Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механическое состояние вязкое

Механическое состояние вязкое ч. 1. 63, 65  [c.362]

Переход от вязкого к хрупкому разрушению в связи с типом напряженного состояния характеризуется диаграммой механического состояния (фиг. 14) [391.  [c.485]

Можно представить себе модель вязкоупругого материала, в которой вместо линейно вязкого элемента по (22.2) установлен нелинейно вязкий элемент по (22.5) или (22.6). В этом случае уравнение механических состояний принимает вид  [c.400]


Монография написана, на наш взгляд, методически чрезвычайно удачно, вполне строго и вместе с тем достаточно просто. На основе традиционных концепций однородного напряженно деформированного состояния выясняются наиболее существенные особенности механического поведения вязких, упругих и высокоэластичных сред и предлагается оригинальный, сравнительно несложный метод формулирования соответствующих уравнений реологического состояния. Автор обходится элементарным математическим аппаратом векторного исчисления и системами лагранжевых координат с подвижным локальным векторным базисом (так называемые конвективные системы координат). Тем самым он облегчает неподготовленному читателю усвоение материала, добиваясь в первую очередь физической ясности изложения. Математически строгая постановка и анализ исследуемых задач в случае неоднородных напряжений и деформаций даются лишь в главе 12, где с помощью тензоров кратко излагается теория конечных деформаций в вязко-эластичных средах. Правда, здесь изложение слишком уж конспективно, и многочисленные доказательства , как правило, сводятся к перечню  [c.7]

Как с помощью диаграммы механического состояния металла определить предел текучести прн заданной остаточной деформации Что называется деформационным и вязким упрочнением  [c.178]

Механические состояния деформируемых тел упругое, пластическое, вязкое, высокоэластическое и состояние разрушения. Механическое поведение реальных материалов невозможно описать какой-либо одной простой моделью, так как многие материалы в зависимости от условий нагружения могу г находиться как в упругом состоянии (например, при малых напряжениях, малой продолжительности нагружения, невысоких температурах), так и в вязкопластическом состоянии или в состоянии разрушения (например, при увеличении названных параметров).  [c.63]

Принятый выбор пяти основных механических состояний довольно условен, так как реальные материалы большей частью находятся в промежуточных механических состояниях, например, в упругопластическом (обычно у металлов при невысоких температурах) или в пластически-вязком (при наличии ползучести при повышенных температурах).  [c.64]

Таким образом, в той или иной мере вязкое состояние присуще всем материалам, но в различном сочетании с упругими и другими механическими состояниями.  [c.65]

Наряду с хладноломкостью давно известна и ударная хрупкость, т. е. переход статически вязкого материала в хрупкое состояние при ударных нагрузках. Такое поведение наблюдалось у цинка, крупнозернистого железа, сталей, подверженных отпускной хрупкости, у многих пластмасс, смол и других материалов [9]. Изменение напряженного состояния также может существенно влиять на механическое состояние материалов. Так, например, многие литые алюминиевые сплавы и чугуны при растяжении весьма хрупки (удлинение порядка 1—2%), а при сжатии довольно пластичны (укорочение порядка нескольких десятков процентов). Некоторые стали пластичны при статических испытаниях на растяжение гладких образцов, но оказываются хрупкими при статическом вдавливании пуансона в центр диска, опертого по контуру. Решающим в этих случаях является изменение способа нагружения или формы образца, ведущих к изменению напряженного состояния [11].  [c.257]


Переход от вязкого к хрупкому разрушению зависит от типа напряжённого состояния, свойств материала и условий его работы. Для качественной характеристики типа разрушения используются а) схема условий разрушения по Н. Н. Давиденкову и диаграмма механического состояния Я. Б. Фридмана, б) характер огибающих предельных (по прочности) кругов напряжений.  [c.341]

Таким образом, имеется существенное различие между сопротивлением пластической деформации (в частности, ат) и сопротивлением разрушению 5 . С повышением ат опасность хрупкого разрушения увеличивается повышение же 5к всегда повышает и пластичность, и вязкость, и сопротивление разрушению. Диаграмма механического состояния также показывает, что с повышением (т при прочих равных условиях увеличивается склонность металла к переходу от вязкого разрушения путем среза к хрупкому путем отрыва.  [c.21]

К сожалению, механические и термические эффекты не могут в данном случае быть несвязанными, поскольку нет способа доказать, что т не зависит от или что q не зависит от D. Разумеется, если мы захотим ввести дополнительное допущение о состоянии, что т не зависит от Т, то из этого будет следовать, что скорость механической диссипации должна быть неотрицательной. В общем случае можно утверждать, что Ощ О лишь в изотермических процессах (V7 = 0). Из этого следует, что изотермические (т. е. чисто механические) уравнения состояния для чисто вязких жидкостей всегда должны давать положительные значения для >м- В частности, оправданы рассуждения в разд. 2-3.  [c.165]

Настоящая монография является одной из попыток среди такого рода работ подойти к проблеме разрушения, базируясь на системном подходе, лежащем на стыке механики деформируемого твердого тела, механики разрушения и физики прочности и пластичности. В книге изложены разработанные авторами физико-механические модели хрупкого, вязкого и усталостного разрушений, позволяющие анализировать повреждение материала при сложном нагружении в условиях объемного напряженного состояния. Приведены подходы к описанию кинетики трещин при статическом, циклическом и динамическом нагружениях элементов конструкций. Кроме того, в работе рассмотрены методы и алгоритмы численного решения упруговязкопластических задач при квазистатическом (длительном и циклическом) и динамическом нагружениях.  [c.3]

Воздействие интенсивных потоков нейтронов на материал корпуса и других конструкций реактора приводит к их структурным изменениям, что вызывает изменение их физико-механических свойств. Наиболее опасен переход облученного материала стального корпуса, несущего давление, из вязкого состояния в хрупкое, характеризующееся небольшой энергией разрушения. Состояние хладноломкости корпусных сталей наступает в области температур ниже критической температуры хладноломкости 7хл. Величина этой температуры возрастает при облучении.  [c.69]

Область возмущенного состояния среды образуется в результате распространения волны напряжений, ограничена внешней поверхностью пограничного слоя, свободной поверхностью преграды и поверхностью переднего фронта волны напряжений, которая может быть как волной нагрузки, так и волной разгрузки. Среда в области возмущенного состояния находится при температуре Г в упругом, вязком, пластическом или другом состоянии в зависимости от ее физико-механических свойств и условий внедрения, которое характеризуется тензором напряжений (а), вектором скорости частиц V и плотностью р им соответствует тензор кинетических напряжений (Т).  [c.198]

Материал плиты в каждом из указанных периодов процесса может находиться в упругом, упругопластическом, пластическом, вязком, вязкоупругом, вязкопластическом и других состояниях п зависимости от его физико-механических свойств.  [c.253]

Остановимся подробнее на условии перехода образца в состояние механической неустойчивости и расчете предшествующей этому состоянию величины равномерной деформации (при всей ее условности), поскольку это достаточно широко применимая характеристика пластичности, связанная с различными проявлениями механического поведения металлов, в том числе с особенностями вязко-хрупкого перехода в ОЦК-металлах при низких температурах.  [c.164]


Высокая коррозионная стойкость сплавов принципиально не исключает возможность появления так называемого коррозионного растрескивания даже в средах, где установлена их высокая коррозионная стойкость. Поэтому коррозионное растрескивание представляет большую опасность. Она заключается в том, что разрушение вязкого в нормальных условиях металла, подверженного одновременно воздействию напряжения и определенной активной среды, происходит хрупко, т.е. без заметных деформаций и при напряжениях, более низких, чем временное сопротивление и даже предел текучести. Этот вид разрушения наиболее характерен для высокопрочных металлических материалов, склонных к пассивации, но находящихся, однако, в условиях, когда пассивное состояние под влиянием агрессивной среды может нарушаться в зоне максимальных напряжений. У титана вследствие высокой устойчивости пассивного состояния и быстрой регенерации во многих средах пассивных оксидных пленок при их механическом повреждении, а также из-за достаточной пластичности чувствительность к коррозионному растрескиванию оказалась во много раз меньше, чем у высокопрочных и нержавеющих сталей, алюминиевых и магниевых сплавов. Но по мере разработки более прочных титановых сплавов и расширения области их применения были установлены случаи явного коррозионного растрескивания и определены многие агрессивные среды, способствующие этому явлению.  [c.32]

Автомодельное поведение материала в области I и П1 проявляется, в первую очередь, в неизменности механизма разрушения, следовательно, в неизменности наблюдаемого рельефа излома независимо от свойств (механических характеристик) и структурного состояния материала. Из качественного анализа рельефа излома, когда разрушение реализовано в области I или П1, нельзя сделать заключение о том, каким было внешнее воздействие (скорость нагружения, температура, количество и направление действия сил и др.), и невозможно определить, какой материал разрушен (на какой основе), а также каковы его структурные особенности. При низкой скорости деформации могут проявляться и доминировать процессы скольжения в случае вязкого разрушения, и межзеренное проскальзывание в случае хрупкого разрушения. Однако эти особенности формирования рельефа излома могут быть одновременно следствием попадания в температурный интервал  [c.82]

Механизм ударно-абразивного изнашивания существенно различен в вязкой и хрупкой областях разрушения. Поэтому представляет интерес исследование зависимостей износостойкости наплавочных сплавов от их механических свойств раздельно для каждой из этих областей разрушения. Испытание всех наплавок, за исключением двух, независимо от уровня их легирования, показало более низкую износостойкость по сравнению с износостойкостью стали 45 в состоянии после закалки и низкого отпуска. Установлено, что твердость сплавов неоднозначно влияет на их износ при динамическом воздействии абразива. С увеличением твердости до Я1/ю=4500 МПа износ сплавов уменьшается, отрыв частиц при этом происходит в результате многократной пластической деформации (вязкая область разрушения). С увеличением твердости наряду с отрывом частиц происходит хрупкое выкрашивание, износ при этом увеличивается (хрупкая область разрушения).  [c.171]

Зависимость механических свойств материала ст скорости нагружения связана, как показано в первой главе, с изменением структурного состояния материала и вязкой составляющей сопротивления. Поэтому поведение металлических материалов под нагрузкой в общем виде может быть представлено в виде  [c.64]

Большое развитие получает разработка вопросов сопротивления разрушению в вязкой и хрупкой области при ударном и статическом деформировании, позволившая классифицировать и в значительной мере объяснить природу возникновения двух типов изломов, охарактеризовать температур-но-скоростные зависимости механических свойств, оценить роль абсолютных размеров и напряженного состояния для хрупкого разрушения и предложить предпосылки расчета на хрупкую прочность (Н. Н. Давиденков). Эти работы способствовали решению практических задач выбора материалов и термической обработки для изготовления крупных паровых котлов, турбин, объектов транспортного машиностроения, химической аппаратуры повышенных параметров и других производств, получивших большое развитие в этот период. С этим связано и расширение работ по исследованию усталости металлов, которое сосредоточивается на изучении условий прочности и обосновании соответствующих расчетных предпосылок в зависимости от вида напряженного состояния, качества поверхности и поверхностного слоя, условий термической обработки (И. А. Одинг, С. В. Серенсен), в первую очередь применительно к легированным сталям, производство которых в больших масштабах было организовано для нужд моторостроения, турбостроения, транспортного машиностроения и других отраслей, изготовляющих высоконапряженные в механическом отношении конструкции.  [c.36]

На рис. 1.4,6 нанесена также в координатах тах—Ymax бдиная кривая деформирования. Пересечение лучей с предельными прямыми на диаграмме механического состояния характеризует разрушение для случаев / и II — от среза, для случаев III и IV — от отрыва. При соответствующих значениях напряжения fmax по кривой деформирования можно определить деформации, сопутствующие разрушению. Чем больше напряженное состояние приближается к всестороннему растяжению, тем меньше оказывается пластическая деформация при разрушении, и вязкое разрушение сменяется хрупким. Отсюда следует, что на образование хрупкого состояния влияет тип напряженного состояния материала так возрастание нормальных растягивающих напряжений по сравнению с касательными повышает склонность материала к хрупкому разрушению.  [c.12]


На основе взаимной связи диаграмм деформирования и механического состояния (характеризующих сочетание касательной и нормальной напряженности в определенной точке детали) были качественно охарактеризованы условия перехода от вязкого разрушения к квазихруикому, а в зависимости от температуры — п к хрупкому.  [c.41]

Следующим этапом абобщения взглядов на двойственную природу прочности и разрушения металлов явились работы Я.Б. Фридмана, который в 1941 г. предложил схему (ее называют объединенной теорией Пррчности или диаграммой механического состояния), поясняющую возможность получения хрупкого или вязкого излома лри испытании металлов [392].  [c.13]

Следует отметить, что механическая модель вязко-пластическо-го течения, развитая в работах Харта, позволяет лишь качественно объяснить поведение СП материалов, а попытки установить количественную связь между величиной коэффициента т и пластичностью не дали однозначного результата [13—15]. Тем не менее, как было отмечено, практически у всех металлов и сплавов в СП состоянии установлена качественная взаимосвязь между д и коэффициентом т, который является важнейшей характеристикой СП материалов.  [c.12]

Кроме двух крайних механических состояний нагружаемых тел упругого, с которого почти всегда начинаются различные виды деформации, и разрушения, которым часто заканчивается процесс нагружения, существуют также промежуточные неупругие состояния. Все (или почти все) реальные материалы переходят из упругой стадии не непосредственно к разрушению, а предварительно претерпевают различные неупругие деформации. Отметим, что часто применяемый термин остаточная деформация не является синонимом пластической, так как остающаяся (после удаления нагрузки) деформация может, например, вызываться пластической, вязкой, задержанной высокоэластической, упругой деформацией (при наличии в теле внутренних остаточных напряжений), деформацией разрушения (при наличии трещин, развитие которых приводит к дополнительным остаточным деформациям тела, что особенно часто наблюдается, например, улитых материалов).  [c.106]

Как отмечалось в гл. 1, удобно различать пять основных состояний деформируемого тела упругое — У, пластическое — П, вязкое — В, высокоэластическое — ВЭ и состояние разрушения — Р, хотя в реальных твердых телах почти всегда возникают сочетания этих состояний упругопластическо-вязкое при горячей обработке давлением и при ползучести состояние разрушения при одновременной пластической деформации при обработке резанием и т. п. Во многих случаях необходимо отличать ранние от развитых или заключительных стадий деформации и разрушения, т. е. оценивать степень развития процесса в данном состоянии, например, величину и темп нарастания пластической деформации, или кинетику развития трещин. Не менее важным для конструктивных и других применений материалов является переход из одного механического состояния в другое, например, из упругого в пластическое, из пластического в состояние разрушения.  [c.252]

Жесткое напряженное состояние (но Я. Б. Фридману) — состояние, при котором металл разрушается хрупко, путем отрыва, под действием приведенных растягивающих напряжений — см. ниже диаграмму механического состояния). К числу жесткпх способов нагружения относится, например, трехосное растяжение, возникающее во внутренних слоях растягиваемого надрезанного образца. Малопластичные материалы (серые и белые чугуны, некоторые. титейные сплав ,[, твердые сплавы, ипструдгента. гьные стали) способны к вязкому  [c.20]

Мягкое напряженное состояние (по Я. Б. Фридману) — напряженное состояние, вызываюш,ее разрушение металла путем среза, с предшествующей разрушению значительной пластической деформацией, под действием наибольших касательных напряжений (/щах — см. диаграмму механического состояния). Наиболее мягким способом нахруження является осевое сжатие под гидростатическим давлением. Пластичные материалы, например конструкционные стали, способны разрушаться путем среза (вязко) даже при растяжении, тем более при кручении и сжатии, Высоконластичные металлы, например алюминий, медь, никель, разрушаются путем среза даже в условиях растяжения и изгиба с надрезом.  [c.21]

Влияние вида напряженного состояния наглядно показывает диаграмма механического состояния Я- Б, Фридмана, приведенная на рис. 79. Различные способы нагружения характеризуются коэффициентом мягкости а=ттах/5тах, где Ттах — наибольшие касатель-ные напряжения 5щах — наибольшие приведенные растягивающие напряжения. Для осевого сжатия а=2, кручения 0,8, осевого растяжения 0,5 и т. д. Из диаграммы видно, что для одного и того же материала при сжатии происходит вязкое разрушение путем среза с предварительной пластической деформацией. При растяжении происходит хрупкое разрушение путем отрыва. Эта диаграмма дает лишь качественное представление  [c.186]

Помимо изменения состояния деталей под нагрузкой Р, анализируют механические состояния материала в момент разрушения, они зависят от многих факторов. Различают три основных состояния материала хрупкое, квазихрупкое и вязкое и соответствующие им виды разрушений. На практике удобно в качестве границ, разделяющих эти состояния, принять так называемые критические температуры хрупкости материала, весьма емкие характеристики, которые уже занимают важное место в анализе надежности реальных конструкций. Анализ состояний удобно выполнять с использованием так называе-виды изпомов мой диаграммы разру- Fg=o% шения (рис. 9.5 [4], где I I Рв— процент волокна в изломе). Для формирования алгоритма прогнозирования прочностной надежности необходимо исследовать тип А/, б, л, е max разрушения, так как >1 критериальные условия Рис. 9.5 V и характеристики раз-  [c.196]

Рис. 1 Влияние длительности нагружения двухосным растягивающим напряженным состоянием Ог/О] = 0,3 при уровне нагруженности ш = 0,64 и показателе жесткости а = 0,82 на изменение механических и вязких свойств стали 17Г1С а - характеристики прочности 6 - характеристики пластичности в - удельная работа разрушения 1 - вдоль оси трубы 2 - Рис. 1 Влияние <a href="/info/39299">длительности нагружения</a> двухосным растягивающим <a href="/info/183899">напряженным состоянием</a> Ог/О] = 0,3 при уровне нагруженности ш = 0,64 и показателе жесткости а = 0,82 на изменение механических и вязких <a href="/info/58668">свойств стали</a> 17Г1С а - <a href="/info/213171">характеристики прочности</a> 6 - <a href="/info/24164">характеристики пластичности</a> в - <a href="/info/46504">удельная работа</a> разрушения 1 - вдоль оси трубы 2 -
Понижение порога хладноломкости и увеличение содер ка-ния волокна (%) в изломе приводит к поеышепию механических свойств. Наиболее простым решением вопроса является введение в сталь никеля, элемента, — понижающего температуру перехода в хладноломкое состояние и поэтому увеличивающего долю волокна в изломе в высокояроч.нон стали. В связи с этим улучшаются вязкие свойства, однако в обычных сталях нельзя увеличить содержание никеля свыше 4%, так как появляется остаточный аустенит (имеющий пониженную прочность, а продукты его распада пониженную вязкость), понижается то1Ч,ка A i и нельзя провести высокий отпуск. Решение задачи применения высоконикелевой стали состояло в одновременном легировании стали никелем и кобальтом. Кобальт повышает мартенситную точку (рис. 303) и уменьшает поэтому количество остаточного аустенита (рис. 303,6). Одновременно кобальт повышает точку A i и позволяет провести операцию высокого отпуска.  [c.392]


В машиностроении часто возникают технологические проблемы, связанные с обработкой материалов и деталей, форму и состояние поверхностного слоя которых трудно получить механическими методами. К таким проблемам относится обработка весьма прочных, очень вязких, хрупких и неметаллических материалов, тонкостенных нежестких деталей, пазов и отверстий, имеющих размеры в несколько микрометров, поверхностей деталей с малой шероховатостью или малой толщиной дефектного поверхностного слоя. Подобные проблемы решаются применением электрофизических и электрохимических (ЭФЭХ) методов обработки, условная классификация которых дана на рис. 6.1. Для осуществления размерной обработки заготовок ЭФЭХ методами используют электрическую, химическую, звуковую, световую, лучевую и другие виды энергии.  [c.400]

Закономерности разрушения материала при длительном нагружении достаточно хорошо могут быть описаны с помощью разработанной физико-механической модели межзеренного разрушения, которая базируется на математическом описании процессов зарождения и роста пор, обусловленного как пластическим деформированием, так и диффузией вакансий, а также на введенном в гл. 2 при анализе внутризеренного вязкого разрушения понятии — потере микропластической устойчивости. Модель позволяет прогнозировать долговечность при статическом и циклическом длительном нагружениях элементов конструкций в условиях объемного напряженного состояния и переменной скорости деформирования. В частности, с помощью указанной модели могут быть описаны процессы залечивания межзе-ренных повреждений при сжатии и рассчитана долговечность в условиях циклического нагружения при различной скорости деформирования в полуциклах растяжения и сжатия.  [c.186]

Процессы усталостного повреждения, условия возникновения и распространения трещин под циклической нагрузкой носят случайный характер, так как тесно связаны со структурной неоднородностью материалов и локальным характером разрушения в микро- и макрообъемах. Усталостные разрушения обычно возникают на поверхности, поэтому качество и состояние поверхности часто является причиной случайных отклонений в образовании разрушения. Эта особенность усталостных явлений порождает существенное рассеяние механических характеристик, определяемых при испытании под циклической нагрузкой. Рассеяние свойств при усталостном разрушении значительно превышает рассеяние свойств при хрупком и вязком разрушениях. В связи с этим статистический анализ и интерпретация усталостных свойств материалов и несущей способности элементов конструкций позволяют отразить их вероятностную природу, являющуюся основным фактором надежности изделий в условиях длительной службы.  [c.129]

Разрабатывая молекулярно-механическую теорию трения, проф. Крагельский И. В. предложил рассматривать образующуюся фрикционную связь между двумя трущимися телами как некоторое физическое тело, обладающее определенными свойствами, отличающимися от свойств обоих трущихся тел [179]. Это так называемое третье тело является, некоторого рода, связью, обладающей упруго-вязким характером. На свойства этой связи оказывают влияние состояние поверхности, величина давления между телами, время контактирования, скорость приложения нагрузки и т. п. Вследствие дискретного характера контактирования выступы, имеющиеся на поверхностях трения, сглаживаются или сменяются впадинами, т. е. материал в поверхностном слое при трении непрерывно передеформируется. Рассматривая область передеформирования как третье тело , можно считать, что силы внешнего трения обусловлены силами вязкого сдвига, возникающими в деформативной области обоих тел. В этой области происходят значительные пластические деформации, обусловленные возникновением в контактных точках высоких  [c.547]


Смотреть страницы где упоминается термин Механическое состояние вязкое : [c.70]    [c.129]    [c.9]    [c.11]    [c.578]    [c.10]    [c.9]    [c.51]    [c.268]    [c.163]    [c.123]    [c.8]    [c.8]   
Механические свойства металлов Издание 3 (1974) -- [ c.63 , c.65 ]



ПОИСК



Механическое состояние вязкое высокоэластическое

Механическое состояние вязкое упругое

Состояние вязкое

Структура тензора вязких напряжений и уравнений состояния чисто механического континуума



© 2025 Mash-xxl.info Реклама на сайте