Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластичность влияние дефектов

При оценке влияния дефектов на работоспособность материала путем механических испытаний следует учитывать сильную зависимость этого влияния от ориентировки дефектов и их распределения, а также то, что различные условия разрушения — скорость нагружения, податливость нагружающей системы, наличие концентратора напряжений и т. д. — могут значительно изменить вид излома и замаскировать некоторые дефектные свойства материала. Так, в частности, особенности строения изломов, связанные с неоднородностью материала и разной способностью к пластической деформации неоднородных зон, т. е. изломы шиферные, черные , расслоения в изломах лучше выявляются в достаточно пластичном состоянии материала, чем в хрупком.  [c.185]


В последние годы весьма широкий круг исследований (см. [84—85, 87, 88]) выполняется по оценке влияния дефектов сварки и концентрации технологических пластических деформаций на хрупкость сварных соединений и достоверность методов оценки хрупкости. Установлено, что, несмотря на удовлетворительное исходное состояние основного металла, сваркой можно получить крайне низкий уровень прочности и пластичности соединений.  [c.55]

Влияние дефектов на работоспособность сварных соединений определяется многими конструктивными и эксплуатационными факторами. Так, например, при статической нагрузке и пластичном материале влияние размера непровара на потерю прочности примерно пропорционально относительному размеру этого непровара или его площади. При малопластичном материале, а также при динамической или вибрационной нагрузке влияние дефектов усиливается.  [c.342]

Влияние металлургических дефектов на сопротивление хрупкому разрушению. Влияние металлургических дефектов, приводяш их к понижению пластичности, на прочностные характеристики вра-ш аюш ихся деталей зависит от их местоположения в детали и от свойств окружаюш его металла. Наибольшее влияние эти дефекты оказывают на участки, расположенные в зоне центрального отверстия диска, и на участки, на которых материал имеет низкое сопротивление хрупкому разрушению. Влияние дефектов становится критическим, когда ликвационная зона имеет нулевую пластичность. В этом случае враш аюш аяся деталь разрушается при тангенциальном напряжении в зоне отверстия, равном пределу текучести материала (номинальное напряжение составляет — 50% предела текучести). Это объясняется тем, что номинальное (т. е. среднее) напряжение приблизительно в 2 раза меньше тангенциального напряжения в отверстии. Значение этого отношения можно точно определить для диска любой геометрии путем вычисления тангенциальных напряжений в пределах упругости.  [c.121]

Исследование закономерностей эволюции дефектной структуры при пластической деформации моно- и поликристаллов, а также влияния структурных изменений на механические свойства остается в центре внимания специалистов. В настоящее время хорошо изучены природа элементарных актов пластической деформации, параметры размножения, подвижность индивидуальных носителей, пластичности (точечных дефектов, дислокаций), их взаимодействия — как теоретически, так и экспериментально [1—7 и дрХ  [c.196]


Можно думать, что этот момент также должен способствовать наступлению пластичного состояния, но мы все же считаем, что дело не в этом, что главное заключается в уменьшении влияния дефектов, дающих зарождение трещинам. В этом убеждает и то, что для перевода в пластичное состояние достаточно растворения поверхности (а не отсутствия плоскости спайности). Показано, что деформация каменной соли в воде происходит за счет тех же элементов скольжения, что и сухой. Кроме того, температура появления новых элементов скольжения много ниже температуры хрупкости (Гх)- Так, в нашем случае скольжение по плоскости куба начиналось прп —70° С, в то время как Гх 300° С.  [c.88]

Реальные кристаллы отличаются от идеализированной модели наличием достаточно многочисленных нарушений регулярного расположения атомов. Любое отклонение от периодической структуры кристалла называют дефектом. Дефекты структуры оказывают существенное, порой определяющее, влияние на свойства твердых тел. Такими структурно-чувствительными, т. е. зависящими от дефектов структуры, свойствами являются электропроводность, фотопроводимость, люминесценция, прочность и пластичность, окраска кристаллов и т. д. Процессы диффузии, роста кристаллов, рекристаллизации и ряд других можно удовлетворительно объяснить исходя из предположения об их зависимости от дефектов. В  [c.84]

Заметим, что на упругие и пластические свойства твердых тел оказывает влияние характер сил связи. Ковалентные кристаллы (алмаз, кремний, германий) при комнатной температуре бывают жесткими и хрупкими, так как направленный характер связей препятствует сдвиговому движению, а также мешает перемещению одного атома вслед за другим, как это имеет место при движении дислокаций в решетке. Разрушение начинается прежде, чем дислокации могут обеспечить достаточно большие сдвиги, поскольку их движение затруднено ио сравнению с движением дислокаций в металлах. Ионные кристаллы гораздо более пластичны, если они совершенно чистые (обычные кристаллы могут быть и хрупкими из-за наличия внедренных в них дефектов). Электростатические силы — ненаправленные, и потому ионы могут перемещаться с места на место в той мере, в какой этому мешают их размеры. Металлы, как мы видели выше, наиболее пластичны в них возможно свободное перемещение дислокаций.  [c.136]

Можно указать на несколько факторов, вызывающих появление подобных дефектов. К ним относятся в первую очередь кинетические факторы, связанные с тем, что кристалл не успевает стать идеальным в процессе кристаллизации и последующей обработки. Далее следует указать, что при не слишком низких температурах из-за конкуренции энергетического и энтропийного факторов присутствие в кристалле некоторого количества дефектных мест будет отвечать термодинамическому равновесию. Наконец, уже созданные идеальные кристаллы могут оказаться испорченными под влиянием факторов (механической обработки, действия радиации), нарушающих строгую периодичность расположения атомов. По этим причинам реальные кристаллы имеют дефекты, и физические свойства кристалла формируются под совместным действием строгой периодичности и отступлений от нее. Можно привести немало примеров, свидетельствующих о важности учета вклада дефектов в формирование свойств материалов. Так, без учета этого вклада оказалось невозможным построение теории прочности и пластичности материалов, поскольку эти характеристики определяются степенью сопротивления тела действию сил, смещающих разные части тела относительно друг друга. Под действием радиации (мощные световые потоки, пучки электронов, нейтронов, заряженных ядер и т. д.). отдельные атомы или группы атомов оказываются выбитыми из своих правильных положений, и поэтому структура и свойства облученных материалов необъяснимы без оценки роли дефектов и т. д. В связи с этим важной составной частью физики твердого  [c.228]

На концентрацию дефектов типа Шоттки и Френкеля, кроме температуры, резко влияют облучение и пластическая деформация. Концентрация вакансий в первом приближении растет пропорционально деформации и может быть определена зависимостью 4-10 )е, где е выражено в процентах. Такие вакансии называются деформационными. Наибольшая их концентрация соответствует знакопеременному нагружению. При совместном влиянии высоких температур и большой степени пластической деформации концентрация вакансий может достигать (5—10) 10 , что дает концентрацию атомов, смещенных со своих мест, 2,5—5%. По-видимому, в этом случае вакансии могут оказывать влияние на процесс и механизм пластической деформации. Однако обычно влияние деформационных вакансий на прочность и пластичность металла невелико. Точечные дефекты, внесенные пластической деформацией и облучением, являются термодинамически неравновесными.  [c.30]


Структурный фактор обусловлен неоднородностью и неравномерностью распределения величины зерна или фаз, а также концентраторов напряжений и дефектов в объеме. Это в свою очередь оказывает влияние на неравномерность полей напряжений и деформаций по объему, причем чем больше размер тела, тем в большей степени выражена эта неравномерность. Поэтому чем неоднороднее среда, тем большее влияние оказывает объем на неравномерность распределения напряжений, снижая пластичность и напряжение течения.  [c.480]

Как известно, водород широко применяется во многих отраслях техники и промышленности. Вместе с тем, обусловленное водородом повреждение металлов считается в настоящее время причиной многих аварий и катастроф, приносящих значительный ущерб. Среди разнообразных проявлений вредного влияния водорода на механические свойства (предел прочности, пластичность, характеристики усталости, ползучести и т. п.) особого внимания заслуживает обусловленное водородом облегчение зарождения и роста трещин в металлах. Связано это с тем, что независимо от того, насколько совершенны технология и качество изготовления, практически все конструкционные материалы и изделия из них содержат дефекты (или врожденные, или возникшие в процессе эксплуатации). При этом водород, воздействующий на металлы, значительно увеличивает их чувствительность к трещинам и увеличивает вероятность разрушения конструкций, обладающих при обычных условиях достаточной несущей способностью. Таким образом, эксплуатация металлов в атмосфере водорода приводит к необходимости оценки их трещиностойкости, а исследование закономерностей роста трещин в таких условиях приобретает большое значение.  [c.325]

Передняя и боковые панели контейнеров легко повреждаемы, при этом характер повреждений может быть самым различным — от небольших дефектов, которые не оказывают влияния на работу контейнера, до катастрофических аварийных повреждений. В металлических контейнерах часто образуются небольшие вмятины, которые особенно характерны для пластичного алюминия. В секциях из стеклопластика — фанеры происходит истирание поверхности при соударениях. Истирание приводит к образованию вмятин без сквозного прорыва. С другой стороны, алюминий имеет склонность к образованию трещин в поврежденных панелях, иногда длиной около 15 см. Внутренним и наружным повреждениям подвержены панели контейнеров всех видов. Эти повреждения, начиная от отверстий небольшого размера до больших разрывов, приводят к замене всей панели.  [c.219]

Установлено, что наиболее опасны трещиноподобные дефекты (особенно трещины), так как служат сильными концентраторами напряжений и развиваются в процессе эксплуатации оборудования наименее опасны — объемные дефекты (например, поры). Поэтому к критическому дефекту чаще всего относят трещины, а к малозначительному — поры. Влияние величины непровара на потерю прочности принято считать пропорциональным относительной его величине при статической нагрузке и пластичном материале влияние непровара также определяется разностью в прочности металла щва и основного металла. При малопластичном материале, а также при динамической или вибрационной нагрузках сравнительно небольшие дефекты могут существенно влиять на усталостную прочность.  [c.10]

Поверхностно-активная среда снижает и 7, и 7i. Однако в хрупких телах 7i во много раз меньше, чем в пластичных металлах, что определяет их прочность. В пластичных металлах 7j может значительно превышать 7 и поэтому с уменьшением под влиянием поверхностно-активной среды величины 7i увеличивается деформируемость металла в вершине трещины. Таким образом, адсорбционное понижение прочности более опасно для высокопрочных, но хрупких материалов, имеющих на поверхности трещиноподобные дефекты.  [c.17]

Наличие межслойных зазоров, большие толщины и жесткость свариваемых элементов значительно затрудняют и усложняют процесс вварки штуцеров. Зазоры между слоями могут служить причиной образования в наплавленном металле при сварке усов , являющихся продолжением межслойных окончаний, и дефектов типа подрезов и шлаковых включений на линии раздела многослойная стенка — шов. С целью исключения отрицательного влияния межслойных зазоров на качество сварных соединений, при вварке штуцеров в многослойные элементы была применена предварительная наплавка поверхности отверстий под штуцера пластичными материалами. Наплавка поверхности отверстий в днищах необходима также для устранения дефектов толстолистового проката (расслоений неметаллических включений и др.).  [c.76]

В 1922 А. Ф. Иоффе объяснил низкую прочность реальных кристаллов влиянием макроскопич. дефектов (трещин, надрезов) на их поверхности. В дальнейшем оказалось, что при больших механич. нагрузках реакция кристалла зависит от наличия и кол-ва в кристалле дефектов, в частности дислокаций. В большинстве случаев именно дислокации определяют пластичность Т. т.  [c.45]

Избежать этой потенциальной фазовой нестабильности необходимо в сплавах, предназначенных для использования при высоких температурах с риском потери пластичности в результате циклического понижения температуры ясно, что для этой цели жизненно важно иметь в составе сплава добавки таких элементов, стабилизирующих г.ц.к. аустенит, как Ni. Он резко понижает энергию дефектов упаковки, так что образование частичных дислокаций затрудняется. Тем не менее после изотермических выдержек в интервале 649—760 °С частичный переход в г.п. состояние отмечен в литейных кобальтовых сплавах даже в присутствии 10 % Ni. Это характеризует мощное влияние Сг и W.  [c.184]

При статическом нагружении дефекты увеличивают опасность хрупкого разрушения. Как и в других случаях, наиболее опасны острые трещиноподобные дефекты трещины, непровары, подрезы. Опасность дефектов усиливается при пониженной температуре (особенно ниже -60 °С), при предварительном нагружении материала детали внешними или сварочными напряжениями, при повышенном содержании углерода и при увеличенном поглощении водорода. Когда материал соединения обладает большим запасом вязкости, основное влияние на прочность ока Зывает относительная величина дефекта. В ряде случаев (для сравнительно малонагруженных соединений из пластичных материалов) безопасное ослабление стыкового шва может достигать 30 %.  [c.340]


Последнее обстоятельство является особенно существенным. Во многих случаях остаточные напряжения в зонах концентраторов сохраняются без изменений даже после нагружения детали до пределов, близких к пределу выносливости или превышающих его. При выполнении сварных швов с небольшими концентраторами роль остаточных напряжений будет также сравнительно небольшой. Если деталь с доброкачественным швом подвергается механической обработке, то усталостная прочность детали будет определяться в основном качеством наплавленного на шов металла и переходной зоны, а влияние остаточных напряжений при этом будет тем меньше, чем мягче и пластичнее свариваемый и наплавленный металл. При недостаточно качественной сварке вредные концентрации напряжений могут возникать в зонах разнообразных дефектов сварки как выходящих на поверхность, так и расположенных в глубине шва.  [c.34]

Если менять материалы, из которых изготавливается волокно, или метод их изготовления, то можно получить волокна бора с различными свойствами. Исследование механических свойств нескольких борных волокон было осуществлено в [22] полученные результаты дали большой разброс прочностных свойств для каждого типа волокна. Этот разброс есть следствие потери пластичности, когда дефекты в материале приводят к катастрофическому разрушению при относительно низких напряжениях. Гистограмма значений прочности на растяжение для двух типов непрерывных борных волокон показана на рис. 3. Один тип низкого качества, а другой — высокого. Приведены результаты для волокон в состоянии поставки и для протравленных волокон, в которых влияние поверхностных дефектов сведено к минимуму. При анализе временньгх свойств прочности волокнистых композитов, армированных борными волокнами, необходимо помнить о форме функции распределения прочности.  [c.272]

Влияние дефектов кристаллического строения на пластичность. П. к. полностью определяется дефектами строения кристалллгч. решётки. Подвижные дефекты являются носителями элементарных актов пластич. деформации. Направленное перемещение по кристаллу вакансий, межузельных атомов, краудионов, днслока-ций, двойниковых и межфазных границ вызывает в нём массоперенос, необратимое изменение размеров и фор-  [c.634]

У1етод создания перенапряжения при температурах пластичности с целью уменьшения влияния дефектов даже в хрупкой зоне является наименее изученным. Для этого случая имеется мало экспериментальных данных. Такие данные необходимо получить при испытаниях конструкций на снятие напряжений или простых надрезанных образцов, не имеющих сварных швов. Имеюш,иеся данные дают возможность предположить, что напряжение разрушения такого предварительно напряженного образца в условиях, когда разрушение протекает на низком уровне напряжений (например, при температурах хрупкого состояния), по меньшей мере равно, а обычно выше напряжения разрушения такой предварительно не напряженной конструкции в аналогичных условиях. Обычно напряжение разрушения так же высоко, как и предварительно создаваемое напряжение, но, по-видимому, только не в случае создания высоких предварительных напряжений. Если в конструкции суш,ествуют значительные дефекты, которые в условиях перенапряжения являются субкритическими, размеры дефекта могут несколько увеличиться. По-видимому, снижение эффекта перенапряжения под действием больших или только субкритических нагрузок является результатом такой значительной локальной текучести в вершине дефекта, что при разгрузке происходят знакопеременная текучесть, и полезные сжи-маюш,ие остаточные напряжения полностью не проявляются. В таких случаях при последуюш,ем нагружении в вершине трещины может происходить повторная текучесть, и если материал был охрупчен (например, путем деформационного старения или горячего деформирования), то может произойти разрушение. Поэтому, по-видимому (в отличие от случая механического снятия напряжений), необходимо ограничить перенапряжение, умеренно увеличив его по сравнению с эксплуатационными напряжениями (например, на 20%). Тогда, вероятно, способ механического снятия напряжений будет эффективным.  [c.251]

Наличие дефектов в сварных соединениях угрожает их прочности, снижает надежность. Их отрицательное влияние может проявляться даже в случае статического приложепия нагрузок, при неблагоприятном сочетании с собственными напряжениями в условиях понижения пластичности, под действием ни.зких температур и агрессивных сред.  [c.111]

Для окончательной оценки качества сварного соединения аппарата необходимо знать допустимость внутренних дефектов, которую устанавливают на основе испытаний. Результаты многочисленных исследований показывают, что для пластичных материалов при статической нагрузке (рис. 3.7, кривые 1, 2, 4) влияние величины непровара на уменьшение их прочности прямо пропорционально относительной глубине непровара или его площади. Для малопластичных и высо-  [c.141]

Проявление масштабного фактора тесно связано с влиянием состояния поверхности. В частности, длительное травление стекла плавиковой кислотой, удаляющее наружный слой и создающее идеально ровную поверхность, приводит к резкому снижению вероятности существования на поверхности опасных дефектов, и согласно статистической теории дефектов должно наблюдаться повышение прочности массивных образцов до прочности тонких стеклянных волокон. Эксперимент полностью подтверждает это предположение. ВЛИЯНИЕ СРЕДЫ Й СОСТОЯНИЯ ПОВЕРХНОСТИ НА ПРОЦЕССЫ РАЗРУШЕНИЯ. Состояние поверхности — один из важнейших факторов, влияющих на результаты механических испытаний образцов в лабораторных условиях. Наличие небольших выступов и впадин на плохо обработанной поверхности приводит к повышению концентрации напряжений. Поверхностные неровности могут играть роль хрупких трещин и значительно снижать определяемые испытаниями прочностные характеристики металла. Например, хрупкие в обычных условиях кристаллы каменной соли становятся пластичными, если при испытании их погрузить в теплую воду, растворяющую дефектный поверхностный слой (эффект Иоффе). Тщательная полировка поверхности металлических образцов приводит к увеличению измеряемых при растяясенпи характеристик прочности и пластичности.  [c.435]

Причина повышенной чувствительности к трещине материала плавки А по сравнению с плавкой Б заключалась в наличии в нем крупных скоплений грубых включений, что подтвердилось микрофрактографическим исследованием на поверхности изломов образцов, вырезанных из разрушившейся детали и других деталей той же плавки, наблюдались колонии грубых включений, между которыми располагаются микроучастки малопластичного разрушения, в то время как на изломах образцов из деталей плавки Б такие скопления не наблюдались, микростроение излома пластичное, ямочное (рис. 88). Локальный рентгеноспектральный анализ показал существенную неоднородность распределения никеля, железа и кремния. При среднем содержании кремния 0,24% в отдельных зонах материала аварийной детали его содержание достигает 0,76%, в материале плавки Б максимальное значение содержания кремния составляло 0,37% Отрицательное влияние таких факторов, как наличие металлургических дефектов или концентраторов напряжений в виде забоин или рисок, особенно заметно проявляется при действии высоких рабочих напряжений. Так, в очаге усталостной трещины в детали из сплава Д1 был обнаружен дефект в виде шлакового включения (рис. 89, а). Микрофрактографический анализ показал большое количество интерметаллидов на поверхности излома в области очага разрушения (рис. 89,6). Развитие излома характеризовалось последовательным возникновением дополнительных очагов, также связанных со скоплениями включений. 116  [c.116]


Н] [314] и удерживает дислокации от поперечного соскальзывания вокруг малых частиц и от выхода. Что касается пределов, в которых характер скольжения зависит от величины энергии дефектов упаковки (ЭДУ) то на рис. 12 показана область составов нержавеющих сталей, при которых ЭДУ велика и, следовательно, склонность к водородному охрупчиванию должна быть мала. Например, сталь 310 (см. табл. 3) имеет высокую ЭДУ и, как правило, испытывает низкие (или нулевые) потери пластичности при экспозиции в водороде [278]. Однако при повышенном содержании водорода [337] или при испытаниях в условиях низких температур [84, 337], то есть при усилении планарности скольжения, для стали 310 также наблюдается увеличение потерь пластичности. Этот пример еще раз подтверждает, что ЭДУ является лишь одной из переменных, влияющих на планарность скольжения. Однако если рассматривать именно ее влияние, то из рис. 14 п 16 видно, что заметные потери пластичности возникают при уменьшении ЭДУ примерно до 40 мДж/м , как в нержавеющей стали 309 5 [74]. Рассматриваемая корреляция согласуется и с тем, что при низких уровнях ЭДУ в испытаниях на КР наблюдается, в основном, транскристаллитное растрескивание [78].  [c.140]

Карасев В. С., Мельник-Куцин Ю. П., Маслов Д. М. Исследование влияния реакторного облучения на характеристики пластичности аустенитных сталей ОХ16Н15МЗБ и ОХ16Н15МЗБР.— В кн. Радиационные дефекты в металлических кристаллах. Алма-Ата, с. 96—101,  [c.112]

Сварка используется для соединения элементов конструкций, имеющих самую различную толщину. При сварке тонких сечений материала мало, и если он имеет склонность к возникновению остаточных напряжений, то наблюдающиеся дефекты являются в основном дефектами сварки при сварке толстых сечений наиболее серьезными дефектами являются трещины которые непосредственно вызываются напряжением, возникающим при объемных изменениях, в частности, в зоне термического влияния. В предельном случае сварки за один проход соединение можно получить без использования присадочного металла. В последнее время максимальное сечение, которое могло быть сварено газовой сваркой, было значительно увеличено в результате разработки и внедрения электронно-лучевой сварки, которая позволяет получить локальную зону проплавления глубиной порядка нескольких сантиметров. При соответствующем материале и отсутствии газовыделения электронно-лучевая сварка является прогрессивным процессом, однако для ее осуществления необходимо либо иметь сварочную камеру, которую можно было бы вакууми-ровать, либо обеспечить вакуум в точке сварки. Хотя, в принципе желательно, чтобы сварное соединение обладало такими же свойствами, как основной металл, на практике это не всегда возможно, и поэтому во многих случаях используют сварку с присадочным металлом, который менее склонен к образованию трещин. Примерами применяемых при сварке присадочных металлов, которые отличаются по составу от основного металла, являются сталь с 2,25% Сг и 1% Мо для сварки 0,5% Сг, Мо, V сталей сталь с контролируемым содержанпем феррита для сварки аусте-нитных сталей и специальные электроды типа In o А для никелевых сплавов. Много попыток было сделано, чтобы разработать электроды для 0,5% Сг, Мо, V сталей, однако наплавленный металл этого состава имел очень низкую пластичность и, кроме того, приобретал высокое сопротивление деформации при выпадении карбида ванадия, повышающего склонность к образованию  [c.72]

Однако введение механической обработки не решает проблему эффективного использования материалов. Не говоря з же об увеличении затрат по изготовлению детали, механическая обработка часто усугубляет потерю прочности материала вследствие возникновения новых микро- и макротрещин, вырывов и др. Различный вид нагружения при точении, резании, фрезеровании, шлифовании и пр. обусловливает изменение текстуры, деформацию и степень проявления пластичности и хрупкости материала. Наряду с изменением физико-механических свойств поверхностного слоя металла наблюдается возникновение остаточных растягивающих напряжений. Механизм возникновения этих дефектов и их влияние на свойства деталей достаточно полно освещены в работах М. О. Якобсона, С. В. Серенсена, Г. В. Карпенко, Н. Ф. Сидорова, А. Д. Манасевича и других специалистов. Причинами возникновения остаточных напряжений являются неравномерный локальный нагрев поверхностных слоев металла и его неоднородная пластическая деформация. Их величина и знак зависят от физико-механических свойств обрабатываемого металла, теплового и силового воздействия  [c.7]

Результаты систематических исследований о роли легирующих добавок на температуру перехода ня хрупкого в пластичное состояние сообщались несколькимн исс.педователями [I, 59, 801. Влияние различных легирующих добавок на температуру перехода, определенную при изгибе кованого и отожженного иодидного хрома, показано графически на рис. 9 1591. Сделана попытка найти соотношение между повышением температуры перехода и локальными дефектами решетки, вызванлыми заметающими  [c.885]

Механизмы упрочнения, которые реализуют в кобальтовых сплавах, зиждутся на тщательно соразмеренном соотношении вклада тугоплавких легирующих элементов в твердорастворное и в карбидное упрочнение. И тот и другой вид упрочнения необходим для обеспечения высокотемпературной длительной и усталостной прочности. Карбидные выделения в сильной степени подавляют зернограничное проскальзывание и рост зерен, а также снижают дислокационную подвижность. В интервале 538-816 °С вдоль дефектов упаковки и в зоне их взаимного пересечения происходит активное образование мелкодисперсных вторичных выделений Mjj j, оказывающих сильное разнонаправленное влияние на прочность и пластичность. Зернограничные карбидные выделения подавляют зернограничное проскальзывание при Т>982 °С. Роль твердорастворного упрочнения при участии тугоплавких легирующих элементов возрастает, коль скоро упрочняющее влияние внутризеренных карбидных выделений снижается в результате их срастания.  [c.206]

При таких высоких температурах эксплуатации определяющую роль в разрушении играет не дислокационная структура, а диффузионные процессы, имеющие даже при небольших напряжениях направленный характер и способствующие развитию диффузионной ползучести. Так как диффузионные процессы легче всего протекают по границам зерен, имеющих повышенное количество дефектов строения, то кроме химического состава на жаропрочность существенное влияние оказьгеает структура металла. Обьи-но добиваются получения легированного твердого раствора с вкраплениями по границам зерен или внутри них дисперсных карбидных или интерметал-лидных фаз. Более крупное зерно способствует повышению жаропрочности, хотя при этом снижается пластичность. Чрезвычайно важный фактор стабильность структуры, так как перемещение атомов ведет к увеличению ползучести.  [c.175]

С повышением легирования и жаропрочности аустенитных сталей благоприятное влияние аустенитизации на стойкость против локальных разрушений уменьшается. Так, например, проведение этой операции для такой аустенитной стали, как Х15Н35ВЗТ обычной выплавки, не повышат сколько-нибудь заметно уровня пластичности от исходного состояния, причем зависимость сохраняет вид падающей кривой без восходящей ветви (4). Это свидетельствует о том, что повреждение границ велико, и последующая высокотемпературная обработка не залечивает зародышевые дефекты, возникшие при сварке. Для указанных сталей и сплавов при невозможности исключения из их состава титана и ниобия, повышение надежности сварных соединений при высоких температурах может достигаться переходом к более совершенной металлургической технологии выплавки.  [c.92]

Здесь следует отметить, что в сварных соединениях прочность сцепления металлической основы и включений, расположенных в зоне термического влияния, может уменьшаться в результате высокотемпературного нагрева в процессе сварки, приводящего к изменению механических свойств матрицы. Это определяет пониженное сопротивление листового проката и сварного соединения к СР, что послужило основанием для отнесения СТ к дефектам сварных соединений типа холодных трещин. В условиях низкой пластичности формирование слоистой макротрещины проходит без макропластиче-ских деформаций (рис. 4.3, а) с образованием слоисто-хрупкого разрушения [15]. В более пластичной основе включение деформируется в форму линзы, а затем происходит разрушение основы (рис. 4.3, б). Очевидно, что во втором случае поверхность разрушения при движении СТ будет иметь вязкий вид, что означает повышенное сопротивление СР (слоисто-вязкое разрушение).  [c.94]


Смотреть страницы где упоминается термин Пластичность влияние дефектов : [c.188]    [c.10]    [c.75]    [c.118]    [c.10]    [c.96]    [c.81]    [c.319]    [c.87]    [c.209]    [c.332]    [c.226]    [c.226]   
Физические основы пластической деформации (1982) -- [ c.492 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте