Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушения в условиях смешанные

Суть такого представления заключается в том, что в условиях смешанного вида разрушения у вершины трещины происходит одновременно смещение берегов трещины вдоль плоскости трещины и нормально к ней. В этом случае получают близкие по виду поправочные функции, например, вида [65, 73]  [c.311]

Развитие в образцах трещин подобного строения обусловливает также то, что переход к долому для таких образцов происходит в условиях смешанного вида разрушения — отрыв (от изгиба) и сдвиг вдоль фронта трещины (от кручения). Характеристика окончательного разрушения в этих условиях может быть существенно иной, чем при разрушении, например, только по схеме отрыва.  [c.296]


Накопление деформаций при том или ином виде нагружения зависит от степени жесткости нагружения. При жестком цикле нагружения накопление регистрируемых пластических деформаций ограничено самими условиями проведения испытаний. Различные виды нагружения определяют и отличающиеся типы разрушений, возникающие при знакопеременном упругопластическом деформировании. При мягком нагружении с высоким уровнем напряжений возникает квазистатическое разрушение, близкое по характеру к статическому. При жестком нагружении независимо от уровня амплитуды, деформаций разрушение начинается с образования поверхностных трещин при последующем их подрастании до критической длины. В реальных условиях накопление деформаций и изменение напряжений могут занимать промежуточное положение между мягким и жестким видами нагружений, а разрушение может носить смешанный характер. Анализ условий эксплуатации и случаев разрушения различных конструкций показывает, что основной причиной, вызывающей возникновение трещины, является циклическое изменение напряже-  [c.88]

В связи с таким характером разрушения необходимо изучение трещиностойкости материалов (предназначенных для изготовления резьбовых соединений) при продольном и поперечном сдвигах. В работах [4—6] приведена подробная библиография работ, выполненных советскими и зарубежными исследователями по оценке трещиностойкости и методом испытаний в условиях продольного и поперечного сдвига. Вопросы расчета коэффициентов интенсивности напряжений применительно к крепежным изделиям энергетических установок рассмотрены в работе [7]. В зависимости от протекания процесса разрушения поле напряжений в вершине трещины определяется тремя коэффициентами интенсивности напряжений. Вид излома образца с трещиной является объективным критерием смены одного механизма разрушения другим. В работе [4] приведены возможные схемы разрушения образцов материала с наклонными боковыми трещинами в условиях хрупкого (обобщенный нормальный обрыв) и квазихрупкого (смешанное разрушение и продольный сдвиг) разрушений.  [c.388]

Разрушение в одном и том же материале по своему характеру может быть хрупким, вязким и смешанным. Это определяется как строением и структурой самого материала, так и условиями воздействий. Понижение температуры, например, обусловливает переход от вязкого разрушения к хрупкому. Это явление получило название хладноломкость. Увеличение скорости деформирования также ведет к хрупкому разрушению.  [c.85]


Для описания условий смешанного разрушения, сопровождающегося охрупчиванием материала, А. А. Чижик [108], развивая Идеи, изложенные в [38, 74], предложил модель, в которой рассматриваются повреждения двух типов со,, связанное с макси-  [c.97]

Анализируя стадийность процесса РУТ в ОЦК металлах и сплавах, при температурах, ниже можно отметить, что в этих условиях сохраняются те же самые стадии РУТ, что и при температурах испытания выше. Однако с понижением температуры испытания все больше сокращаются стадии стабильного и ускоренного РУТ. Так, в образцах Железа, испытанных на усталость при 77 К, стадия стабильного роста трещины, характеризуемая наличием бороздок, занимает по протяженности всего несколько кристаллических зерен. В более тугоплавких ОЦК металлах таких, как молибден, усталостное разрушение ниже связано со смешанным квазихрупким межзеренным разрушением и внутризеренным сколом. Легирование и микролегирование ОЦК металлов и сплавов является эффективным методом повышения критической температуры хрупкости и в условиях циклического деформирования. Создание предварительной дислокационной ячеистой субструктуры также способствует снижению критической температуры хрупкости в условиях циклического деформирования и повышению циклической прочности.  [c.140]

В качестве примера на рис. 118 показан блок испытаний корпуса поворотного кулака автомобиля высокой проходимости, построенный описанным выше способом по данным измерения нагрузок на дорогах смешанного типа и эквивалентный 2000 км пробега. При последовательном воспроизведении блоков этой программы на стенде деталь доводят до разрушения, при этом количество потребовавшихся программных блоков является оценочным показателем эквивалентной долговечности в условиях эксплуатации  [c.196]

Коррозионное растрескивание проявляется в условиях одновременного воздействия на металл растягивающих напряжений и коррозионно-активной среды. Сжимающие напряжения не вызывают коррозионного растрескивания. Полагают, что для каждого металла существует свой пороговый уровень напряжений, ниже которого коррозионное растрескивание не наблюдается. В то же время всегда опасными являются напряжения, близкие к пределу текучести или превышающие его [48]. Различают такие виды коррозионного растрескивания, как межкристаллитное, транскристаллитное, растрескивание со смешанным характером разрушения. Примерами коррозионного растрескивания могут служить так называемая каустическая  [c.27]

Под смазочными свойствами понимают способность продукта физически разделять две поверхности при движении одной из них относительно другой, предохраняя таким образом металлические поверхности от изнашивания благодаря отсутствию непосредственного контакта между ними. Этот процесс обычно известен как гидродинамическая смазка (рис. 1). Однако ее реализация не всегда возможна, так как под нагрузкой может произойти разрушение смазочной пленки. Это могло бы привести к изнашиванию и повреждению поверхностей, если бы масло не обладало также свойством обеспечения смазки в условиях граничного трения (рис. 2). В связи с этим смазочные материалы, применяемые для смазки промышленного оборудования, должны быть пригодны для работы в условиях гидродинамической граничной или иногда смешанной смазки (при наличии граничного трения).  [c.7]

Протекторная (электрохимическая) защита. Этот способ применяют для изделий, работающих в условиях агрессивной окружающей среды (морской воды, грунтовых вод и др.). К поверхности защищаемого стального изделия прикрепляют протекторы (пластины), сделанные из цинка или другого металла. Между цинком и сталью возникает электрический ток. При этом цинк разрушается, предохраняя сталь от коррозии. Разрушившийся цинковый протектор заменяют новым. Примером использования протекторов является смешанная защита стальных трубопроводов, проложенных в земле, от разрушающего действия грунтовых вод. Этот вид защиты состоит в том, что наряду с битумным покрытием вдоль линии трубопровода через каждые 80—100 м устанавливают протекторы. Протекторы отливают из магниевых сплавов МЛ4 или МЛ5. Они и.меют форму цилиндра. Протекторы постепенно разрушаются под влиянием возникающих местных электрических токов, а трубопровод в этом случае сохраняется за счет разрушения протекторов.  [c.67]


С точки зрения практических приложений исследование поверхностной трещины, находящейся в конструкционном элементе, который можно представить пластиной или оболочкой, является одной из наиболее важных задач механики разрушения. В самом общем случае эта задача сводится к задаче о трехмерной трещине, развивающейся в теле конечных размеров, где поле напряжений, возмущенное трещиной, испытывает сильное влияние границ твердого тела [3]. В соответствующей двумерной задаче перемещения поверхности трещины представлены раскрытием трещины 5 и углом раскрытия трещины 6, отнесенными к нейтральной плоскости. Принято, что переменные N5 М, 5 и 0 являются функциями единственной переменной, а именно координаты X, расположенной вдоль оси трещины на нейтральной поверхности. Пара функций 5, 0 или Ы, М может быть определена из решения задачи со смешанными граничными условиями для пластины или оболочки со сквозной трещиной, при этом N и М рассматриваются как неизвестные нагрузки, действующие на поверхность трещины. После определения N и М коэффициенты интенсивности напряжений находят, пользуясь решением в рамках теории упругости для полосы, находящейся под воздействием мембранной силы N и изгибающего момента М.  [c.134]

Определение предельного или критического размера трещины, при достижении которого происходит быстрое развитие разрушения, а, следовательно, дальнейшая эксплуатация детали невозможна, основано на методах механики разрушения [1-4, 47-50]. Переход к быстрому разрушению может быть реализован в разных состояниях материала хрупко, вязко или смешанно вязко-хрупко. Промежуточное состояние материала при вязко-хрупком переходе, когда изменяются условия воздействия на материал, будем относить к вязкому разрушению с меняющейся работой пластической деформации в вершине распространяющейся трещины.  [c.102]

В начальный период времени скорость окисления максимальна и затем уменьшается во времени. Если 1 < < 2, то окисление определяется скоростью диффузии частиц и скоростью окисления металла кислородом (область смешанной кинетики). Предполагается, что при выполнении указанного условия процесс окисления сопровождается постоянным разрушением оксидной пленки, так как Уо > м- При п >2 происходит изменение параметров диффузии через пленку, связанное с появлением значительных напряжений или структурными изменениями пленки. При п = 2 скорость процесса окисления определяется скоростью диффузии частиц через пленку. Параболическая зависимость окисления широко встречается в практике при достаточно высоких температурах для большего ряда окислителей и металлических материалов, что позволяет применить параметрический метод для оценки скорости коррозии и прогнозирования коррозионных разрушений при наличии сравнительно небольшого количества экспериментальных данных [13]. Этот вопрос рассмотрен в главе 3.  [c.22]

В общем случае (В. С. Иванова и Л. А. Маслов) в изломе выделяют три основные зоны />—зона чисто усталостного разрушения, характеризующаяся наличием усталостных полос (макро- и микрополос, наблюдаемых в электронном микроскопе) U — зона перехода или зона смешанного разрушения ( ямочное как результат локальных разрушений впереди трещины, хрупкие участки и усталостные полосы) и, наконец, /г — зона долома. Длина усталостного пятна l)=ia+ld. Исчезновение зоны I, свидетельствует о том, что с увеличением напряжения происходит смена напряженного состояния, реализуемого в локальном объеме впереди трещины. Хруп- кое разрушение в условиях плоской деформации сменяется на квазивяз-кое. Для оценки микрорельефа поверхности и профиля излома в институте металлургии им. А. А. Байкова разработано оригинальное телевизионно-аналоговое устройство.  [c.45]

Краффт, Салливан и Бойл изучали увеличение доли губ среза при росте трещины (см. рис. 61). Было обнаружено, что 5 зависит главным образом от абсолютного прироста трещины, поэтому возрастание нагрузки в процессе роста трещины частично обусловлено увеличением доли губ среза. К сожалению, не существует общей теории разрушений смешанного типа в промежуточной области (область В, рис. 54), поэтому / -кривые для данной геометрии образца следует определять экспериментально. Для получения достоверных значений вязкости разрушения в условиях плоской деформации необходимо разработать стандартные методы испытаний.  [c.123]

Лабораторные испытания образцов, изготовленных из однонаправленных эпоксидных углепластиков, показали, что вязкость разрушения материала G , измеренная для расслоения смешанного типа, обычно больше, чем при расслоении типа I кроме того, установлено, что G , измеренное для расслоения смешанного типа, зависит от вклада сдвиговой составляющей [19—21]. На рис. 2.18 представлена экспериментально определенная зависимость величины G при смешанном типе растрескивания матрицы (только типов I и II) от отношения G /Gj. Видна тенденция монотонного возрастания G . Образцы изготовлялись из однонаправленного эпоксидного углепластика (ТЗОО/934), вырезались под углом к направлению армирования и имели двухсторонние надрезы, как показано на врезке рис. 2.18. Хотя такой эксперимент неточно моделирует действие расслоения у свободной кромки, он, тем не менее, дает общий характер изменения G в условиях смешанного типа растрескивания матрицы. Другие методы, с использованием неравномерно  [c.113]

Припороговая область развития усталостных трещин для случая образцов без концентратора напряжений имеет сравнительно короткую протяженность (порядка десятков размеров зерен). Как уже отмечалось выше, она связана с морфологией структуры материала при раскрытии вершины трещины по типу I и II. Например, на рис. 4.8 хорошо видно, что раскрытие трещины на этой стадии распространения в пластичном молибдене марки ЦМ-10 чувствительно к размеру зерна (меняется кристаллография разрушения при переходе от одного зерна к другому). Оно протекает в условиях смешанного типа раскрытия трещины (видны плоскости сдвига типа карандашного скольжения, что связано с раскрытием трещины по типу II, и наблюдается квазибороздча-тый рельеф на этих плоскостях сдвига - раскрытие трещины по типу I).  [c.124]


Рассмотрим результаты фрактографических исследований. Предпринятый в работе [212] анализ поверхности разрушения указанных сталей показал, что в условиях одноосного растяжения смена механизмов разрушения при изменении температуры испытания подчиняется общим для простых моно- и поликрг.с-таллов с ОЦК решеткой закономерностям и в изломе можно наблюдать следующие фрактуры скол, расслоение, чашечную. При Т = —196 °С разрушение происходит по механизму микро-скола. В качестве примера на рис. 2.4, а и б показана поверхность разрушения стали 15Х2НМФА в исходном состоянии и после термообработки. Характерный размер фасеток скола составляет 10—20 мкм. С повышением температуры деформирования в изломе появляются вязкие составляющие расслоения и ямки. В температурном интервале от —160 до О °С фрактура становится смешанной присутствуют трещины расслоения, фасетки скола и ямки (рис. 2.4,в) с ростом температуры постепенно уменьшается доля хрупкой составляющей и увеличивается вклад вязких компонент. При Г >—100 °С фасеток скола в изломе нет, в температурном диапазоне от —100 до —50 °С количество расслоений максимально (средняя их плотность по-  [c.53]

Аналогичная картина наблюдается и в условиях анодной поляризации с той лишь разницей, что вместо катодных участков играют роль неактивируемые деформацией участки, которые поддерживают смешанный потенциал неизменным. Естественно, что для образцов с рабочей длиной 10 мм величина Аф на всех ступенях деформации значительно меньше, чем для образцов с меньшей рабочей площадью, и имеет тенденцию к уменьшению, с ростом степени деформации. Именно поэтому заметное (до 100 мВ) разблагораживание потенциала при деформации впервые удалось наблюдать при помощи микроэлектрохимического зонда в вершине искусственного концентратора напряжения [124], причем для получения измеримого эффекта неважно, активируется ли металл в вершине концентратора, или там происходит разрушение поверхностных пленок, или оба эти фактора действуют совместно.  [c.179]

Отсутствие единой точки зрения на характер разрушения при термоусталости, затрудняющее анализ причин разрушения деталей, объясняется, по-видимому, некомплекеным исследованием роли основных трех факторов —1, Ае и Тц. Как показано выше, лишь сохранение неизменными двух из них позволяет выявить роль третьего (см. пп. 11, 12). При этом установлены некоторые общие признаки термоусталостного повреждения. Так, сочетание невысоких значений максимальной температуры цикла, малых амплитуд деформаций и отсутствие выдержки при максимальной температуре цикла обусловливают, как правило, усталостный тип разрушения, характеризуемый тонкими транс-кристаллитными трещинами со следами притертости, перпендикулярными действующим термическим напряжениям. Увеличение амплитуды нагрузки, введение в цикл выдержки при тах. особенно повышение температуры, изменяют характер разрушения вначале на смешанный, когда наблюдаются трещины и по зерну, и по границам, а затем разрушение устойчиво развивается по границам зерен, менее прочным в новых условиях нагружения и нагрева, чем материал тела зерен.  [c.98]

В испытаниях на термическую усталость с варьируемой жесткостью нагружения [4,5, 10] это связано прежде всего с режимом неизотермического малоциклового нагружения (жесткость нагружения, уровень максимальной температуры цикла, скорость нагрева и охлаждения, длительность выдержки) и определяется различным сопротивлением статическому и циклическому деформированию частей образца, нагретых в разной степени из-за продольного градиента температур, и протеканием реологических процессов на этапе выдержки при высокой температуре [4, 10]. На рис. 4, б показано, что зффект одностороннего накопления деформаций существенно проявляется в характерной для малоцикловой усталости области чисел циклов (до 10 ) и в определенных условиях (большая жесткость нагруяшния — до 240 Т/см и длительная выдержка — до 60 мин), возможно накопление перед разрушением деформаций, близких к величинам статического однократного разрыва (кривые 7,5, 5) при соответствующем времени деформирования в условиях неизотермического нагружения. При этом реализуется смешанный или квазистатический (длительный статический) характер малоциклового разрушения.  [c.40]

Известно, что расстояние между полосами определяет перемещение трещины за один цикл. Следовательно, подрастание усталостной треш.ииы в данном случае происходит нелинейно и ускоряется перед дорывом. Результаты фрактографического анализа показывают, что усталостная трещина при малоцикловой усталости зарождается в теле зерен и характер ее распространения является внутризеренным. Следовательно, при малоцикловом нагружении конструкционной стали 15Г2АФДпс изменение характера макроразрушения связано с изменением характера микроразрушения на структурном уровне статическому разрушению соответствует внутризеренное распространение трещины, квазистатическому — смешанное, малоцикловому усталостному — внутризеренное. При этом следует отметить, что нет принципиального различия в характере разрушения стали 15Г2АФДпс при испытаниях в условиях малоцикловой и классической многоцикловой усталости в одном и другом случае при развитии усталостной трещины происходит внутризеренное разрушение [4].  [c.138]

Таким образом, в этом случае имеет место существенное влияние окисления. Оно повышает частотную чувствительность и ослабляет эффект уровня деформаций для разрушающего числа циклов. Скорость распространения трещины уже не описывается упомянутой зависимостью от интенсивности деформаций. В то же время в вакууме эта зависимость имеет место при слабой чувствительности к длительности нагружения в области частот, превышающих 0,1 цикла/мин. Для весьма низких частот (менее 0,01 цикла/мин) и в условиях вакуума возникает чувствительность к длительности нагружения, возможно в связи с проявлением длительного статического повреждения и структурными превращениями. Эти закономерности для теплостойкого сплава А286 при температуре 590° С и размахе деформации Авр = 0,002 иллюстрируются частотными зависимостями выражения (29) по данным [44], представленным йа рис. 23. В левой части для низких частот критерием разрушения является длительность нагружения (область J), в правой части для высоких частот этим критерием является число циклов (3). В вакууме этот критерий достигается (для исследованных условий) при существенно более низких частотах, чем на воздухе (разница в частотах достигает 3—4 порядков). Соответственно меняется фрак-тография излома, в области критерия длительности разрушение межкристаллическое, в области критерия числа циклов разрушение внутрикристаллическое, в промежуточной области (2) смешанное.  [c.34]

Теперь можно попытаться объединить представления о роли электрохимических факторов, влиянии типа скольжения и других металлургических переменных, а также о поведении водорода, и построить общую картину индуцированного водородом растрескивания. Признаком успешного решения этой задачи была бы способность модели найти общие элементы в таких очевидно различных явлениях, как потери пластичности (уменьшение относительного сужения) аустенитных нержавеющих сталей при испытаниях на растяжение в газообразном водороде при высоком давлении и разрушение тина скола, наблюдаемое в сплаве титана при испытаниях в условиях длительного нагружения в мета-нольном хлоридном растворе. Должна быть обоснована возможность протекания, наряду с чистыми процессами анодного растворения и водородного охрупчивания, также смешанных и составных процессов. Ниже представлено качественное описаппе по крайней мере исходных посылок такой широкой модели. В ней свободно используются и уже известные представления.  [c.133]


Когда одаостороннее накопление пластических деформаций сочетается с развитием усталостных трешин, происходит разрушение смешанного типа. Деформации, накопленные в условиях циклического нагружения к моменту разрушения, меньше предельных пластических деформаций (см. рис. 1.6), что обусловлено увеличением доли усталостных повреждений. В общем случае доли квазистатических и усталостных повреждений сопоставимы и долговечность определяют из условия постоянства и равенства единице их суммы.  [c.10]

Для этого случая остаются в силе предыдуш,ие рассуждения. Отличается он от варианта IIIБ тем, что в результате более интенсивного термоциклического деформирования, с одной стороны, резко увеличивается приток дополнительных вакансий к границам зерен, и соответственно вероятность межзеренного разрушения, а, с другой стороны, происходит упрочнение тела зерна. Однако превалирующее значение имеют зернограничные процессы в условиях большой длительности пребывания металла при высоких температурах. Поэтому здесь также следует ожидать преимущественно межзеренное и частично смешанное разрушение в области максимальных значений а и е (в рассматриваемом диапазоне).  [c.56]

Рассмотрим на лицевых поверхностях эластомерного слоя граничные условия смешанного типа. Такие условия имеют место, например, когда происходит частичное отслоение резиновых слоев от металлических. Причиной отслоения могут быть непроклейки и другие дефекты, появившиеся в процессе изготовления и эксплуатации элементов. Отслоение снижает жесткость изделий, и по величине уменьшения жесткости можно судить о размерах площади отслоения. Значительные отслоения могут привести к разрушению многослойных элементов.  [c.51]

Микроскопические исследования показывают, что характер разрушения зависит не только от природы металла, его структуры, но и от вида напряжений. Известно, что хрупкое разрушение возникает в результате приложения растягиваюш,их сил, а вязкое — под действием касательных напряжений. В условиях микроудар-ного воздействия в микрообъемах могут возникать как нормальные, так и касательные напряжения поэтому разрушение в поверхностном слое носит смешанный характер. Это подтверждают результаты многочисленных наблюдений разрушения металла при испытаниях. Различие в характере разрушения металлов определяется количеством сдвиговых процессов.  [c.92]

Вместе с тем, упругое (хрупкое) и пластическое (вязкое) разрушения не исчерпывают возможные виды разрушения. Различия в условиях нагружения, напряженно-деформированного состояния и других причин обуславливают, вообш,е говоря, смешанное разрушение, с заранее непредсказуемой степенью хрупкости (кристалличности) и вязкости (волокнистости) в изломе. Это приводит к неопределенности результатов расчетов по критериям, описываюш,им только хрупкое или только вязкое разрушения. Поэтому в практике расчетов находят применение так называемые двухпараметрические критерии разрушения, обычный вид которых состоит из двух слагаемых, каждое из которых описывает свой вид разрушения, а поскольку они записаны в  [c.75]

Вместе с тем, упругое (хрупкое) и пластическое (вязкое) разрушения не исчерпывают возможные виды разрушения. Различия в условиях нагружения, напряженно-деформированного состояния и других причин обусловливают, вообще говоря, смешанное разрушение, с заранее непредсказуемой степенью хрупкости (кристал]шчности)  [c.57]

Таким образом, можно сделать вывод, что при малоцикловом нагружении при температуре интенсивного деформационного старения (650° С) количество, размер и характер расположения частиц существенно зависят от условий деформирования. При этом характер выпадения новой фазы (карбидных частиц) определяется уровнем действующей нагрузки (деформации), временем нагружения и формой цикла. Причем при заданном режиме нагружения (одно- и двухчастотное, программное и др.) наблюдается сочетание времени и нагрузки, когда процессы старения успевают развиться до такой степени, что разрушение носит хрупкий характер. Ниже такой нагрузки деформационное старение хотя и протекало более интенсивно (скорость роста частиц выше), но времени оказывалось недостаточно для того, чтобы полностью охрупчить материал, и излом имел либо вязкий, либо смешанный характер. В условиях, когда разрушение носило хрупкий характер, рассредоточенное трещинообразование (количество трещин на поверхности рабочей базы образца) также было наиболее интенсивным. При малых нагрузках (деформациях) деформационное старение протекает медленнее, и процессы выпадения частиц новой фазы определяются в основном временем нагружения. Чем ниже действующее напряжение, тем больше времени необходимо для возникновения хрупких состояний.  [c.82]

Пример карты разрушения (сплав нимоник 80А), построенной первым из рассмотренных выше способов показан на рис. 16.1, а. Для построения этой карты в координатах "нормированное напряжение а/Е - гомологическая температура имелись в распоряжении многочисленные экспериментальные данные. На рисуйке для упрощения не нанесены эксперимен-/тальные точки (см. [372]), но на ней приведены кривые постоянного времени до разрушения в интервале от 10 до 10 с. На карте показана область внешних условий (а /E Т/ Г ), при которых разрушение сопровождается динамической релаксацией. Заштрихованные участки обозначают область внешних условий, При которых происходило смешанное разрушение.  [c.277]

При оценке долговечности конструкций при сложном напряженном состоянии необходимо располагать данными о полях деформаций, фронтах развитля повреждений от нормальных и касательных напряжений. Условие max е, шь iD2 =le Ul] позволяет при этом определить место начального разрушения. Так, при испытаниях образцов с надрезом в условиях вязкого разрушения трещины берут начало у дна выточки. В области образования клиновидных трещин начало разрушения совпадает с областью максимальных нормальных напряжений при ползучести, несколько удаленной от дна выточки, В области хрупких разрушений путем образования микропор начальная трещина также образуется у дна выточки. Смешанному разрушению соответствуют промежуточные значения радиуса между дном выточки и точкой максимальных нормальных напряжений. При этом общая картина изменения пластической деформации сохраняется. На рис. 2.1 показана зависимость пластической деформации образцов со спиральным надрезом от температуры испытания в условиях заданной номинальной скорости ползучести. Уменьшение деформации пластичности с температурой связано с переходом к хрупкому разрушению с образованием клиновидных трещин, повышение пластичности при дальнейшем увеличении температуры бус-ловлено переходом к разрушению путем образования микропор на. границах зерен.  [c.24]

Повреждение материала, развивающееся в процессе ползучести, приводит к его разрушению. Сопротивление материала такому разрушению называют длительной прочностью. Разрушение мате- зиала образца, находящегося в условиях ползучести, разделяется на три типа с образованием шейки — вязкое разрушение без образования шейки — хрупкое разрушение смешанное разрушение, Прочность материала, находящегося длительное время под на-  [c.335]

В условиях полаучести различают вязкие и хрупкие разрушения. Вязкие разрушения происходят при больших удлинениях (с образованием шейки) и отличаются относительной кратковременностью. Хрупкие разрушения происходят при малых удлинениях (иногда менее 1%) и реализуются обычно при сравнительно низких напряжениях (следовательно, при длительной работе). Имеются и смешанные типы разрушений.  [c.110]

Так, адежность и долговечность легковых автомобилей во-многом определяется общим износом двигателя внутреннего сгорания и кузова. Износ двигателя внутреннего сгорания во время эксплуатации определяется всеми четырьмя видами износа, из которых превалирующее значение имеют физический (трение) и химический (высокотемпературный) износ. При хранении и периодической эксплуатации на первое место выступает электрохимический износ (коррозия). Общий износ узова легковых автомобилей — его скрытых поверхностей (лонжеронов, стоек, внутрен них поверхностей дверей), крыльев, днища и других определяется электрохимическим износом и только во время эксплуатации для крыльев и днища общий износ определяется также физической абразивной эрозией (гравий, песок и т. п.). Ранее показано, что в условиях работающего двигателя коррозионный износ ци-линдро-поршневой группы, вкладышей подшипников коленчатого вала и других ответственных деталей объясняется смешанной электрохимической и химической коррозией, причем одновременное или. последовательное протекание химических и электрохимических процессов взаимно усиливает износ и приводит прежде всегО к разрушению ( вымыванию ) цветных металлов свинца, олова,, серебра, меди, магния и т. п. 15, 93—96].  [c.109]

Трибологические свойства моторных масел определяют важнейшие эксплуатационные характеристики двигателей внутреннего сгорания мощность, износостойкость, расход топлива, устойчивость к перегрузкам и частичным нарушениям нормальной работы системы смазки. Кроме того, большое значение смазочных материалов в деле повышения долговечности двигателей внутреннего сгорания обусловлено тем, что в узлах трения имеет место как трение в условиях граничной, гидродинамической смазки, так и работа контактирующих поверхностей в смешанных режимах. Важную роль для повышения срока службы имеет стабильность смазочного материала в зоне трения скольжения, а также способность масла предотвращать усталостные разрушения поверхностных слоев деталей в качении. Выполнены лабораторные исследования по стабильности пленки масла в зоне трения скольжения, характеризуемой стойкостью смазочного материала к трибодеструкции.  [c.69]


Растрескивание латуни имеет смешанный характер межкри-сталлитный и транскристаллитный. Увеличение степени транс-кристаллитности коррозионного растрескивания характеризует относительно большее влияние механического фактора. Транс-кристаллитное растрескивание наблюдается преимущественно у предварительно деформированных нагартованных латуней при приложении относительно больших растягивающих нагрузок и в сравнительно не очень активных средах, например в естественных условиях атмосферы. Наоборот, для латуней, предварительно отожженных и напряженных растяжением более умеренно, для коррозионного растрескивания характерно преимущественное межкристалл[[тное разрушение.  [c.113]

Ni — 3,82 при частоте 0,5 5 40 Гц с асимметрией 0,1 0,33 и 0,66 были выполнены на компактных образцах толщиной 12,5 мм в трех средах воде, дистиллированной воде и 3,5 %-м растворе Na l [120]. Цель исследования состояла в получении интегральных оценок поведения материалов с точки зрения формирования рельефа излома и возможности его идентификации по определенным признакам для разных условий испытания сталей со структурой феррита (ФР), перлита (ПР) и мартенсита (МР), а также для смешанных долей ФР + ПР и ФР + МР. Интервал предела прочности для исследованных сталей составил 514-1840 МПа. Было выявлено, что снижение частоты с 5,5 до 0,5 Гц сопровождается эквидистантным смещением кинетических кривых в 3,5 %-м растворе Na l, несмотря на то что доминирующий рельеф излома в виде квазискола сопровождается появлением межзеренного разрушения.  [c.386]

Все перечисленные подходы рассматривают распространение трещин перпендикулярно направлению нагружения, которое совпадает с одной из осей симметрии материала. При невыполнении этих условий, а это характерно для большинства реальных ситуаций, возникают задачи разрушения смешанного вида. Типичным примером является растрескивание матрицы вдоль волокон в однонаправленном слое, исследованное в [35]. Возможные пути развития теории смешанного разрушения изотропных материалов рассмотрены в [36]. Метод, предложенный в [37], предполагает, что разрушение начинается в направлении фо, когда удовлетворяются следующие условия  [c.132]


Смотреть страницы где упоминается термин Разрушения в условиях смешанные : [c.231]    [c.244]    [c.178]    [c.28]    [c.148]    [c.481]    [c.11]    [c.75]    [c.536]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.112 ]



ПОИСК



I смешанные

Разрушение Условие



© 2025 Mash-xxl.info Реклама на сайте