Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нагружение длительное сложное

В реальных условиях разрушение деталей машин и аппаратов часто имеет смешанный характер — оно может быть результатом сочетания малоциклового и длительного нагружения, двухчастотного нагружения с числами циклов на каждой из частот, порядок которых соответствует условиям мало- и многоцикловой усталости, других типов комбинированного нагружения. При сложных циклах нагружения процесс накопления повреждения на каждом из этапов (быстром нагружении, выдержке) имеет свои особенности, которые необходимо учитывать. Проблема суммирования повреждений разного типа с учетом их взаимного влияния при комбинированных нагружениях чрезвычайно сложна (см. в главах АЗ и А6 эмпирические данные и методы математического описания процессов повреждаемости).  [c.29]


Процесс азотирования отличается значительной продолжительностью. При требовании максимальной поверхностной твердости и минимальной деформации (для нагруженных деталей сложной конфигурации) длительность процесса составляет до 80 ч. При требовании несколько пониженной твердости и допущении некоторой деформации деталей продолжительность процесса можно сократить до 18 ч.  [c.146]

Менее изучен вопрос о длительной прочности полимерных материалов в условиях статического и циклического нагружений при сложном напряженном состоянии, где получение экспериментальных данных требует создания специальных испытательных установок. Обобщение этих данных также вызывает определенные трудности, связанные с формулировками общего принципа построения уравнений механических состояний для указанных сложных условий работы материала. Все же основное внимание, видимо, должно быть уделено экспериментальной апробации различных критериев длительной прочности при сложном напряженном состоянии и проверке пределов их применимости к различным полимерным материалам. Отсутствие необходимых данных несомненно задерживает внедрение этих материалов в машиностроении,  [c.286]

Настоящая монография является одной из попыток среди такого рода работ подойти к проблеме разрушения, базируясь на системном подходе, лежащем на стыке механики деформируемого твердого тела, механики разрушения и физики прочности и пластичности. В книге изложены разработанные авторами физико-механические модели хрупкого, вязкого и усталостного разрушений, позволяющие анализировать повреждение материала при сложном нагружении в условиях объемного напряженного состояния. Приведены подходы к описанию кинетики трещин при статическом, циклическом и динамическом нагружениях элементов конструкций. Кроме того, в работе рассмотрены методы и алгоритмы численного решения упруговязкопластических задач при квазистатическом (длительном и циклическом) и динамическом нагружениях.  [c.3]

Вместе с тем при сложном термосиловом, динамическом, квазистатическом или длительном нагружениях ответственных конструкций, изготовляемых по сложному технологическому процессу, адекватный анализ НДС может быть проведен только на основании решения краевых задач, базирующихся на реологических схемах, учитывающих различные нелинейные, зависящие от истории деформирования, свойства материала (рис. В.1). Кроме того, при расчете НДС должна быть учтена сложная геометрия конструкции. Ясно, что такого рода задачи могут быть решены в основном численными методами, наибольшей универсальностью из которых обладает метод конечных элементов (МКЭ).  [c.5]


В инженерных расчетах на прочность, при анализе причин и характера разрушения объектов сложных технических систем традиционно рассматриваются дефекты, имеющие металлургическую природу (раковина, усадочные трещины) или технологическое происхождение (сварочные, закалочные, ковочные трещины), а также дефекты (особенно опасны трещиноподобные дефекты), которые могут появиться или развиваться в результате длительной эксплуатации аппарата. Доказано, что под воздействием коррозионно-активной среды, циклического нагружения и других факторов дефекты могут увеличиваться в размерах и тогда их развитие переходит из стадии стабильного (контролируемого) в стадию спонтанного разрушения. Поэтому неслучайно, что в практике эксплуатации сварных конструкций отмечаются случаи их преждевременного разрушения.  [c.111]

В тех случаях, когда конструкции работают при повышенных температурах, достаточных для возникновения деформаций ползучести, расчеты при малоцикловом нагружении оказываются значительно сложнее. Это связано с тем, что сопротивление повторным неупругим деформациям и разрушению зависит не только от уровня нагрузок и числа циклов, но и от длительности нагружения и температуры. Учет температурно-временного фактора в условиях  [c.370]

Во втором слз ае нагружения материала в области выше критических условий влияние изменения частоты нагружения, выдержки под нагрузкой и температуры не изменяет механизма формирования усталостных бороздок. С увеличением температуры их шаг нарастает в связи с различными процессами разрастания затупления вершины или нарастанием пор перед вершиной (см. рис. 7.12). Однако их количество полностью характеризует количество циклов нагружения образца, а следовательно, и разрушенного в эксплуатации элемента конструкции. Поэтому оценка длительности роста усталостных трещин по числу усталостных бороздок является корректной для практики. В этом случае может быть проведена оценка уровня эквивалентной деформации или напряжения по соотношениям, представленным в главе 4 настоящей книги. Решение прямой задачи моделирования роста трещин в условиях многофакторного воздействия оказывается более сложной проблемой. Необходимо использовать вид уравнения с различной величиной показателя степени у длины трещины на основе испытания образцов для различных материалов.  [c.359]

Вместе с тем необходимо подчеркнуть, что изложенный в книге материал в ряде случаев базируется на ограниченном объеме данных и потребуется дальнейшее обоснование вопросов сопротивления деформированию и разрушению, например, при нестационарном, в том числе II случайном, режимах, в условиях высоких температур и неизотермического деформирования, а также для случаев сложного малоциклового и длительного циклического нагружения.  [c.276]

Это уравнение позволяет (при известных а и р) определить число циклов до разрушения материала детали, работающей по сложному циклу нагружения и нагрева с использованием характеристик длительной прочности и термоусталости при простом пилообразном нагружении. Метод расчета долговечности с использованием уравнения нелинейного суммирования изложен в гл. 6.  [c.153]

Уравнение (6.15) позволяет при известных аир определять число Циклов, до разрушения материала детали, работающей по сложному циклу, если известны характеристики длительной прочности, термоусталости при простом пилообразном нагружении и типичный цикл работы материала детали, например, в течение одного пуска-останова. Кроме этого, уравнение (6.15) позволяет рассчитать запас термоусталостной прочности на заданный ресурс i .  [c.173]

При длительном малоцикловом и неизотермическом нагружении эти уравнения достаточно сложные они зависят от типа материала и условий деформирования при переменной температуре (циклов термомеханического. нагружения, скоростей деформирования и нагрева, времени выдержки, характера НДС, возможных структурных изменений в материале, степени его повреждаемости и т. п.). Уравнения состояния должны описывать НДС с учетом полз) ести.  [c.78]

Исследования механического пове-дения материалов должны быть направлены на накопление систематической (в том числе статистической) информации о характеристиках прочности и пластичности, устанавливаемых при испытаниях по стандартизованным методам (кратковременные статические, длительные статические и циклические испытания), а также на разработку новых методов и средств оценки сопротивления деформациям и разрушению при сложных режимах и программах нагружения. При этом существенное значение приобретает анализ процессов протекания неупругих деформаций (пластических и временных) для указанных выше стадий разрушения.  [c.27]


В книге на основе кинетического подхода к явлениям длительного разрушения излагаются методы расчета на статическую, много- и малоцикловую усталость, возникающую в условиях как одноосного, так и сложного напряженного состояния при стационарном н нестационарном термомеханическом нагружении. Отмечаются особенности расчетных зависимостей для различных конструкционных материалов, а также особенности расчетов на коррозионную и термомеханическую усталость.  [c.2]

Остановимся на формуле суммирования повреждений (3.37), которая получена на основе силовой модели длительного разрушения. Эту формулу обычно применяют для оценки долговечностей при ползучести [10, 18, 39] причем в условиях сложного напряженного состояния в числитель каждой дроби должно войти приращение величины е на й-й ступени деформирования. Принципиальных трудностей вычисление этих приращений не вызывает, так как формула (2.49) или (2.50) позволяет определять приращения компонентов вязкопластических деформаций eT ) на любой ступени нагружения, после чего для этой ступени находится модуль приращения вектора R,, определяемого согласно (2.20). Эта величина, умноженная на i/ 2/3, и составит в соответствии с выражением (2.28) приращение инварианта Одквиста el на данной ступени нагружения.  [c.92]

Расчет высоконагруженных элементов конструкций на малоцикловую усталость — сложная задача, для решения которой необходимо использовать результаты комплексного исследования как условий их нагружения, так и циклических свойств материалов. Сейчас оценки прочности конструкций на стадиях проектирования и эксплуатации либо основываются главным образом на углубленном расчете их статической прочности, либо дополняются расчетом на усталость и длительную прочность, в том числе с учетом соответствующих вероятностных представлений.  [c.3]

Лопатки турбины работают по сложному режиму нагружения, показанному на рис. 4.1. Изменение в течение каждого полета величин напряжений, температуры и длительности нагружения учитывается суммированием повреждаемости на всех режимах и приведением всех режимов к одному, обычно наиболее тяжелому. Приведение производится на основе линейной гипотезы суммирования длительных статических повреждений по уравнению  [c.82]

Основным методом расчета дисков ГТД является расчет на кратковременную и длительную прочность при действии центробежных нагрузок [4]. Расчет производится с учетом пластических деформаций и ползучести материала. Для дисков сложной формы необходимо учитывать действие изгибающих моментов. Диски турбины, имеющие значительную массу, неравномерно нагреты как по радиусу, так и по сечению (в особенности на нестационарных режимах). Температурные напряжения в дисках турбин являются важным компонентом, влияющим на напряженное состояние. При расчете определяется запас статической прочности по напряжениям во всех сечениях диска на каждом из режимов нагружения  [c.83]

Из схемы рис. 1.1 следует, что надлежащая оценка прочности и долговечности при малоцикловом и длительном циклическом нагружении может быть реализована при соответствующем сочетании расчетов и экспериментов. Решение краевых задач (для зон действия краевых сил, концентрации напряжений механического и температурного происхождения) при малоцикловом нагружении осуществляется с использованием основных положений деформационной теории и теории течения (изотермического и неизотермического). Наибольшее развитие и применение в силу простоты получаемых решений получили различные виды модифицированных деформационных теорий, позволяющих связать напряжения Оц, деформации ви и проанализировать монотонный рост неупругих деформаций при постоянном характере изменения нагрузок в процессе нагружения. При этом смена направления нагружения (при циклических режимах знакопостоянного или знакопеременного нагружения) предполагает использование деформационной теории для соответствующего к полуцикла нагружения при смещении начала отсчета в точку изменения направления нагружения. Сложные режимы термомеханического нагружения с частичными и несинхронными изменениями во времени т нагрузок и температур I анализируются на основе различных модификаций теорий течения, устанавливающих связь между приращениями  [c.9]

Необходимо, например, рассчитать на прочность коленчатый вал двигателя внутреннего сгорания. Не надо быть специалистом, чтобы представить себе объем необходимой работы. Вал установлен на нескольких подшипниках. В определенном порядке, известно каком, в цилиндрах двигателя происходит воспламенение рабочей смеси и через шатун на вал передается усилие. По индикаторной диаграмме может быть вычислен закон изменения усилия в зависимости от угла поворота вала. Несмотря,на то, что длины участков вала всего в два три раза больше характерных размеров поперечных сечений, можно с определенной натяжкой рассматривать коленчатый вал как пространственный брус, нагруженный достаточно сложной системой сил. С поворотом вала эти силы, естественно, меняются. Меняются их плечн и потому для выявления общей картины действующих сил необходимо произвести анализ изгибающих и крутящих моментов при различных угловых положениях вала. Скажем, через каждые 10° поворота вала. Это — достаточно длительная и кропотливая подготовительная работа.  [c.93]

Долговечность при комбинированных режимах нагружения характеризует сложная многофакторная система пространственных предельных поверхностей разрушения, отражающих взаимодействие накопленных термоциклических и длительных статических повреждений. В общем виде при температуре = onst  [c.89]


Для конструкционных сплавов, обладающих бдл 3%, ввиду невозможности прёЖусмотреть все особенности их,поведения в процессе длительного статического нагружения при сложном йапря-  [c.17]

Проблемы надёжного функционирования и снижения материалоёмкости конструкций современной техники, работающих в условиях высокого уровня силовых и температурных нагрузок, а также ионизирующего излучения, делают весьма актуальной задачу математического моделирования неупругого поведения и разрушения конструкций. Увеличение рабочих параметров современных машин и аппаратов приводит к возрастанию как общей, так и местной напряжённости конструкций. Реальные процессы нагружения таких конструкций приводят к тому, что в материале конструкций возникают неупругие (вязкопластические) деформации. При этом нагружение является сложным неизотермическим, и характер его изменения может быть самым произвольным в условиях повторности и длительности воздействия температурносиловых нагрузок и ионизирующего излучения.  [c.6]

Однако такие феноменологические модели малопригодны для экстраполяции результатов относительно кратковременных лабораторных опытов на реальные длительные сроки эксплуатации, а также для описания разрушения в условиях ОНС при сложных программах нагружения. В этой связи многие исследователи обращаются к анализу физических механизмов и моделей накопления повреждений при разрушениях, зависящих от времени. Выполненный во многих работах [240, 256, 306, 318, 324, 342, 392, 433] металлографический и фрактографиче-ский анализ показал, что снижение долговечности при уменьшении скорости деформирования при различных схемах нагру-  [c.152]

Особенности кинетических диаграмм разрушения. В первых исследованиях, касающихся оценок кинетики докритического роста трещип при длительном статическом нагружении в водных средах, рассматривались преимущественно закаленные низкоот-пущенные стали с пределом текучести выше 1500 Н/мм . Было показано, что скорость распространения трещины прямо пропорциональна коэффициенту интенсивности напряжении растущей коррозионной трещины. Дальнейшее распространение подходов линейной механики разрушения па более широкий круг высокопрочных материалов и коррозионных сред выявило более сложный характер зависимости viK). Типичная кинетическая диаграмл1а коррозионного растрескивания в координатах gv-K представлена на рис. 42.3. На участках I и III скорость роста трещины увеличивается с повышением X, а в пределах участка II, охватывающего значительный диапазон значений К, наблюдается стабилизация скорости. Существуют различные суждения о причинах четко выраженных участков диаграммы коррозионного растрескивания. Их связывают с влиянием в пределах каждого участка доминирующего механизма воздействия среды. Второй горизонтальный участок часто связывают с релаксацией напряжений в вершине трещины вследствии ее интенсивного ветвления. Характер зависимости v K) во многом зависит от структуры сплава и типа среды. Для высокопрочных сталей с мартенситной структурой с пределом текучести 1500 Н/мм и выше на кине-  [c.341]

Наиболее изученным является хорошо известный эффект влияния однократной перегрузки на последующий рост трещины [11-22]. После приложения пиковой нагрузки трещина растет с меньшей скоростью, чем она была до этого. Одиночный импульс перегрузки приводит к сложной траектории движения трещины из-за ее пластического затупления и формирования зоны "вытягивания", которую характеризуют в общем случае изменением зависимости длины трещины от числа циклов нагружения (рис. 8.1). После достижения коэффициента интенсивности напряжения при перегрузке Kpeak происходит кратковременное ускорение трещины на участке 1-2, что рассматривается в качестве эффекта "задержанной задержки" (рис. 8.2). Трещина останавливается далее на участке 2-3. Затем происходит ускорение трещины на участке 3-4, и закономерность ее роста по мере увеличения числа циклов нагружения как бы восстанавливается до закономерности, которая была перед перегрузкой, но со смещением на величину Nq, характеризующую длительность задержки трещины. Эта же ситуация для СРТ описывается последовательностью событий по участкам AB-B - D-DE. После перегрузки материала может сразу происходить снижение СРТ на участке АВ, далее имеет  [c.402]

В этой главе рассмотрена только линейно-упругая модель материала. Такая модель является первым приближением и может быть приемлемой или неприемлемой для данного композиционного материала. Например, как при быстром, так и при длительном нагружении материалов с полимерным связующим необходимо учитывать их упруговязкие свойства. Но для того, чтобы описать до разрушения деформирование композиционных материалов с пластичной металлической матрицей, необходимо учитывать пластические свойства. К сожалению, из-за сложности описания этих эффектов они зшитываются только в отдельных и немногочисленных теориях пластин. В последнее время для анализа сложных конструкций используют метод конечных элементов. Поскольку такой подход описан в гл. 7 т. 8, здесь он не обсуждается.  [c.157]

Усталость при высоких температурах представляет собой сложный процесс, в котором определенную роль играют явления ползучести и повреждения, характерные для длительного статического высокотемпературного нагружения [97, 111]. Этим обстоятельством в значительной степени объясняется отсутствие физического предела выносливости для материалов, испытываемых при высоких температурах. Высокотемпературную усталость можно считать одной из разновидностей коррозионной усталости. Тем не менее целесообразно особо рассмотреть этот вид нагружения, поскольку при высокотемпературной усталости в материале происходит ряд специфических процессов, прямо не связанных с коррозией. Так, при испытании образцов из литейного никель-хромового сплава ЖС6К при 900°С наблюдалось резкое снижение значений микротвердости от головок к рабочей зоне образцов, что можно объяснить весьма существенным разу-142  [c.142]

Различный характер разрушения при термоциклическом нагружении циклами различной длительности является следствием разных процессов повреждаемости, которые одновременно развиваются при сложном нагружении материала циклическими и статическими нагрузками. В циклах с длительными выдержками основное значение имеют длительные статические свойства при испытаниях по пилообразному циклу прочность материала определяется его сопротивлением малоцикловому разрушению. В промежуточной области нагружения необходимо учитывать ззаи.мное влияние статического и циклического повреждений и определять свойства материала при их различном соотношении.  [c.82]

Термоциклическое нагружение происходит при специфических условиях, основными из которых являются неизотермическое деформирование материала, обусловливающее различную интенсивность накопления повреждений в первой и второй частях цикла одновременное накопление статического и циклического повреждений в течение каждого цикла разнородный характер повреждений (принтах материал подвергается более или менее длительному воздействию статической нагрузки с соответствующим повреждением границ зерен, а при тш — кратковременному унругопластическому деформированию, при котором деформации развиваются главным образом за счет сдвигов в теле зерен). Двойственный характер накапливаемого повреждения определяет и особый вид циклического упрочнения при термоусталости, выражающийся в чередовании процессов упрочнения и разупрочнения. Все эти обстоятельства проявляются и в характере разрушения при, термоциклическом нагружении, который, как упоминалось, является более сложным, чем при простых видах нагружения—механической усталости и длительном статическом нагружении.  [c.98]


Пример релаксации термических напряжений в жестко закрепленном стержне при его нагреве и выдержке в течение 10,7 мин и схема процесса развития деформаций приведены на рис. 39. Процесс циклического термического нагружения, при котором каждый цикл осуществляется с выДержкой при максимальной температуре, сопровождается процессом циклической ползучести, однако значительно более сложным, чем циклическая ползучесть при изотермическом нагружении. Наиболее существенно то, что в каждом цикле при охлаждении материал деформируется нагрузкой противоположного знака (в рассматриваемом случае — растяжением), которая вызывает пластическую деформацию. Если принять, что процессы развития деформаций ползучести при релаксации напряжений и постоянном напряжении — процессы одного типа, при которых большое значение имеет степень искажения решетки кристаллов, то влияние холодного наклепа, происходящего в каждом цикле термонагру-жения, должно быть значительным. Оно проявляется в уменьшении числа циклов до разрушения (см. тл. III) подобно тому, как при предварительном пластическом деформировании снижаются длительная статическая прочность (время до разрушения) и пластичность. В табл. 12 приведены значения этих характеристик, полученные при испытании сплава ХН77ТЮР по режиму, соответствующему техническим условиям на сплав /=750°С 0=350 МПа. Величина наклепа определялась степенью пластического деформирования образцов  [c.103]

Сложные. циклы нагрева и нагружения деталей при расчете долговечности разделяют на участки, на каждом из которых накапливается статическое или усталоетное повреждение. Если цикл повторяется и нагружение не является случайным (например, существует типичный эксплуатационный цикл, в котором характер нагружения деталей машины всегда одинаков), то происходит пропорциональное нагружение материала деталей, при котором соотношение долей статического и циклического повреждений остается неизменным за весь ресурс работы [23]. Это позволяет использовать для анализа предельного состояния и определения запаса прочности представления о поверхности термоциклического нагружения (рис. 98). Для заданных условий нагружения (размаха деформаций Дед, длительности действия нагрузки Тд и ресурса долговечности Л/д) состояние детали характеризуется положением точки А относительно предельной поверхности разрушения. Длительность переходных процессов в цикле здесь исключена из рассмотрения для упрощения анализа, поэтому Тд=ТвЛ д, где Тв — длительность выдержки в цикле.  [c.170]

Если на протяжении первых трех десятилетий развития советской промышленности качество стали определялось значением предела прочности при +20° С и определенным уровнем пластичности или ударной вязкости, то в последние два десятилетия прочность испытывается еще и в зависимости от типа напряженного состояния скорости деформации, и при наличии различных концентраторов. Однократное доведение напряжений до разрушающей величины дополняется испытаниями при длительном нагружении циклической нагрузкой одного (статическая выносливость) или обоих знаков (усталость), в последнем случае — при самых различных частотах, вплоть до акустических. Диапазон температур при испытании конструкционных сталей расширяется от прежних пределов ( + 60°) — (—60°) до (—253°) — (+1200°). Разрушающее напряжение, зависящее от материала нагруженного тела, определяется не только величиной нагружения в момент, непосредственно предшествующий разрушению этого тела. При выборе его значений учитывается необходимость обеспечения величин деформаций в пределах, допустимых для безотказной работы конструкций при заданных температуре и продолжительности рабочего периода. Возникает необходимость в характеристике прочности для условий сложных программированных режимов нагрузки и нагрева, действия контактных напряжений, трения и износа, поражения метеорными частицами, действия космического и ядер-ного облучения и т. д.  [c.192]

Деформационная теория экспериментально обоснована для режимов длительного малоциклового нагружения, однако при неизотермических условиях для некоторых сложных режимов нагружения она дает значительные погрешности. В этих случаях, видимо, следует использовать уравнения состояния, полученные на основе дифференциальных соотношений. Однако применение, например, теории термовязкопластично сти с комбинированным упрочнением для неизотермических условий нагружения ограничено вследствие математических и вычислительных трудностей, а также недостатка экспериментальных данных.  [c.22]

Измерять напряжения в модели в процессе ее нагружения на враш,аюп1,ейся центрифуге довольно сложно. Непосредственное визуальное наблюдение картины полос и изоклин возможно при применении плоских моделей, просвечиваемых в полярископе стробоскопического типа. Обычная методика замораживания сопряжена с некоторыми затруднениями, так как в этом случае необходимо осуш ествлять регулируемый температурный цикл. Если центрифугу целиком поместить в печь, то размеры печи оказываются очень большими, поскольку для имитации равномерного гравитационного поля в модели размером 150 мм необходима центрифуга диаметром 3 м. Если печи устанавливаются на центрифуге, то ее вес заметно усиливает напряжения в ступице центрифуги. Кроме того, нагревательные элементы печи и контрольные приборы приходится питать через контактные кольца. Наконец, центрифуга должна работать длительное время ). Использование метода ползучести для фиксирования картины напряжений неудобно, так как для получения оптического  [c.290]

Фторопласт-4 обладает высокими диэлектрическими свойствами и исключительной химической стойкостью к минеральным и органическим кислотам, щелочам, органическим растворителям и другим агрессивным средам. Не стоек к расплавленным щелочным металлам и их растворам в аммиаке, элементарному фтору и трехфтористому хлору при повышенных температурах. При температуре выше 327° С набухает в жидких фторуглеродах, при 20° С — в фреонах.. Смачивается, по абсолютно не набухает в воде. Недостаточно стоек к радиационному излучению. При достаточной прочности, при длительном нагружении подвержен ползучести. Обладает небольшим коэффициентом трения п поэтому используется в качестве антифрикционной основы для изготовления сложных металлофторопластовых подшипников (см. с. 223).  [c.262]

Важным этапом является определение цикла работы детали или всей машины, поскольку часто этот цикл является достаточно сложным и не всегда стабильным. Так, длительность полета изменяется для различных районов эксплуатации различны и условия по температуре окруя ающего воздуха. Пример статистически обоснованного цикла работы пассажирского авиационного газотурбинного двигателя с длительностью работы на стационарном режиме 1,5 ч показан на рис. 4.1 [1]. Как видно, в течение каждого полета самолета детали двигателя подвергаются действию по крайней мере трех циклов нагружения, соответствующих выходу на взлетный режим (из них 2 — в течение предполетной подготовки), а также действию нескольких циклов меньшей интенсивности, связанных с заходом на посадку, включением реверса, выпуском шасси. Следовательно, циклическая долговечность деталей должна быть определена в условиях одновременного накопления статического (стационарный полет) и циклического (запуск и другие режимы) повреждения, для чего до.лжны быть установлены закономерности взаимодействия этих двух видов повреждения.  [c.75]

В ряде случаев авиационные конструкции эксплуатируются в условиях сложного взаимодействия спектров аэродинамической температурной и силовой нагруженности. Воздействие силовых факторов и температуры на этапах полетного цикла порождает интенсивное протекание процессов перераспределения напряжений и деформаций, изменение структурных параметров и механических характеристик материала, накопление циклических и длительных повреждений. Изменение несущей способности элементов авиационных конструкций оказывается особенно выраженным для малоциклового нагружения при наличии пластических деформаций и нагрева, когда изменение механических свойств по числу циклов и по времени обусловливает заметную неста-ционарность кинетики местных напряженно-деформированных состояний. Расчет долговечности в таких условиях, как отмечается в гл. 1, 2, 4, 8 и 11, осуществляют на основе решений соответствующих краевых задач, реализуемых экспериментально, с помощью численных решений или приближенных аналитических методов.  [c.114]

Эксплуатационные режимы нагружения элементов конструкций имеют, как правило, более сложный характер, чем распространенные в практике экспериментов синусоидальные или треугольные формы циклов нагружения, хотя именно они являются наиболее часто используемыми при получении основных характеристик циклических свойств материалов и закономерностей их изменения в процессе деформирования. Синусоидальный или треугольный законы изменения напряжений и деформаций использовались в качестве основных и при экспериментальном изучении кинетики циклической и односторонне накапливаемой пласти ческих деформаций и их описании соответствующими зависимостями, рассмотренными в предыдущих главах. В ряде случаев условия эксплуатационного нагружения представляется возможным схематизировать такими упрощенными режимами. Однако в большинстве случаев для исследования поведения материала с учетом реальных условий оказывается необходимым рассмотрение и воспроизведение на экспериментальном оборудовании таких более сложных режимов, как двух-и многоступенчатое циклическое нагружение с различным чередованием уровней амплитуд напряжений и деформаций, нагружение трапецеидальными циклами с выдержками различной длительности на экстремумах нагрузки в полуциклах растяжения и (или) сжатия, а также в точках полного снятия нагрузки, двухчастотное и полигармо-ническое нагружение, нагружение со случайным чередованием амплитуд напряжений, соответствующим зарегистрированными в эксплуатации условиями. Особенно необходимым воспроизведение и исследование таких режимов становится в области повышенных и высоких температур, когда на характер и степень проявления температурно-временных эффектов, а следовательно, и на кинетику деформаций, существенное влияние оказывают факторы длительности, формы цикла и уровней напряжений или деформаций в процессе нагружения. Ниже приведены исследования закономерностей развития деформаций для ряда упомянутых режимов нагружения, позволяющие проанализировать применимость тех или иных уравнений кривых малоциклового деформирования и применение параметров этих уравнений при изменении режимов.  [c.64]


Полученные результаты свидетельствуют о том, что для рассмотренных видов длительного пеизотермического нагружения в первом приближении могут использоваться уравнения (5.2) и (5.4), на основе которых траектория активного нагружения представляется как кривая, расположенная на поверхности неизотермического нагружения, а деформации ползучести описываются на основе изохронных циклических кривых, соответствующих температуре в экстремальных точках цикла, причем положение поверхности неизотермического нагружения и изохрон в каждом полуцикле определяется амплитудой предшествующих необратимых деформаций. Ясно, что для описания более сложных режимов нагружения, например, имеющих выдержки под нагрузкой при Т = Ущах в промежуточных точках цикла и ханак-теризующихся переходом к более низкой температуре в экстремальных точках цикла, а также для учета взаимного влияния деформаций ползучести и пластических деформаций, требуется использовать уравнения состояния дифференциального типа. Однако необходимо иметь в виду, что хотя такие уравнения описывают более тонкие эффекты поведения материала, при практи-  [c.126]


Смотреть страницы где упоминается термин Нагружение длительное сложное : [c.49]    [c.106]    [c.93]    [c.365]    [c.133]    [c.91]    [c.173]    [c.4]    [c.148]    [c.94]    [c.214]   
Механические свойства металлов Издание 3 (1974) -- [ c.157 , c.162 ]



ПОИСК



Нагружение длительное

Нагружение пластмасс длительное сложное 534 <— Несущая способность

Нагружение сложное



© 2025 Mash-xxl.info Реклама на сайте