае, увеличиваясь по радиусу, сжимаются и диссипируют вследствие работы сил вязкости. Процессы увеличения или уменьшения размера вихрей относятся к процессам деформационного характера. В этом смысле рассматриваемая деформация симметрична. При несимметричной деформации одна часть тора претерпевает сжатие, а диаметрально противоположная — расширение. Если учесть, что в вихревом тороиде низкоэнергетические массы газа располагаются по его оси [67], то должно происходить их смещение вдоль криволинейной оси тороида в центр вихревой трубы с последующим их перемещением в приосевую зону вынужденного вихря, и уходом разогретой оболочки на периферию.  [c.125]


Таким образом, КВС как области с повышенным энергосодержанием, переходят на периферию, тем самым увеличивая ее энергию. Такой механизм неустойчивости действует только в одном направлении и хорюшо согласуется с возникновением реверса при образовании зоны рециркуляции в области диафрагмы вихревой трубы. В этом случае КВС возникают на фанице рециркулирующего потока. Направление силы Г можно определить по знаку скалярного произведения вектора угловой скорости вращения приосевого вихря Л и вектора угловой скорости вихревого жгута <0, после его разворота. В описанном выше безре-циркуляционном режиме это произведение положительно, что соответствует силе, направленной к периферии. Возникновение зоны рециркуляции приводит к изменению направления начальной завихренности КВС и осевой составляющей скорости, что соответствует зеркальному отражению относительно плоскости, перпендикулярной оси вихревой трубы. Но при зеркальном отражении скалярное произведение не изменяется и, соответственно, не изменяется направление действия силы F. В результате вихревой перенос энергии будет идти из зоны рециркуляции в область потока, выносимого через отверстие диафрагмы, что и приводит в конечном счете к его нагреванию.  [c.130]

Рассмотрим механизм энергопереноса крупными вихрями более подробно. Вследствие радиального фадиента осевой скорости возникают тороидальные вихри, в которых локализуется энергия осевого движения как приосевого, так и периферийного потоков. Под воздействием гироскопического эффекта эти вихри разворачиваются относительно своей криволинейной оси и взаимодействуют с окружным движением, создавая положительный фадиент избыточного давления, что приводит к смещению их на периферию и к последующей диссипации. Для изменения направления момента импульса элемента вихревого кольца необходима энергия, производимая моментом сил. Очевидно, таким моментом может являться вязкий момент сил трения, возникающий между вращающимися приосевым и периферийным вихря-  [c.132]

Существует характерная степень расширения в вихревой трубе (или относительная доля охлажденного потока) (рис. 4.11), при которой кинетическая энергия вынужденного вихря становится больше исходной. На режимах вращения вынужденного вихря отстает от закона вращения твердого тела — со = onst. Избыточная кинетическая энергия свободного вихря расходуется на трение о стенки (работа внешних поверхностных сил) и на работу внутренних поверхностных сил. При турбулентном течении пульсационное движение непрерывно извлекает энергию из ос-редненного движения. Эта чдсть энергии обеспечивает работу переноса турбулентных молей в поле радиального фадиента статического давления [121, 122]. Если допустить, что под действием турбулентности перемещаются среднестатистические турбулентные моли с массой dm, совершающие элементарные циклы парокомпрессионных холодильных машин, то можно найти работу, затраченную на их реализацию. Объем турбулентного моля и путь его перемещения невелики по сравнению с контрольным объемом П, поэтому изменение температуры при изобарных процессах теплообмена моля с окружающими его частицами незначительно. Это позволяет, не внося существенной погрешности, заменить цикл Брайтона циклом Карно. Тогда работа по охлаждению выделенного контрольного объема П равна сумме элементарных работ турбулентных молей  [c.206]

При создании достаточно сложных аппаратов кондиционеров, холодильно-нагревательных установок, термостатов и других, необходимо помнить об основных достоинствах вихревых энергоразделителей — простоте и надежности. Поэтому, используе. ас в схемах вспомогательные устройства и утилизационные узлы должны быть также достаточно просты и обладать высокой надежностью. Как правило, это струйные эжекторы и рекуперативные теплообменные аппараты. Последние в силу специфики работы регенеративных схем обычно оказываются одними из наиболее сложных устройств, от работы которых в достаточно большой степени зависит работа всего агрегата в целом. В этой связи к подбору типа, расчету и проектированию теплообменника необходимо подходить с особой тщательностью. В работе [116] изложены основные требования, предъявляемые к теплообменникам.  [c.233]

В качестве источника холода в системах осушки сжатого воздуха достаточно эффективно могут применяться вихревые трубы. Использование их может быть продиктовано следующими соображениями простотой эксплуатации и малой стоимостью изготовления системы использованием не только холодного потока для охлаждения сжатого воздуха перед влагоотдели-телем, но и горячего потока для подофева сжатого воздуха после влагоотделителя, что также снижает относительную влажность. Как пример, можно рассмотреть осушитель, включающий вихревую трубу (ВТ) 1 и теплообменник 2 (рис. 5.24), Холодный воздух из ВТ поступает в межтрубный канал 5 для охлаждения протекающего по змеевиковой трубе 4 влажного сжатого воздуха, поступающего в нее через патру к 3. Охлажденный поток через патрубок 6 выходит во внутреннюю полость цилиндрического корпуса 7 и в нижнюю камеру теплообменника 8. Здесь под действием центробежной силы происходит сепарация конденсата, который стекает в нижнюю часть камеры, откуда удаляется через сливной кран 9. Осушенный таким образом воздух поступает в сопловой ввод 10 ВТ. Холодный поток, перемещаясь по патрубку и, попадает в канал 5. Нафетый поток выходит из осушителя через дроссельный вентиль /2 и патрубок 13. Холодный поток, подогретый в теплообменнике теплом охлаждаемого сжатого воздуха, по патрубку 14 поступает в трубопровод 15, где сме-  [c.259]

Аэродинамическая картина течения в камере вихревого нагревателя характеризуется комплексом специфических свойств, наиболее полно удовлетворяющих требованиям качественной смесеподготовки большая объемная плотность кинетической энергии, мощные акустические колебания, высокая интенсивность турбулентности, ориентированная в радиальном направлении, рециркуляционные зоны, организация локализованных областей повышенной температуры. При критическом перепаде давления реализуются режимы работы, при которых параметры факела практически не зависят от слабых возмущений среды, в которую происходит истечение. Поле центробежных сил и характерная особенность течения обеспечивают качественное конвек-тивно-пленочное охлаждение корпусных элементов вихревой горелки. Широкий спектр возможного использования вихревых го-релочных устройств показан на рис. 7.1.  [c.307]


Смотреть страницы где упоминается термин Сила вихревая : [c.96]    [c.329]    [c.42]    [c.208]    [c.227]    [c.229]    [c.230]    [c.244]    [c.64]    [c.122]    [c.125]    [c.130]    [c.158]    [c.301]    [c.309]    [c.91]   
Введение в теорию концентрированных вихрей (2003) -- [ c.68 ]



ПОИСК



Вихревая повераность лоаади крыла у которого подъемная сила убывает к концам

Вихревая поверхность позади крыла у которого подъемная сила убывает к концам

Вихревые силы и инварианты вихревого движения

Вихревые усы

Элементы теории крыла конечного размаха. Вихревая система крыла. Гипотеза плоских сечений. Геометрические и действительные углы атаки. Подъемная сила и индуктивное сопротивление



© 2025 Mash-xxl.info Реклама на сайте