Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Усталость высокотемпературная

Предложения [27] по уточнению способов определения параметров критериального уравнения учитывают характерные факторы термической усталости (высокотемпературное сжатие, растяжение при минимальной температуре, а также процессы ползучести и релаксации с учетом знака действующего в детали напряжения).  [c.113]

Усталость высокотемпературная 195 — — петля гистерезиса 250  [c.280]

В табл. 1.1 приведены виды повреждений и принципы методов оценки ресурса наиболее повреждаемых узлов теплоэнергетического оборудования. Видно, что значительная часть узлов проявляет склонность к хрупким разрушениям, предупреждение и своевременное выявление которых представляет сложную техническую задачу. Большое число узлов повреждается в результате высокотемпературных процессов (ползучести и высокотемпературной малоцикловой усталости). При оценках остаточного ресурса учитываются критерии трещиностойкости материала.  [c.5]


В условиях воздействия длительного стационарного нагружения в базовом режиме эксплуатации и кратковременных нестационарных нагружений в маневренном режиме работы в металле литых конструкций накопление повреждений происходит в результате процессов ползучести и высокотемпературной малоцикловой усталости.  [c.40]

Условно диаграмму сопротивления высокотемпературной малоцикловой усталости можно разделить на три зоны  [c.48]

Анализ структуры, свойств и характера разрушения диска, а также моделирование разрушения испытаниями на малоцикловую усталость позволили установить, что разрушение диска произошло в результате действия неучтенных расчетом высоких циклических напряжений в сочетании с действием статических нагрузок в зоне концентратора грибка диска в процессе эксплуатации, которые привели к разрушению под действием ползучести и высокотемпературной малоцикловой усталости.  [c.48]

В условиях эксплуатации при повышенных температурах большинство материалов, применяемых в энергоустановках, термически нестабильны. Кроме того, применяемые материалы имеют широкую гамму структур в исходном состоянии. В связи с этим при длительной эксплуатации снижение ресурса материала при ползучести и высокотемпературной малоцикловой усталости может произойти за счет падения длительной прочности в результате существенного уменьшения сопротивляемости развитию трещин. Наряду с использованием при оценках ресурса критериев длительной прочности в настоящее время дополнительно разрабатываются критерии трещиностойкости материала (28, 29, 30].  [c.63]

Рассматриваемая концепция кинетических деформационных критериев малоциклового разрушения предполагает зависимость кривой усталости при жестком высокотемпературном нагружении только от величины располагаемой пластичности материала  [c.32]

Рис. 63. Приспособление для испытания плоских образцов на термическую усталость в высокотемпературной вакуумной установке а) и схема крепления образца (б) Рис. 63. Приспособление для <a href="/info/128772">испытания плоских образцов</a> на <a href="/info/34011">термическую усталость</a> в высокотемпературной <a href="/info/706438">вакуумной установке</a> а) и схема крепления образца (б)

Лозинский М. Г.. Романов А. Н. Установка ИМАШ-10 для микроструктурного изучения кинетики разрушения металлов и сплавов в процессе испытания на усталость при знакопеременном изгибе и высокотемпературном нагреве в вакууме. М., изд. НИИМаш,  [c.299]

В условиях неизотермического нагружения, когда полуцикл растяжения протекает в высокотемпературной части цикла нагрева, особенно повышается роль пластичности. Показательны в этом отношении данные, приведенные на рис. 3, б и полученные в разных контрастных условиях неизотермического нагружения. Например, сравнение кривых 5 и б на рис. 3, б показывает, что более сильное охрупчивание сплава при 973 К приводит к существенному (до трех раз) снижению долговечности в сравнении с аналогичными данными для температурного режима с максимальной температурой 1133 К. Характерно, однако, что уровень располагаемой пластичности, по-видимому, на сопротивление малоцикловой усталости влияет незначительно, если полуцикл сжатия механического нагружения приходится на диапазон высокотемпературной части термического цикла нагрева. Об этом свидетельствует близость данных по малоцикловой неизотермической усталости (см. рис. 3, б, кривые 1—4).  [c.39]

При исследовании влияния низкотемпературного нагревания на старение или снятие напряжения после механической обработки установлено, что нагревание в смеси азота с водородом и в чистом аргоне вызывает очень незначительные изменения в поверхностных слоях по сравнению с нагреванием в воздухе. Эти изменения меньше, чем при высокотемпературном нагревании, но они отрицательно влияют на прочность и устойчивость к усталости, если не удалить поверхностный слой механическим или химическим способом.  [c.88]

Условия для ползучести при высоких напряжениях и температурах редко создаются на практике преднамеренно при статическом нагружении, однако в системах, связанных с высокотемпературной циклической усталостью, составляющая ползучести  [c.10]

Важное значение с точки зрения коррозионной ползучести и разрушения материалов имеет вопрос об адгезии оксида к металл лу, так как окалина, отслаивающаяся от подложки, конечно же, не оказывает влияния на механические свойства материала. Например, высокотемпературная коррозия, как уже обсуждалось, обязательно подразумевает ухудшение адгезии или даже полное отделение окалины. Отслаивание оксида также может быть вызвано рассмотренными выше температурными напряжениями. Различные механизмы отслаивания оксидов, в том числе связанные с уменьшением пластичности, ползучестью и усталостью материала, рассмотрены в обзоре [135]. Согласно экспериментальным данным, отслаивание оксида может протекать легко. Например, на сплаве Ni—20 Сг—4 А1 отделение оксида наблюдалось после одного цикла изменения температуры от 300 °С до комнатной [135]. Исключение могут составлять сплавы, содержащие легирующие добавки РЗЭ, улучшающие адгезию оксида к металлу [111].  [c.31]

Несколько работ [11, 228, 2201 содержат описание промышленного применения титана. Свыше 50% производимого титана расходуется в авиационно-космических целях. При этом наибольший процент использования полуфабрикатов из титана приходится на изготовление турбин. Такие свойства титана, как усталость, термическая стабильность, окисляемость и эрозия, лимитируют его применение [230]. В связи с возрастанием рабочих температур газовых турбин проблемы, связанные с высокотемпературным солевым КР, становятся более существенными.  [c.413]

Высокотемпературная малоцикловая усталость Высокотемпературная малоцикловая усталость наблюдается при высоких напряжении и деформации, когда число циклов до повреждения Mf составляет <10. Она отличается от случая, когда нагружение проводится при низкой частоте приложения напряжения или деформации, и от случая нагружения с заданной деформацией. Часто проводят испытания на усталость с заданной деформацией при знакопеременном треугольном цикле нагружения. Это обусловлено тем, что термическая усталость, вызывающая серьезные проблемы в реальных деталях Машин и элементах конструкций, является усталостью с заданной деформацией. Кроме того, даже данные, полученные при высокой температуре, соответствуют уравнению Мэнсона — Коффина и получаемые  [c.14]


Environmental ra king — Трещинообразо-вание под действием окружающей среды. Хрупкое разрушение обычно пластичного материала, обусловленное коррозионным действием окружающей среды. Трещинообразование под действием окружающей среды — общий термин, который включает коррозионную усталость, высокотемпературное наводораживание, водородное вспучивание на поверхности, водородную хрупкость, жидкометаллическую хрупкость, твердое металлическое охрупчивание, трещинообразование от коррозии под напряжением и сульфидное трещинообразование под напряжением.  [c.951]

Способ исследования термомеханической усталости заключается в том, что с целью приближения условий испытания к эксплуатационным в качестве высокотемпературного нагревателя используют расплав металла, который дозированно подают под давлением в зону исследуемого участка образца. Затем образец выдерживают в течение времени, достаточного для кристаллизации расплава.  [c.271]

Обнадеживающие результаты испытаний на высокотемпературную усталость эвтектики NiaNb—NisAl получены Томпсонам и др. [59]. Усталостные свойства эвтектического сплава с направленной микроструктурой при 1144 К оказались выше свойств промышленного сплава В-1900 при испытании образцов с надрезом и без него. Следует отметить, что эвтектика окисляется сильнее, чем сплав В-1900, и тем не. менее свойства ее были лучше. Разрушение проходило, в основном, через пластины, подобно усталостному разрушению сплава Ni—NisNb при комнатной температуре, хотя иногда в процессе иопытания наблюдалось расслаивание по границам пластин.  [c.380]

Клиновидные трещины образуются преимущественно в стыках трех зерен, развиваются вдоль одной из границ и связаны с заторможенным межзеренным проскальзыванием. Поперечные границы являются препятствием для распространения трещин, поэтому на начальной стадии процесса разрушения трещины распространяются от одного узла границы до другого. Чаще всего клиновидные трещины образуются при перегревах в паропере-гревательных трубах из стали 12Х18Н12Т, в перлитных сталях в местах затрудненной деформации — там, где имеется сочетание высокотемпературной малоцикловой усталости и ползучести, а  [c.13]

Существуют характеристики изломов, связанные с общей и локальной повреждаемостью материала, такие, как, например, соотношение в изломе величины усталостной зоны и зоны долома при высокотемпературной усталости, относительная доля межзеренного разрушения в доломе при повторных нагру-5кениях, соотношение величин и С точки зрения изучения повреждаемости особого внимания заслуживает анализ  [c.6]

Усталость при высоких температурах представляет собой сложный процесс, в котором определенную роль играют явления ползучести и повреждения, характерные для длительного статического высокотемпературного нагружения [97, 111]. Этим обстоятельством в значительной степени объясняется отсутствие физического предела выносливости для материалов, испытываемых при высоких температурах. Высокотемпературную усталость можно считать одной из разновидностей коррозионной усталости. Тем не менее целесообразно особо рассмотреть этот вид нагружения, поскольку при высокотемпературной усталости в материале происходит ряд специфических процессов, прямо не связанных с коррозией. Так, при испытании образцов из литейного никель-хромового сплава ЖС6К при 900°С наблюдалось резкое снижение значений микротвердости от головок к рабочей зоне образцов, что можно объяснить весьма существенным разу-142  [c.142]

В большинстве конструкционных материалов — сталях, алюминиевых, титановых сплавах, в жаропрочных сплавах на никелевой, хромовой, железной основах при температурах, суихест-венно не превышающих рабочие, при отсутствии значительной статической составляющей нагрузки высокотемпературное усталостное разрушение, как правило, проходит по телу зерен. При повышения температуры и сохранении симметричного цикла нагружения в изломах появляются участки межзеренного разрушения, на которых сохраняется характерный для усталостного-нагружения фрактографический рисунок в виде микрополосок или тонкой складчатости. При увеличении доли статического, нагружения возникающее на ряде участков межзеренное разрушение может проходить без фрактографических признаков, специфичных для усталости.  [c.143]

При наличии смешанного излома усталостные признаки наиболее устойчиво сохраняются в очаге разрушения, признаки нетипичного для усталости разрушения сначала появляются в зоне развитого разрушения. Следует иметь в виду, особенно при анализе эксплуатационных изломов, что в ряде материалов признаки преимущественно усталостного характера могут наблюдаться и в том случае, когда значение переменной составляющей (относительно предела выносливости) невелико, а. значение статической составляющей (относительно предела длительной прочности) существенно. Например, в литейном никелевом сплаве ЖС6У при асимметричном переменном изгибе при 950°С изломы имели типично усталостное строение при следующих относительных значениях переменной и статической составляющих fa = 0,45aw, am=0,8—0,9 Одл (da — переменная составляющая, От — статическая составляющая, aw и Одл — соответ-венно пределы выносливости и длительной прочности на 100-ча-совой базе). Лишь при ста<0,45 aw при той же статической составляющей нагрузке в зоне развитого усталостного разрушения наблюдались небольшие по размерам участки со строением, характерным для высокотемпературного статического нагружения (рис. 116).  [c.144]

Отсутствие прямой зависимости между долговечностью и величиной усталостной зоны при высокотемпературной усталости иллюстрируется примером обрыва пера лопатки из сплава ЖС6К после наработки, составляющей всего около 1 % ресурса. Уже это обстоятельство свидетельствует о действии высоких переменных напряжений. Тем не менее усталостная зона в изломе занимала более 60% площади поперечного сечения. Волокнистое строение зоны долома подтверждает, что в процессе работы не успело произойти разупрочнение материала на границах зерен.  [c.157]


Вследствие образования множественных поверхностных очагов макростроение изломов круглых образцов, испытанных на термоусталость, отличается от макростроения усталостных изломов подобных образцов таким образом, как это схематично показано на рис. 136. В пределах усталостной зоны обнаруживается характерный усталостный рисунок в виде складчатости, нерезко очерченных расходящихся от очагов рубчиков и слабо выраженных концентрических колец, представляющих собой узкие полосы с более крупной, чем на соседних участках, шероховатостью. По мере продвижения трещины шероховатость в усталостной зоне постепенно увеличивается, зон с резко очерченными границами, т. е. резкого изменения характера излома не наблюдается. Эта черта отличает рассматриваемые изломы от высокотемпературных чистоусталостных, на которых, как правило, резко выделяется начальная зона в форме глазка. Особым признаком излома при термоциклическом нагружении, отличающим его от излома механической усталости, является также большая сглаженность, нерезкость, некоторая оплавленность рельефа. Для алюминиевых сплавов этот макроскопический признак вида излома может быть основным, так как в остальном излом мало отличается от обычных усталостных (рис. 137).  [c.168]

Сравнивая полученные в настоящей работе экспериментальные данные с основными закономерностями развития повреждений в условиях статического и циклического видов нагружения, природу развития несплошностей в условиях испытаний на термическую усталость можно представить следующим образом. В процессе испытания на термическую усталость, а также во время изотермической выдержки при верхней температуре цикла развивается межзеренное проскальзывание. Следует полагать, что при накоплении определенного числа циклов величина смещения зерен относительно друг друга достигает критического значения, при котором образуются субмикроскопические несплош-ности на межзеренных границах. Если такое состояние границы возникает в условиях высокотемпературного растяжения, то приложенные нормальные растягивающие напряжения обеспечивают их быстрое раскрытие в клиновидные трещины, наб.людаемые в оптический микроскоп. Однако в условиях термоциклирования металл в диапазоне температур Тщах испытывает снижающие напряжения, что стабилизирует указанную структуру границ зерен, несмотря на продолжающийся процесс межзеренного про-  [c.49]

Описана установка для испытаний металлов на усталость, модернизированная с целью осуществления на ней высокотемпературных исследований при двухчастотных и программных режимах нагружения с низкочастотным деформированием в уируго-пластической области.  [c.161]

По техническому заданию лаборатории высокотемпературной металлографии Института машиноведения Фрунзенский зафд контрольно-измерительных приборов осуществил разработку проектно-технической документации и в 1968 г. начал серийный выпуск установки ИМАШ-10-68, созданной на базе аппаратуры ИМАШ-ЮМ и имеющей близкие к ней характеристики [49, с. 25—32]. Эта установка предназ1йачена для исследования микроструктуры образца с одновременной регистрацией изменения его электросопротивления в процессе испытания на усталость металлов и сплавов при знакопеременном изгибе в условиях нагрева.  [c.143]

Применение установки ИМАШ-10-68 и методов высокотемпературной металлографии при изучении процессов, которые протекают в материалах, подвергаемых нагреву при циклическом знакопеременном нагружении, весьма перспективно для получения детальных сведений о деформации и разрушении от усталости. Использование описанной выше аппаратуры позволило, в частности, изучить механизм деформации никеля при малоцикловом нагружении в области повышенных температур [48, с. 120—126 61 ], процессы высокотемпературного деформационного старения при циклическом нагружении малоуглеродистой стали 22К [50, с. 58—61 ] и аустенит-ной стали X18HI0T, а также провести микроструктурное исследование особенностей деформации и разрушения некоторых биметаллических материалов при высокочастотном нагружении в условиях повышенных температур [49, с. 85—92 50, с. 87—94].  [c.155]

Рис. 1. Влияние охлаждения патрона А — на стабилизацию резонансных частот (сгглошные кривые), напряжений (штрихпунктир) В — на распределение напряжений, амплитуд колебаний г/ и температур t по длине литого образца из сплава ВЖЛ12У, моделирующего стенку пера лопатки турбины, при высокотемпературных технологических испытаниях на усталость. Рис. 1. <a href="/info/444780">Влияние охлаждения</a> патрона А — на стабилизацию <a href="/info/8934">резонансных частот</a> (сгглошные кривые), напряжений (штрихпунктир) В — на <a href="/info/166564">распределение напряжений</a>, <a href="/info/6145">амплитуд колебаний</a> г/ и температур t по длине литого образца из сплава ВЖЛ12У, моделирующего стенку <a href="/info/371601">пера лопатки</a> турбины, при высокотемпературных <a href="/info/138386">технологических испытаниях</a> на усталость.
Представлены результаты исследований сопротивления усталости жаропрочных никелевых сплавов в широком диапазоне температур. Установлены закономерности и.чменения сопротивления циклическим нагрузкам исследуемых сплавов в зависимости от параметров (в частности, дисперсности) структуры, формируемой в процессе длительного высокотемпературного воздействия. Предложен метод оценки и прогнозирования сопротивления усталости жаропрочных никелевых сплавов, базирующийся на структурно-кинетическом подходе. Проверка метода показала возможность его использования для прогнозирования выносливости сплавов по ограниченному эксперименту с достаточной для практики степенью точности.  [c.437]

Некоторое подобие реальным режимам нагружения воспроизводится опытами на термическую усталость с выдержками в высокотемпературной части цикла на установках Коффина [1—9] такие же режимы нагружения могут быть приближенно оценены опытами на изотермических малоцикловых y TanoBitax без следящей системы нагрунсения [10]. Существенная нестационарность процесса упругопластического деформирования при таких испытаниях связана главным образом с изменением соотношения жесткости системы машина — образец в результате кинетики свойств материала, перераспределения температурных полей как по циклам, так и во времени. В связи с этим фактическая величина деформаций существенно нестационарна и поэтому особое внимание при оценке условий разрушения должно быть уделено определению действительной величины циклической деформации [11].  [c.86]

Испытание материалов на усталость при высоких температурах проводили в специальных высокотемпературных электропечах сопротивления. Печи трехсекционные с нагревательными элементами из модифицированного сплава ЭИ626 позволяют нагревать образцы до 1200° С и обеспечивают равномерное распределение температурного поля по всей поверхности испытуемого образца  [c.175]

Работа элементов конструкций при теплосменах в агрессивном газовом потоке представляет собой весьма сложный процесс, при котором материал находится в экстремальных условиях как по уровню напряжений и температур, так и по характеру неравномерности. При этом материал нодвергается термической усталости, неоднородной по объему. Обычно наиболее напряженные и нагретые поверхностные слои активно взаимодействуют с химически активным газовым потоком. Процессы высокотемпературной газовой коррозии и эрозии, равно как диффузия элементов из газа в глубь материала и диффузия легирующих элементов к поверхности, приводят к существенному изменению механических свойств материала и накоплению в нем неравномерно распределенных по объему повреждений.  [c.187]


Несколько параллелей можно провести также в области влияния микроструктуры на индуцированное водородом разрушение материалов. Наиболее общей из таких закономерностей является положительный эффект уменьшения размера микроструктуры, будь то размер зерна, пластинок мартенсита или частиц выделившейся фазы, например, видманштеттовых а-частиц в титановых сплавах. Положительное влияние этого фактора обычно отмечается также в связи с прочностью, вязкостью разрушения и сопротивлением усталости материалов, так что измельчение микроструктуры может служить примером того, как улучшение одних свойств сплава не влечет за собой очевидного ухудшения других параметров [64] (наиболее существенным исключением является высокотемпературная ползучесть, не рассматриваемая в данной главе). Таким образом, те исследования изменения свойств сплавов под воздействием окружающей среды, в которых размер микроструктуры остается неконтролируемым, просто игнорируют одну из важнейших переменных, даже в тех случаях, когда размерные эффекты не являются главным фактором, определяющим поведение системы.  [c.119]

При определении долговечности элементов конструкций, работающих в условиях повторных высокотемпературных воздействий, необходимо учитывать особенности расчетов на прочность при длительном статическом и малоиикловом нагружении, циклической ползучести и неизотермической усталости на основании деформационно-кинетических критериев прочности.  [c.3]


Смотреть страницы где упоминается термин Усталость высокотемпературная : [c.131]    [c.185]    [c.242]    [c.448]    [c.33]    [c.36]    [c.48]    [c.65]    [c.380]    [c.396]    [c.85]    [c.20]   
Теория высокотемпературной прочности материалов (1986) -- [ c.195 ]



ПОИСК



Высокотемпературная ТЦО

Исследования высокотемпературной малоцнкловой усталости на гладких образцах

Многоцикловая усталость конструкционных материаРазрушение металлов в условиях высокотемпературной ползучести

Связь с высокотемпературной малоцикловой усталостью при несимметричном цикле деформации

Структура металлов и разрушение при высокотемпературной усталости

Усталость

Усталость высокотемпературная деформация

Усталость высокотемпературная испытания

Усталость высокотемпературная малоцикловая

Усталость высокотемпературная многоцикловая

Усталость высокотемпературная образование трещин

Усталость высокотемпературная распространение трещины



© 2025 Mash-xxl.info Реклама на сайте