Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упрочнение Влияние деталей — Методы

В монографии обобщены закономерности влияния структуры на модуль упругости и совместного влияния геометрических параметров поверхности на коэффициент жесткости и несущую способность литых деталей. Дан сравнительный анализ существующих способов физико-термического, химического и механического упрочнения поверхности деталей. Приведены методы определения и практического регулирования структуры, физико-химических свойств и остаточных напряжений в поверхностном слое отливок. Рассмотрены процессы заполнения форм жидким металлом, формирование и классификация дефектов поверхности и поверхностного слоя литых и механически обработанных деталей. Описаны особенности технологической оснастки и технологии новых и существующих способов формообразования для получения отливок с упрочняющим геометрическим орнаментом.  [c.2]


Работы по влиянию предварительной пластической деформации (дробеструйная обработка, обкатка роликами и т. п.) показали, что эти традиционные способы поверхностного упрочнения многих деталей не дают заметного повышения кавитационной стойкости. Этот метод, очевидно, можно применять для упрочнения поверхности деталей, изготовленных из нестабильных аустенитных сталей. При холодных пластических деформациях в этих сталях имеет место мартенситное превращение, способствующее повышению износостойкости поверхностных слоев, что особенно важно для деталей, находящихся в контакте с кавитирующим потоком жидкости,  [c.31]

Влияние технологических методов поверхностного упрочнения на кор-розионно-усталостную прочность деталей. Такие методы поверхностного упрочнения, как наклеп поверхности дробью или роликом, поверхностная закалка с нагрева т. в. ч., кратковременное азотирование и т. п. — весьма эффективные средства повышения сопротивления коррозионной усталости деталей машин. Причиной повышения пределов коррозионной выносливости в этих случаях являются значительные сжимающие остаточные напряжения в поверхностном слое, возникающие в процессе обработки. В табл. 16 представлены результаты усталостных испытаний образцов из стали марки 45, прошедших различную поверхностную обработку.  [c.169]

Основной объем исследований влияния ЭХО на циклическую прочность относится к гармоническим нагрузкам, главным образом при испытаниях знакопеременным изгибом. Значительно менее изучена долговечность при ударных нагрузках. Основным методом исследования циклической прочности после ЭХО являются сравнительные испытания долговечности образцов (деталей), обработанных методом ЭХО и методами механической обработки, преимущественно шлифованием. Значительное внимание уделено эффекту упрочнения поверхности различными методами упрочняющей обработки. В ряде работ предприняты попытки оценить влияние режима ЭХО, прежде всего плотности тока на циклическую прочность.  [c.71]

Для повышения усталостной прочности деталей применяют методы поверхностного наклепа. Эффект упрочнения в этом случае достигается изменением тонкой структуры, созданием в поверхностных слоях детали сжимающих внутренних напряжений и снижением вредного влияния концентраторов напряжений.  [c.336]


Большое влияние на характер эпюры остаточных напряжений оказывают методы поверхностного упрочнения и защитные покрытия 1145]. Установлено, что в поверхностных слоях деталей после  [c.74]

Следует отметить, что методы, относящиеся ко второй и третьей группам, существенно уступают предыдущим методам по ряду свойств—прочности сцепления, технологичности, влиянию на изменение размеров деталей и т. п., и поэтому находят меньшее применение, чем методы диффузионного упрочнения, в частности оксидирования. Поэтому нами основное внимание уделено антифрикционным свойствам титана, упрочненного диффузионными методами.  [c.194]

III. Технологические методы обработки трущихся деталей. Влияние точности размера, микрогеометрических отклонений и взаимного расположения деталей на износ термическая, химическая и химико-термическая обработка деталей гальванические покрытия поверхностей деталей наплавка поверхностей детален поверхностное пластическое деформирование и выглаживание поверхностей покрытия, нанесенные фрикционным методом и методом напыления упрочнение поверхностей лазерным лучом.  [c.41]

Наиболее эффективными средствами повышения пределов выносливости деталей в условиях коррозии являются такие методы поверхностного упрочнения, как наклеп поверхности, поверхностная закалка с нагревом т. в. ч., азотирование и др. Так, обкатка роликами или обдувка дробью повышают предел выносливости образцов из стали 45 в морской воде в 2—2,5 раза, поверхностная закалка с нагревом т. в. ч. — в 3,5 раза, кратковременное азотирование — в 2 раза [49]. Причиной столь эффективного положительного влияния указанных методов являются значительные остаточные сжимающие напряжения в поверхностном слое детали, возникающие в результате их применения, препятствующие образованию и развитию усталостных повреждений (см. табл. 3.17).  [c.124]

Одним из эффективных методов уменьшения отрицательного влияния локальных дефектов является поверхностное упрочнение деталей наклепам [3, 5].  [c.135]

Влияние технологических методов поверхностного упрочнения 150—152 Сопротивление усталости деталей с предельно острым надрезом 165—168 —  [c.222]

Известная зависимость, согласно которой пластический момент сопротивления превышает упругий, причем тем в большей степени, чем менее выгодна форма сечения, отражает ту же закономерность. Может быть установлено определенное соотношение между отношением прочностей поверхностного слоя и сердцевины и относительной толщиной слоя. Наивыгоднейшим является совпадение эпюр Ос и стн по всему сечению. Конечно, следует учитывать влияние состояния поверхностного слоя не только на Ос, но и на Он, так как, например, методы поверхностного упрочнения (цементация, азотирование, поверхностный наклеп и т. п.) создают значительные остаточные напряжения. В тонкостенных изделиях градиент Он обычно мал, а поэтому невыгоден и большой градиент Ос- По-видимому, этим объясняется малая эффективность поверхностного упрочнения для многих тонкостенных деталей.  [c.348]

Основными факторами, определяющими особенности формирования механических, а также физико-химических свойств тонких поверхностных слоев при обычной технологической обработке (например, резанием), являются пластическая деформация, как правило однократная, температура, а также действие рабочих сред. При простой специальной обработке поверхностных слоев деталей машин, например при упрочнении механическим наклепом, определяющим показателем является степень пластической деформации. При сложных специальных методах технологической обработки, например при химико-термической обработке, главное влияние на свойства поверхностных слоев оказывает режим нагрева и охлаждения и действие специальных активных сред.  [c.32]


В технической литературе приводится много примеров успешного применения всех перечисленных методов упрочнения деталей, а также сообщаются результаты многочисленных экспериментальных работ, посвященных выяснению влияния холодной и термохимической обработки поверхностных слоев материала на прочность деталей.  [c.655]

Наибольшее влияние на сопротивление пластическому деформированию оказывают углерод, а затем (в порядке уменьшения влияния) кремний, никель, марганец, хром. По степени влияния на деформационное упрочнение элементы располагаются в такой последовательности углерод, кремний, хром, никель, марганец. Это соответствует рекомендациям ГОСТ 10702-78 по использованию марок конструкционных сталей для изготовления деталей методами холодного деформирования. В табл. 1.2.25 -1.2.28 приведены характеристики обрабатываемости резанием и прокаливаемости сталей.  [c.81]

Эффективность различных методов упрочнения оценивается в первую очередь по их влиянию на напряжения в ПС и остаточные деформации деталей (образцов). Результаты исследований показывают следующие особенности влияния методов и режимов упрочнения на начальные и остаточные напряжения.  [c.229]

Если температура ПС заготовки, на которую наносится покрытие, и длительность процесса небольшие, то на качество покрытия оказывают влияние остаточные напряжения и наклеп в ПС заготовки. Они повышают диффузионную подвижность химических элементов и интенсифицируют взаимодействие между покрытием и основным металлом. Для деталей, работающих при невысоких температурах с покрытиями, которые нанесены низкотемпературными методами, состояние ПС до покрытия оказывает влияние на их усталостную прочность. Так, например, наблюдается увеличение усталостной прочности деталей, ПС которых перед покрытием подвергается упрочнению ППД. С повышением температуры и увеличением длительности процесса нанесения покрытий влияние остаточных напряжений и наклепа на эксплуатационные свойства деталей с покрытиями уменьшается.  [c.273]

Наличие функциональных зависимостей для определения параметров кривой усталости от предела выносливости и коэффициента упрочнения позволяют дифференцированно учитывать особенности рассчитываемой детали. Рассмотренный метод оценки влияния упрочнения на циклическую долговечность деталей позволяет вычислить средневероятную долговечность и среднее напряжение, соответствующее заданной долговечности, а также решить и обратную задачу, состоящую в определении коэффициента упрочнения для достижения требуемой долговечности. Такой подход позволяет проектировать, например, оптимальный привод с  [c.103]

Для повьппения предела вьшосливости деталей широко используют технологические методы поверхностного упрочнения обработку роликами, обдувку дробью, закалку токами высокой частоты, цементацию, азотирование, цианирование и др. Эффект поверхностного упрочнения перечисленными методами заключается в создании в поверхностном слое остаточных сжимающих напряжений, благотворно влияющих на усталостную прочность, и переноса очага зарождения усталостной трещины с поверхности в подслойную область. В расчетах влияния поверхностного упрочнения учитывают коэффициентом упрочнения  [c.354]

Термическая обработка с применением скоростного электронагрева позволяет получать высокодисперсную структуру металла и является перспективным методом упрочнения длинномерных деталей, в частности, глубиннонасосных штанг (d = 16 25 мм / =8000 мм). Л.А.Ефи-мова и В.В.Булавин [122, с. 110—112] изучали влияние скорости нагрева при нормализации и закалке сталей 40 и 20HIVI на сопротивление усталостному разрушению. При печном нагреве скорость нагрева составляла 2°С/с, а при электроконтактном 30—35°С/с. Испытания проводили на стандартных вращающихся с частотой 0,75 и 50 Гц образцах при консольном изгибе в воздухе, 3 %-ном растворе Na I и пластовой воде, содержащей 30 % нефти, при/У= 10 цикл.  [c.55]

Величина и знак остаточных напряжений после механической обработки зависят от обрабатываемого материала, его структуры, геометрии и состояния режущего инструмента, от эффективности охлаждения, вида и режима обработки. Величина остаточных напряжении может быть значительной (до 1000 МПа и выше) и оказывает существенное влияние на эксплуатационные характеристики деталей машин, их износостойкость и прочность. Выбором метода и режима механической обработки можно получить поверхностный слой с заданной величиной и знаком остаточных напряжений. Так, при точении закаленной стали 35ХГСА резцом с отрицательным передним углом 45° при скорости резания 30 м/мин, глубине резания 0,2-0,3 мм было получено повышение предела выносливости образцов на 40-50% и обнаружены остаточные сжимающие напряжения первого рода, доходящие до 600 МПа [25]. При шлифовании закаленной стали в поверхностном слое были обнаружены остаточные сжимающие напряжения до 600 МПа [26]. В некоторых случаях напряжения первого рода создаются намеренно в целях упрочнения. Например, для повышения усталостной прочности. Такой эффект получают наложением на поверхностный слой больших сжимаюп их напряжений путем обкатки поверхности закаленным роликом или обдувкой струей стальной дроби. Такой прием позволяет создать остаточные напряжения сжатия до 900-1000 МПа на глубине около 0,5 мм [25].  [c.42]

Почти все известные термопласты в сочетании с упрочняющими волокнами применяются в деталях, изготовляемых различными методами. При этом назначение детали, требования к ее внешнему виду, условия эксплуатации, а также экономичность и механические свойства оказывают решающее влияние на выбор материалов матриц. Например, термореактивные смолы используют в основном для тех деталей кузова, которые требуют окраски в готовом виде. Термопласты в большей степени склонны к пигментации, поэтому их применяют в формованных деталях, внешнему виду которых придается важное значение. Улучшение физических характеристик деталей из термопластов, изготовляемых методом иижекционного прессования, обычно достигается путем добавления в матрицу умеренного количества волокна-упрочнителя. В случае применения формования прессованием для упрочненных полиэфирных смол показана возможность производства крупных партий деталей больших размеров при сравнительно невысоких затратах. Например, отдельные детали кузова из композиционного материала автомобиля Шевроле Корвет имели размеры 1,8 X 3,0 м при массе около 24 кг.  [c.13]


Электроэрозионная обработка имеет ограниченное применение для обработки силовых деталей авиационных и ракетных двигателей из жаропрочных сплавов. Но поскольку в некоторых случаях этот метод применяется, например, для обработки лопаток турбин за одно целое с диском в ТНА, то следовало выяснить состояние поверхностного слоя и его влияние на усталостную прочность. Исследование показало, что поверхностный слой сплава ЭИ437А после электроэрозионнрй обработки и последующей термообработки (см. табл. 3.6, режим 35) имеет глубину упрочненного слоя до 35—50 мкм. Интенсивность упрочнения поверхностного слоя при этом незначительна и составляет примерно 13—15%. Такая глубина и степень упрочнения поверхностного слоя связаны с особенностями физико-химических процессов электроэрозионной обработки высокими мгновенными температурами на отдельных участках обрабатываемой поверхности, насыщением поверхностного слоя, преимущественно по границам зерен, углеродом из рабочей жидкости (керосина) и образованием в нем карбидов хрома и титана [1 ].  [c.109]

Обкатка роликами и шариками применяется в машиностроении как средство упрочнения валов, осей, пальцев, шпилек, зубчатых колес и других деталей. Накатывают цилиндрические поверхности, галтели, канавки, впадины зубьев и шлицев, торцовые поверхности и резьбы. По эффективности обкатка занимает одно из первых мест среди других методов поверхностного упрочнения. Она позволяет получить слой наклепа 3 мм и более, т. е. значительно больший, чем, например, при дробеструйной обработке. Это особенно важно для деталей больших размеров (глубина наклепа при обкатке подступич-ной части вагонных осей достигает 19 мм). Твердость поверхностных слоев, по сравнению с исходной, повышается на 20—40%, предел выносливости гладких образцов — на 20—30%, а при работе в коррозионной среде в 4 раза. В зонах концентрации напряжений, в местах контакта с напрессованными деталями предел выносливости повышается в 2 раза и более. Срок службы различных валов в результате накатки увеличивается в 1,5—2 раза, осей вагонов — в 25 раз, штоков молотов — в 2,5—4 раза и т. д. Обкатка не только создает наклеп и формирует остаточные напряжения сжатия, но и на 2—3 класса снижает шероховатость поверхности, доводя ее до 8—10-го классов. В связи с этим в ряде случаев.обкатка вытесняет малопроизводительное шлифование. Наряду с непосредственным упрочнением от наклепа, при этом устраняется вредное влияние на прочность деталей концентраторов напряжения, возникающих при шлифовании из-за прижогов.  [c.107]

II. Методы упрочняющей обработки поверхностей (см. рис. 7.13) в основном предназначаются для улучшения физико-механических свойств поверхностного слоя повышается твердость поверхностного слоя, в нем возникают деформационное упрочнение и остаточные напряжения сжатия или растяжения. При упрочняюш,ей обработке участков концентрации напряжений (галтелей и др.) влияние этих напряжений на прочность детали уменьшается. Влияние деформационного упрочнения и сжимающих остаточных напряжений благоприятно для повышения предела выносливости, что увеличивает долговечность деталей, особенно работающих при циклических нагрузках.  [c.172]

В кннге рассмотрены технологические основы надежности машин и методы оценки ее в процессе проектирования и производства. Приведены данные по обеспечению надежности при разработке, проектировании и производстве машин. Показано влияние материалов, способов и режимов формообразования, а также методов упрочнения рабочих поверхностей деталей на эксплуатационные свойства и надежность машин. Изложены основные методы обеспечения надежности при сборке, испытании и эксплуатации машин. Даны новые материалы по методам упрочненил деталей.  [c.2]

Для достижений максимальной эффективности упрочнения деталей, работающих в условиях статических и динамических нагрузок, рекомендуется содержание углерода в цементованном слое поддерживать в пределах 0,80—1,05%. В случае применения сталей с 0,27—0,34% С глубину цементованного слоя следует назначать в пределах 0,5—0,7 мм. Для цементуемых сталей, содержащих 0,17—0,24% С, глубину цементованного слоя принимают от 1,0 до 1,25 мм. При этом следует иметь в виду, что сопротивление усталости деталей машин без концентраторов напряжений при малых глубинах слоя зависит от прочности сердцевины, при больших — от прочности поверхностного слоя. В этом случае повышение глубины упрочненного слоя оказывается полезным только до 10—20%) радиуса детали. При глубине слоя меньше этих значений сопротивление усталости повышается с увеличением прочности сердцевины. При наличии на поверхности деталей концентраторов напряжений сопротивление усталости повышается с увеличением остаточных напряжений сжатия, а глубина слоя должна быть очень малой (1—2% радиуса детали). Главным фактором, вызывающим увеличение предела выносливости при химико-термических методах обработки деталей, являются остаточные напряжения, возникающие в материале детали в процессе упрочнения. При поверхностной закалке т. в. ч. главное влияние на повышение предела выносливости и долговечности оказывает изменение механических характеристик материала поверхностного слоя. В еще большей степени это относится к упрочнению наклепом.  [c.302]

К наиболее часто встречающимся и хорошо зарекомендовавшим себя на практике методам поверхностного упрочнения деталей машин относится поверхностный наклеп (обкатка шариками и роликами, обдувка дробью, алмазное выглаживание, виброгалтовка, i гидродробеструйная < обработка, инерционно-динамическое упрочнение и др.). Значительный вклад в разработку теории и практики поверхностного наклепа, исследование его влияния на усталость и коррозионную усталость сталей внесли И.В.Кудрявцев, Г.В.Карпенко, А.В.Рябченков, В,А.Гладковский и др. Краткий обзор этих работ приведен автором [113].  [c.158]

Ограниченность конфигурации облучаемых на ускорителях деталей и образования активированных участков в труднодоступных местах (например, на ножках зубьев) необходимость прибегать к методу радиоактивных вставок, а износ детали характеризовать износом радиоактивной вставки можно далеко не всегда. Активация радиоактивными вставками, широко применяемая при исследовании низших кинематических пар, работающих в режиме трения скольжения, для количественного измерения износа зубчатых колес (и, вообще, тяжелонагруженных, высших кинематических пар) непригодна. Кроме непоказательности локального измерения износа и несоответствия износа вставки износу зубчатого колеса, расположение вставок на зубьях представляет собой искажение исследуемой поверхности, влияющее на приработку и гидродинамику тяжелонагруженного контакта. С повышением твердости зубчатых колес возрастает роль вставки как концентратора напряжений. Если же целью исследования является не количественное измерение износа зубчатых колес, а качественное определение влияния на их изнашивание какого-либо фактора, причем влияние этого фактора на изнашивание несравненно сильнее, чем погрешностей метода вставок, то последний может быть применен в некоторых специфических условиях на крупногабаритных, неупрочненных, слабонагружен-ных упрочненных, слабонагруженных зубчатых колесах и т. п.  [c.276]


Техника ближайшего будушего потребует применения более прочных материалов для работы в условиях высоких скоростей, вызывающих разрушение металла в микрообъемах. В связи с возрастающими требованиями новой техники дальнейшие исследования в этой области должны быть направлены в первую очередь на разработку теоретических положений легирования сталей, стойких к гидроэрозии. Необходимо провести глубокие исследования для разработки физико-химической теории образования эрозионностойких многокомпонентных диффузионных покрытий. Следует изучить влияние напряженного состояния на интенсивность процесса гидроэрозии. Исследования необходимо проводить также в направлении изыскания эрозионно-стойких наплавок и удобных методов их нанесения. Наплавки могут быть использованы и для восстановления изношенных деталей и их упрочнения.  [c.8]

Задачи, стоящие перед ТЦО, разноплановы. Стали и другие сплавы, подвергаемые ТЦО, существенно отличаются по химическому составу и физике процессов упрочнения. Разнообразны способы нагревов и охлаждений. Все это усложняет предварительную отработку технологического процесса ТЦО деталей. В целях ускорения и обеспечения достаточно высокой степени достоверности получаемого результата при разработке режимов ТЦО целесообразно использовать метод планирования экспериментов. В каждом конкретном случае ставится задача достижения определенного уровня тех или иных свойств, например наибольшей ударной вязкости или наибольшей прочности при заданном значении характеристик пластичности. Как показано в предыдущих главах, формирование свойств и структуры сплавов при ТЦО определяется выбранными режимами. Исследование влияния отдельных параметров обработки дает необходимые сведения для дальнейшей оптимизации процесса в целом. При этом определено, что механические свойства сплавов существенно зависят от таких параметров режима ТЦО, как скорости нагревов и охлаждений, максимальная и минимальная температуры в циклах, число циклов и др. Кроме того, такие стандартные  [c.210]

Упрочняюш,ее действие обкатки роликом сохраняется до более высоких температур, что позволило ЦНИИТМАШ [33] рекомендовать этот метод повышения усталостной прочпости и для деталей, работающ,их при высоких температурах. Однако степень упрочнения, достигаемого обкаткой роликом, заметно уменьшается с повышением температуры. У гладких образцов стали 1Х18Н9Т повышение сг 1ь под влиянием обкатки роликом составило при 20° — 70%, ири 200—500° — 50%, при 600° — 29%. У надрезанных образцов стали 1X13 обкатка роликом повышает при 20°  [c.311]

Долговечность отремонтированных деталей, работающих в условиях циклически меняющихся напряжений, можно существенно повысить, применив технологические способы упрочнения рабочих поверхностей деталей методами пластического де рмирования или наклепа. При любом методе пластического деформирования или наклепа в детали создаются остаточные сжимающие напряжения, которые во многих случаях устраняют отрицательные влияния концентраторов напряжения.  [c.89]

Наряду с конструктивными методами снижения нолп1нальных и местных напряжений существует обширный арсенал технологических способов упрочнения элементов машин (табл. 12). Наиболее распространенной является закалка деталей машин. Она обеспечивает общее упрочнение деталей, повышение их износостойкости, надежности прессовых соединений. В частности, ее разновидность — сорбитизацию — процесс с образованием структуры сорбита, эффективно используют для упрочнения крановых колес. В части увеличения усталостной прочности и износостойкости эффективны также поверхностная закалка, химико-термическая обработка, пластическое деформирование (наклеп) поверхностей и термомеханическая обработка (ТМО). Два первых процесса имеют ряд общих особенностей а) упрочнению подвергается неглубокий поверхностный слой 1материала деталей, а глубинные слон не претерпевают существенных превращений, благодаря чему металл сердцевины остается вязким, что обеспечивает высокую несущую способность детали при ударных нагрузках б) в упрочненном поверхностном слое возникают значительные сжимающие остаточные напряжения, что ослабляет влияние концентрации напряжений от внешней нагрузки и повышает сопротивление детали усталостному разрушению.  [c.51]

На железнодорожном транспорте легированные стали применяются меньше, чем углеродистые. С увеличением выпуска электровозов и тепловозов, в которых применяется значительное количество деталей, изготовленных из легированных сталей, потребность в них возрастает. Разработка. методов поверхностного упрочнения деталей, применяемых на железнодорожном транспорте, изготовляемых из легированных сталей, приобретает все большее практическое значение. Легирование хро.мом и никелем суш,ественно изменяет природу сталей, а дополнительное насыщение поверхностного слоя углеродом или одновременно углеродом и азотом приводит к образованию структуры, значительно отличающейся по своим свойствам от структуры углеродистых сталей. Химико-термическая обработка (цементация и нитроцементация) легированных -сталей изучалась в большей степени, чем углеродистых сталей обыкновенного качества. Это изучение касалось преимущественно технологии ведения процесса. Влияние процесса цементации на механические свойства стали исследовали И. С. Козловский [46], Ю. Ф. Оржеховский, Б. Г. Гуревич и С. Ф. Юрьев [31]. Они изучали влияние остаточных напряжений на повышение предела вьшосливости при химико-термической обработке.  [c.168]

В настоящее время широкое распространение получила концепция усталостного разрушения металла, базирующаяся на дислокационной теории. Дислокации представляют линейные дефекты кристаллических решеток. Образования и развитие дислокаций представляют собой пластические деформации. Особенности и дефекты структуры металла (границы зерен, инородные атомы, неметаллические включения) препятствуют движению дислокаций и являются центрами их скопления. Скопление дислокаций ведет сначала к упрочнению, а затем к разрыхлению металла, т. е. образованию микротрещин. Имеется несколько дислокационных схем зарождения трещин. На базе микротрещин образуются макротрещины, приводящие к отслаиванию кусков металла, т. е. к питтингообразованию. Правда, практических попыток создания на этой базе нового метода расчета подшипников на контактную выносливость пока нет. До настоящего времени еще окончательно не решен вопрос о наиболее приемлемой теории усталостной выносливости деталей подшипников. Работами А. И. Петрусевича [153], Д. С. Коднира [84] и других исследователей показано значительное влияние гидродинамического эффекта на работу подшипников. Однако применительно к подшипникам качения эти работы находятся еще в начальной стадии.  [c.65]


Смотреть страницы где упоминается термин Упрочнение Влияние деталей — Методы : [c.167]    [c.44]    [c.301]    [c.2]    [c.4]    [c.156]   
Расчет на прочность деталей машин Издание 3 (1979) -- [ c.645 ]



ПОИСК



Влияние Метод

Упрочнение

Упрочнение деталей



© 2025 Mash-xxl.info Реклама на сайте