Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Молибден нанесение покрытий

Исследована возможность получения покрытий из карбидов -циркония и ниобия на ниобии, тантале, молибдене и вольфраме различными методами. Рекомендуемые методы и режимы нанесения покрытий для различных подложек представлены в таблице.  [c.80]

Часть книги посвящена обзору работ по нанесению молибденовых покрытий, также важному вопросу с точки зрения технологии ТЭП — нанесению вольфрамовых покрытий на молибден. Рассматриваются требования к покрытиям ТЭП, дается оценка эффективности различных методов нанесения покрытий. Особое внимание уделено методам химического осаждения молибдена, а также осаждения вольфрама на молибден из газовой фазы хлоридов и фторидов, которые являются, основными и получили широкое применение в технологии ТЭП.  [c.5]


В настоящее время разработан ряд методов нанесения тугоплавких вольфрамовых покрытий, которые аналогичны выше описанным методам нанесения молибденовых покрытий. При этом для получения покрытий вольфрамом, в частности на молибдене, можно использовать такую же аппаратуру. Ниже дается краткая характеристика наиболее перспективных методов нанесения покрытий вольфрама на молибден.  [c.119]

Высокие антифрикционные свойства могут придаваться нанесением покрытий. В случае нанесения покрытия серебра с двусернистым молибденом на твердую шероховатую основу эффективность покрытия значительно возрастает. Это покрытие в сочетании с электроискровыми покрытиями тугоплавкими металлами и их соединениями рекомендуется для работы в вакууме. Для кратковременной работы при умеренных нагрузках и температурах 500—600° С могут быть рекомендованы термодиффузионные покрытия (азотирование, борирование, алитирование п др.) с последующим нанесением электролитических покрытий (рис. 2). Плазменные покрытия из твердого износостойкого никелевого сплава  [c.47]

Хотя проблема эффективной защиты ниобия от окисления остается нерешенной, предполагается, что он найдет применение во многих областях благодаря хорошо изученным свойствам при повышенных температурах. Можно надеяться, что успешным легированием или нанесением покрытий удастся преодолеть его недостаточную стойкость к окислению. Эта проблема особенно актуальна в случае реактивных двигателей, ракет, управляемых снарядов и конструкционных деталей летательных аппаратов. В этом отношении ниобий находится почти в таком же положении, как и молибден, хотя с целью разработки способов защиты молибдена проведено значительно большее количество исследований.  [c.462]

Назначение покрытий разнообразно. В большинстве случаев покрытия наносят на металлические поверхности с целью защиты их от химической коррозии активных газовых, жидкостных или комбинированных фед. А в некоторых случаях они имеют противоэрозионное назначение. Распространено нанесение покрытия с целью тепловой защиты изделия. В специальных случаях наносят покрытия с магнитными, полупроводниковыми или проводниковыми свойствами либо диэлектрическими свойствами. Кроме черных металлов и сплавов в защитных покрытиях нуждаются цветные металлы (медь, латунь), тугоплавкие легкоокисляющиеся металлы (молибден, вольфрам), графит, металлокерамические  [c.249]


Эти металлы и сплавы приобретают все большее значение как конструкционные материалы. Вольфрам и молибден применяют для производства электро- и радиоламп, высоковольтных выпрямителей, рентгеновской, радио- и сварочной аппаратуры, электровакуумных приборов и пр. Из проволоки и прутков вольфрама изготовляют электроды горелок для аргоно-дуговой сварки, а из молибдена — электроды для плавки стекла, так как последний наиболее устойчив против жидкого стекла. Из лент и проволоки вольфрама и молибдена изготовляют нагревательные элементы для электропечей, способные работать при 1800—3000° С. Сплавы вольфрама и молибдена используют для рабочих частей контактов электроаппаратуры и термопар, а также для нанесения покрытий (наплавкой и напылением) на рабочие части изнашивающихся деталей машин, штампов и др. Чистый ванадий применяют в рентгеновских трубках, генераторных лампах.  [c.173]

Детонационный метод нанесения покрытий применен для создания защитных слоев на поверхности сталей, чугунов, цветных металлов и сплавов (титан, молибден, бериллий, магний), графите, пластмассах и других материалах. Покрытия могут быть нанесены [395] на любой материал с твердостью не более 60 HR . В некоторых случаях для улучшения прочности сцепления покрытий с основой на нее наносят тонкие слои из никеля или кобальта.  [c.356]

ЧТО молибден, нанесенный на поверхность в качестве подслоя, благоприятно влияет на адгезию напыленных металлических покрытий к сталям.  [c.197]

Метод этот в основном опробован для нанесения покрытий на молибден.  [c.325]

Особенностью твердосмазочных покрытий является их специфическое строение, обусловленное составом и технологией нанесения. В состав покрытий входят легкоплавкие металлы или сплавы, например галлий, сплав Вуда с ртутью, сплав Розе с ртутью и твердые пластинчатые смазки — молибденит, графит, нитрид бора. Все варианты покрытий наносятся по одинаковой технологии, поэтому ниже описана технология нанесения покрытия из галлия и дисульфида молибдена. Технология предусматривает следующие операции  [c.104]

Плазменно-дуговая металлизация имеет ряд существенных преимуществ по сравнению с другими видами металлизации. Высокая температура плазмы и нейтральная среда позволяют получать покрытия с большей структурной однородностью, меньшей окис-ляемостью, более высокими когезионными и адгезионными свойствами, износостойкостью и др. по сравнению с этими свойствами других видов металлизации. С помощью плазменно-дуговой металлизации можно распылять различные тугоплавкие мат-ериалы вольфрам, молибден, титан и др., твердые сплавы, а также окислы алюминия, хрома, магния и др. Нанесение покрытия можно осуществлять распылением как проволоки, так и порошка.  [c.253]

Одной из основных задач при использовании графита как жаропрочного материала является защита его от окисления при высоких температурах. Весьма стойким защитным покрытием является дисилицид молибдена. Он может быть получен при совместном или последовательном покрытии графита молибденом и кремнием. Метод последовательного нанесения покрытий является более рациональным и дает наилучшие по воспроизводимости результаты.  [c.110]

Табл. 9-6-2. Нанесение покрытий на молибден (дополнение к табл. 9-4-3, п. 29а) Табл. 9-6-2. <a href="/info/6705">Нанесение покрытий</a> на молибден (дополнение к табл. 9-4-3, п. 29а)
Плакирование — один из самых старых методов нанесения покрытий на молибден. Это наиболее надежный метод получения химически и структурно однородных покрытий на изделиях в форме листов, прутков и других объектах простой формы. При плакировании возникают следующие проблемы а) формы изделия (она должна быть простой) б) металловедческие (диффузия, прочность  [c.205]


Плотные, пластичные и обладающие хорошим сцеплением покрытия хрома на молибдене были получены селективным высаживанием хрома из переохлажденного расплава хрома с медью или оловом [81]. Наиболее удачные условия процесса достигались при использовании расплава олова с 2% хрома с медленным охлаждением. При этом получались пластичные, беспористые хромовые покрытия толщиной до 0,1 мм, обладающие хорошей сцепляемостью с основой. Этот способ нанесения покрытий применим к любой системе, в которой осаждаемый и основной металлы изоморфны, не образуют интерметаллидов и в которой наносимый металл растворим в легкоплавком металлическом растворителе. Таким способом наносили алюминиевые покрытия из раствора в расплавленном кальции,  [c.224]

В качестве диффундирующего элемента не обязательно применять никель, можно применить, в частности, молибден или титан. Если в качестве арматуры использовать молибденовую проволоку, то при нанесении никелевого покрытия образуется адгезионный переходный слой интерметаллида, т. е. происходит вырождение структуры и свойств в результате взаимной диффузии (рис. 3). Механические свойства при этом существенно уменьшаются. Избавиться от этого неприятного явления можно, если формировать на оболочке матрицу путем осаждения вольфрамового диффузионного слоя.  [c.58]

Одним из видов нанесения защитных покрытий на детали из высокотемпературных материалов служит метод окунания в расплав [1]. Такой метод используется для кратковременной защиты покрытий при горячей обработке давлением молибдена и ниобия. Для нанесения качественного покрытия необходимо определение оптимальных температур и состава расплава, при которых происходит удовлетворительное смачивание твердых металлов расплавом. Смачивание твердых молибдена и ниобия расплавами на основе алюминия исследовали на установке, позволяющей раздельный нагрев твердой и жидкой фаз [2]. Опыты проводили в среде гелия, температуру фиксировали платина — платинородиевой термопарой. В качестве объектов исследования использовали молибден и ниобий после электронно-лучевой плавки, алюминий чистоты 99,98% и порошки легирующих компонентов кремния, титана и хрома марки ч. д. а. Для экспериментов готовили навески одинаковой массы 500 мг. При достижении твердой подложкой температуры опыта навеска плавилась и соприкасалась с подложкой, время контакта при заданной температуре составляло 2 мин, по истечении которого каплю фотографировали аппаратом Зенит-С на  [c.55]

Молибден и другие тугоплавкие металлы (в частности, вольфрам) обычно испаряют электронно-лучевым нагревом в условиях глубокого вакуума (10 —10- мм рт. ст.). Метод вакуумного напыления имеет следующие недостатки 1) большие потери, напыляемого металла 2) загрязнение покрытия остаточными газами в камере и в исходном металле 3) трудность нанесения толстых покрытий тугоплавких металлов из-за низкой летучести и малой скорости испарения осаждаемого металла 4) сложность нанесения равномерных по толщине покрытий на подложки с рельефной поверхностью 5) недостаточная термическая стабильность покрытия из-за большого различия в температурах зон конденсации и испарения 6) невозможность получения текстурированных покрытий из-за сложности регулирования режима осаждения 7) недостаточная адгезия покрытия 8) пористость покрытия. Вследствие этих недостатков данный метод нанесения молибденовых и вольфрамовых покрытий широко не применяется.  [c.106]

При испытании молибденовых эмиттеров с тонким вольфрамовым покрытием были получены аналогичные результаты, но выраженные более слабо. Однако при нанесении более толстых покрытий из вольфрама совместимость молибденовых катодов с окисным топливом можно повысить до 2000° с [30]. Вольфрамовые покрытия на молибдене не должны быть слишком толстыми, так как сечение захвата нейтронов у вольфрама значительно больше, чем у молибдена [67]. Минимальная толщина вольфрамового покрытия, по данным работы [171], должна быть не менее 100 мкм, чтобы предупредить диффузию молибдена на поверхность вольфрамового покрытия в процессе эксплуатации ядерного ТЭП. Для гарантии толщину слоя вольфрамового покрытия рекомендуется увеличивать в 2 раза, т. е. до 200 мкм [19J. Для лучшей адгезии вольфрамового слоя рекомендуется шлифованную поверхность молибдена перед покрытием подвергать высокотемпературному отжигу, чтобы образовывался крупнокристаллический слой молибдена с неразрушенной поверхностью. На подготовленную таким образом поверхность молибдена наносится покрытие из вольфрама с крупнокристаллической структурой, которая обеспечивается высокотемпературным процессом покрытия. Граничная диффузия атомов молибдена через вольфрамовое покрытие с такой структурой сильно снижается вследствие уменьшения поверхности и границ зерен, а объемная диффузия практически при этом отсутствует. В работах [13, 122] подробно исследовался механизм диффузии атомов молибдена через вольфрамовое покрытие и  [c.133]

Исследована возможность получения на тугоплавких металлах (ниобии, тантале, молибдене и вольфраме) покрытий из карбидов циркония и ниобия. 1) нанесением на подложку слоя карбидообразующего металла (циркония или ниобия) с последующей его карбидизацией 2) методом припекания порошка карбида на связке, п 3) методом диффузионной сварки в вакууме тонких горячепрессованных карбидных пластинок с металлической подложкой. В результате исследований для покрытий пз карбида циркония на ниобии, тантале, молибдене и вольфраме рекомендуются 2-й и 3-й способы, а для покрытий из карбида ниобия — 1-й и 3-й. Приводятся режимы нанесения покрытий для каждого металла. Библ. — 7 назв., рис. — 4, табл. — 1.  [c.338]

Исследовано адгезионное взаимодействие незащищенных ниобия и молибдена с борирован-ным, карбидизированныи и силицированным ниобием. Показано, что нанесение покрытий из тугоплавких соединений позволяет повысить температуру адгезионного взаимодействия на 100—200° С. Установлено, что наиболее низкие значения коэффициентов адгезии наблюдаются при взаимодействии пар ниобий—борированный ниобий и молибден—бориро-ванный ниобий. Лит. — 7 назв., рис. — 2, табл. — 1.  [c.268]


Одним из современных видов топлива для этой цели является кермет двуокись плутония — молибден (РМС). Частицы двуокиси плутония-238 покрывают молибденом, получаемым по методу псевдоожиженного слоя из гексафторида молибдена или пентахлорида молибдена. На рис. 1 показаны микроструктуры грубых частиц и микросфер после нанесения покрытия. Затем материал прессуется при давлении 95 кгс/см и температуре 1675 °С для получения металлокерамического топливного элемента, поперечное сечение которого показано на рис. 2. Кермет можно р с. 4. Сфера из плутониймолибдено-прессовать и подвергать вого кермета (37 мм)  [c.455]

Наряду с газовой металлизацией и электрометаллизацией в промыщленности начинают применять плазменное напыление материалов со специальными свойствами на металлы, керамику, пластмассы, стекло, дерево и т. п. По технологическим возможностям этот способ превосходит применяемые способы нанесения покрытий. При этом способе расплавление и распыление тугоплавких материалов осуществляется с помощью высокотемпературной плазменной струи. При плазменном напылении в качестве материала покрытий используются окиси алюминия, вольфрам, молибден, ниобий, интерметаллоиды, силициды, всевозможные карбиды, бориды и др. В соответствии со свойствами наносимых покрытий может быть обеспечена требуемая жаропрочность, сопротивление олислению, износоустойчивость при высоких температурах и в различных средах.  [c.327]

На микроструктуре молибдена с рениевым покрытием переходный слой наблюдается уже после нанесения покрытия (рис. 1. 31) после высокотемпературного вакуумного отжига его ширина увеличивается, и после выдержки в течение 100 ч при 1880° С, по данным локального рентгеноспектрального анализа, рений проникает в молибден на глубину 60 мк.  [c.98]

Из данных табл. I. 44 следует, что на образцах сплава Мо— 0,5% Т1 с большой толщиной рениевого покрытия (б = 30 мк), испытанных без дополнительного отжига, наблюдается резкое падение пластичности и прочности по сравнению с молибденом без покрытия. Скорее всего охрупчивание вызвано рекристаллизацией в процессе повторяющихся отжигов при нанесении покрытия, а не влиянием самого покрытия. Металлографическое иссле-  [c.106]

В покрытиях из вольфрама и молибдена была обнаружена слоистость в тех случаях, когда содержание углерода в г окрытиях было больше предела растворимости. В составе слоев был найден свободный углерод, соответствующие карбиды и осаждаемый металл. Кислород отсутствовал, если температура подложки при нанесении покрытий была выше 900 К. Это связано с тем, что при температурах выше 900 К кислород с вольфрамом молибденом и углеродом образует лет учие соединения -оксиды, которые возгоняются. В хромовых покрытиях в составе неметаллических прослоек наряду с карбидами присутствуют и оксиды хрома. Неметаллические прослойки в медных покрытиях в основном состоят из окридов меди. Оксидные прослойки в медных покрытиях наблюдаются при температурах получения покрытий меньше 800 К, при которых оксиды меди устойчивы в слабовосстановительной среде. Типичная картина слоистого металлического покрытия, образовавшегося в результате внедрения в его состав элементов рабочей среды, приведена на рис. 27. При изменении содержания примесных компонентов в среде количество неметаллических прослоек в покрытиях изменяется. Увеличение содержания этих компонентов (ухудшение вакуумных условий или напуск соответствующих газов) приводит к увеличению количества неметаллических прослоек и к уменьшению числа металлических прослоек на единицу длины поперечного сечения покрытия.  [c.75]

Для защиты молибдена и его сплавов разработан ряд достаточно эффективных покрытий. Так, хорошие результаты дают покрытия 51—Та, 51—Nb, 51—V или Сг—51—V, наносимые осаждением из газовой фазы. Успешно можно защищать молибден и плакированием сплавами типа нимоник, а также нанесением покрытий Мо51г или типа А1—Сг—51 методом напыления (с помощью плазменной горелки). Последнее обеспечивает хорошую защиту сплавов молибдена от окисления при нагревании до 1200°С в течение 150—200 ч.  [c.163]

Вкратце можно остановиться на некоторых отдельных процессах нанесения металлических покрытий. Моор, Больц и Гаррисон [917], а также Брессман [911] излагают используемые в США приемы нанесения покрытий из окислов или силикатов разбрызгиванием на вольфрам и сталь. Прибегают также к погружению в расплавы окислов. Температура расплава при нанесении покрытий на молибден составляет 1180° С, для сталей 850° С. Толщина образующихся при этом способе покрытий достигает 0,0005—0,01 мм. Бюкл [912] пробовал осаждать этим способом окись алюминия на вольфрам, но пришел к выводу, что он уступает другим способам.  [c.396]

Поры в диффузионном слое могут возникать из-за эффекта Киркендолла, как это для пары медь — цинк показал Бюкл [920], довольно обстоятельно проанализировавший возможности защиты тугоплавких сплавов от окисления в результате образования диффузионных зон. Следующие параметры процесса нужно подбирать с такил расчетом, чтобы добиться создания наиболее благоприятных условий для нанесения покрытия из новой фазы на матрицу продолжительность и температура процесса состав донорной фазы, ее толщина, природа сцепления покрытия с подложкой. Хром и молибден, например, взаимно растворимы и характеризуются минимальной температурой ликвидуса. Выбрав температуру спекания выше этого минимума, но ниже температуры плавления хрома, порошок хрома удается спечь на молибденовой сердцевине с временным образованием промежуточного жидкого слоя, который впоследствии обеспечивает сцепление покрытия с подложкой.  [c.397]

Для нанесения покрытий из особо тугоплавких металлов (вольфрам, молибден) создан плазмен-  [c.75]

В лаборатории специального материаловедения проводились исследования возможности применения метода электрофореза, для получения антифрикционных покрытий. Электрофорезом называется явление движения в жидкости взвешенных твердых частиц, пузырьков газа, капель другой жидкости, коллоидных частиц под действием внешнего электрического поля. Таким образом, частицы коллоидно растворенного вещества, как и ионы, могут обладать электрическим зарядом. Но явление электрофореза отличается от электролиза тем, что при электролизе вещества выделяются на электродах в эквивалентных количествах, а при электрофорезе происходит заметный перенос вещества только в одном каком-нибудь направлении. Таким образом, электрофорез дает возможность нанесения тонких, одинаковых по толщине пленок на поверхность детали из мелкодисперсных однородных или разнородных порошков. Особен--но заманчив этот метод в случае сложной конфигурации детали или если необходимо нанести покрытия на внутренюю поверхность детали с малым отверстием. Толщина наносимого покрытия может строго регулироваться. Нами производились эксперименты по нанесению покрытий из дисульфида молибдена на цилиндрические стержни диаметром 25 мм при расстоянии между электродами, равном 10 мм. Исследовалось также влияние жидкой среды. Из испытанных жидких сред (изоамилового спирта, толуола, ацетона, бутилового спирта, изопропилового спирта) лучшие результаты были получены при осаждении в нзоироииловом спирте. В этом случае скорость осаждения была большей, а покрытие более плотным. После высыхания нанесенного слоя производилась термообработка покрытия в атмосфере водорода при температуре 1200° С при этом дисульфид молибдена восстанавливался до молибдена. Изменяя время термообработки, можно получить слой покрытия практически с любым количеством молибена и дисульфида молибдена. Образующийся в ходе реакции атомарный молибден прочно связывает частицы непрореагировавшего дисульфида молибдена в сплошное прочное покрытие. В результате же диффузии атомарного молибдена в верхние слои покрываемой детали нанесенное покрытие прочно соединяется с подложкой. Толщина покрытш колебалась от 0,05 до 0,2 мм. Покрытия большей толщины получаются рыхлыми и непрочными. Путем регулирования времени термообработки можно получить покрытия, обладающие высокими механическими и антифрикционными свойств а мн.  [c.114]


Занимаясь в течение более 10 лет разработкой защитных покрытий дисилицидного типа на молибден и сплавы на его основе, мы получили несколько отличные результаты, на наш взгляд, представляющие теоретический и практический интерес. Для настоящего сообщения взяты некоторые материалы по исследованию покрытий на молибдене, нанесенных термодиффузионным методом из порошков 31 марки КР-0 с применением КН4С1 (1.5%) и пеношамота, в качестве вещества для снижения концентрации кремния в насыщаемой смеси.  [c.54]

В литературе описаны случаи использования для нанесения защитных покрытий на молибдене некоторых двойных сплавов алюминия, например алюминий—кремний, алюминий—магний [5, 6]. Нанесение покрытия в этом случае осуществляется при температуре 1000—1300° в течение 10—60 сек. Такие алюмосили-катные и шпинельные покрытия могут защищать молибден от окисления при температурах, не превышающих 1400°. Отмечаются также хрупкость и высокая чувствительность к тепловому удару этих покрытий. Приведенные случаи преследовали цель получения на молибдене только окисных покрытий, состав которых определялся составом двойных сплавов алюминия.  [c.131]

Была исследована возможность нанесения на ниобий, молибден и вольфрам покрытий из циркония и ниобия путем диффузионного насыщения из твердой фазы с использованием в качестве активатора КН4С1.  [c.75]

Были опробованц иные способы нанесения циркония и ниобия на подложки из ниобия, молибдена и вольфрама. На установке для получения плавленных карбидов, смонтированной в секторе тугоплавких материалов, была исследована возможность расплавления при помощи электронного обогрева порошков циркония и ниобия, предварительно намазанных на подложки из ниобия, молибдена и вольфрама. Оказалось, что цирконий и ниобий при плавлении на молибдене образует каплю, цирконий растекается на ниобиевой подложке, но при охлаждении отстает от нее. Хорошо сцепляется ниобиевое покрытие с вольфрамовой подложкой, однако слой получается неравномерный по толщине, образец коробится.  [c.76]

Проведено испытание полученного висмутированного слоя на молибдене на жаростойкость при температуре 900° С в атмосфере спокойного воздуха при непрерывном взвешивании. Жаростойкость покрытия примерно в 20 раз выше жаростойкости чистого молибдена, но ещ е далеко не отвечает эксплуатационным требованиям. Поэтому висмутированный слой может быть использован не как самостоятельное жаростойкое покрытие, а только как подложка для нанесения силицидного покрытия.  [c.43]

Третий метод уменьшения скорости газовой коррозии заключается в защите поверхности металла специальными термостойкими покрытиями термодифузионными железоалюминиевыми или железохромовыми покрытиями (процессы нанесения этих покрытий известны под названием алитирование и термохромирование ), металлокерамическими покрытиями, или керметами, металлоокисными покрытиями, для получения которых в качестве неметаллических компонентов применяют тугоплавкие окислы, например AI2O3, MgO, и соединения типа нитридов и карбидов. Металлическими компонентами служат металлы группы железа, хром, вольфрам и молибден.  [c.14]

С точки зрения защиты штоков и шпинделей арматуры от коррозии наиболее предпочтительными являются нихром, молибден, а также, по данным итальянской фирмы Метко , смесь хромокарбидного и хромоникелевого порошков. Очень важно при металлизации получить минимальную пористость покрытия. Уменьшение пористости достигается применением порошков тонкозернистой структуры и высоких скоростей напыления. По данным испытаний на коррозию штоков, изготовленных из низколегированных сталей с нанесенным на них путем металлизащга слоем нихрома и находящихся в контакте с асбестографитовой набив-кой такой способ защиты является перспективным и заслуживает внимания.  [c.58]

В результате исследования катодной поляризации, изучения влияния условий электролиза на выход по току и качества рениевых покрытий разработана следующая технология нанесения рениевых покрытий на ниобий и молибден  [c.97]

С этой точки зрения целесообразно в ЭГК ТЭП применять монокристаллические эмиттеры из чистого молибдена, поли-кристаллические текстурированные эмиттеры из молибдена или молибденовые эмиттеры с вольфрамовым текстурированным покрытием. Этого можно достигнуть путем нанесения вольфрамового покрытия на поли- или монокристаллическую молибденовую подложку. При этом покрытие вольфрама должно быть как можно более тонким для уменьшения захвата тепловых нейтронов с другой стороны, оно должно быть достаточно толстым для сохранения высокой работы выхода в течение всего ресурса работы преобразователя. Весьма серьезной является проблема чистоты молибдена, поскольку она имеет непосредственное отношение к ресурсу преобразователя вследствие возможного освобождения кислорода из окисных включений. Коллекторным материалом является молибден или сплав Nb + +1 % Zr, причем молибден предпочтителен из-за его большей продолжительности службы и меньшей стоимости. Однайо установлено, что окисные примеси, содержащиеся в молибдене и выделяющиеся в межэлектродный зазор во время испытаний, ухудшают эффективность ТЭП и обусловливают меньший ресурс. По-видимому, большие ресурсы, полученные экспериментально с Nb-b 1 %2г-коллектором, обусловлены его геттерирую-. щей способностью, вследствие чего (Кислород выводится из зазора [65, 115].  [c.25]


Смотреть страницы где упоминается термин Молибден нанесение покрытий : [c.108]    [c.162]    [c.201]    [c.340]    [c.165]    [c.58]    [c.125]    [c.192]   
Гальванотехника справочник (1987) -- [ c.424 , c.427 ]



ПОИСК



Молибден

Молибденит

Покрытие нанесение



© 2025 Mash-xxl.info Реклама на сайте