Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура металлов, дефекты

Коррозионно-механические трещины постепенно зарождаются на металлической поверхности под влиянием локализации анодного процесса и растягивающих напряжений в отдельных ее участках неоднородностях структуры металла, дефектах защитной пленки, поверхностных дефектах (царапины, риски, риски от обработки, трещины и др.).  [c.333]

Исходные зависимости, определяющие процесс разрушения, связывают возникающие под нагрузкой напряжения и деформации с механическими свойствами металла. Эти зависимости получают из рассмотрения условий равновесия тел с трещинами. Появление начальных трещин определяется несовершенством структуры металла, дефектами изготовления (в частности сварных соединений), повреждениями, возникающими в условиях эксплуатации (в том числе усталостными и коррозионными).  [c.23]


Структура металлов, дефекты 1—26  [c.521]

Уменьшение концентрации СгОз в растворе Особенности структуры металла, дефекты прокатки  [c.37]

При Исследовании макроструктуры, т. е. структуры, видимой невооруженным глазом или при малом увеличении, определяют характер кристаллизации, контуры провара, зону термического влияния, ликвацию, неоднородность структуры металла, дефекты сварки. (Ликвацией называется неоднородность химического состава и неравномерность расположения вредных примесей).  [c.83]

Коррозионно-механические трещины постепенно зарождаются на металлической поверхности под влиянием локализации анодного процесса и растягивающих напряжений в отдельных ее участках неоднородностях структуры металла, дефектах защитной пленки, поверхностных дефектах (царапины, риски при обработке, трещины и др.). Дальнейшее развитие коррозионных трещин происходит в результате совместного действия трех основных факторов, которые дополняют друг  [c.203]

Кристаллическая структура металлов и наличие различных структурных дефектов сказываются на процессах растворения (коррозии) металлов.  [c.326]

За последнее время уделяется большое внимание влиянию субструктуры на коррозию металлов. Дефекты структуры, выходящие на поверхность металла, обладают повышенной реакционной способностью и по ним идет в первую очередь растворение металла. В зависимости от плотности активных мест, обусловленных на различны верн х " выходом дислокаций на поверхность,  [c.327]

Как указывалось ранее, кристаллическая решетка металла, подвергнутого холодной обработке давлением, искажается в ней возникают напряжения, повышается количество дефектов решетки изменяется тонкая структура металла — блоки мозаики измельчаются, зерна металла раздробляются, а равноосная форма их (наблюдавшаяся до деформации) теряется. Осколки зерен получают продолговатую форму, вытягиваясь в направлении действия деформации при растяжении и перпендикулярно к направлению при сжатии. Кристаллические решетки зерен приобретают определенную пространственную ориентировку, называемую текстурой деформации. Микроструктуру металла после холодной деформации называют волокнистой.  [c.87]

К недостаткам сварных соединений относятся изменение структуры металла вблизи сварных швов из-за нагрева деталей до высокой температуры возникновение внутренних напряжений и деформаций деталей в. результате неравномерности нагрева и охлаждения свариваемых изделий, а также неравномерной усадки наплавленного металла опасность появления трещин, газовых пузырей, шлаковых включений /, подреза 2, непровара 3 и других дефектов швов (рис. 248).  [c.388]


Металлографические исследования проводят для определения структуры основного металла и сварных соединений аппарата. Исследуя структуру металла сварного соединения, можно установить правильность выбора режимов сварки, типа электродов, флюсов, присадочного металла и других факторов, определяющих качество сварного шва, а также выявить дефекты шва и установить причины их образования. Полный металлографический анализ должен состоять из исследования макро- и микроструктуры металла шва, зоны термического влияния и определения структуры основного металла.  [c.301]

Известно [27, 30], что ограничение значений твердости металла сварного шва является одним из практических методов снижения склонности сварного соединения к сероводородному растрескиванию. Как следует из [11, 12, 25, 31], на образование трещин в сварном соединении оказывает влияние неоднородность структуры металла, наличие в ней зон, склонных к растрескиванию, уровни действующих и остаточных напряжений. Именно в сварных соединениях локализуется большая часть разрушений металла, связанных с сероводородным растрескиванием. Наиболее негативное влияние оказывает быстрое охлаждение шва с образованием перлитно-бейнитной смеси с мартенситом. Стойкость к сероводородному растрескиванию металла сварного шва меньше, чем основного металла не только из-за наличия остаточных напряжений, но и вследствие присутствия различных дефектов. Для сталей повышенной прочности характерно сероводородное растрескивание по сварному шву и зоне термического влияния. Для сталей обычной прочности избирательное разрушение по шву и зоне термического влияния отмечается лишь при переохлаждении.  [c.63]

Зона скопления дислокаций характеризуется фрактальным распределением в ней данных линейных дефектов. В зависимости от конкретного геометрического образа дислокационной структуры и принадлежности к какой-либо из стадий эволюции дислокационной подсистемы (хаос, клубки, ячейки, фрагменты) данная зона характеризуется определенным энергетическим содержанием и различается значениями фрактальной размерности дислокационных структур. Среди различных дислокационных ансамблей ячеистые конфигурации наиболее отвечают диссипативному состоянию структуры металла. Они характеризуются значением фрактальной размерности дислокационной структуры Ор а 1,5.  [c.119]

Кроме рассмотренных выше дефектов в сварных соединениях имеют место дефекты, связанные с образованием нежелательных структур металла при его кристаллизации и с условиями нагрева и охлаждения характерных. чон, с ко-  [c.12]

Наблюдаемые в опытах большие коэффициенты упрочнения у металлов с г. ц. к. решеткой кроме А1 можно объяснить низкой энергией дефекта упаковки (например, аустенитные стали). Как известно [см. формулу (55)], меньшим значением д.у соответствует большая равновесная ширина do расщепленной дислокации, что затрудняет поперечное скольжение и переползание дислокаций и повышает напряжение пересечения леса дислокаций. Несмотря на существенное различие дислокационных структур металлов с различной кристаллической решеткой, малые коэффициенты упрочнения металлов с о. ц. к. решеткой можно удовлетворительно объяснить большим числом систем скольжения и высокой энергией дефекта упаковки, а отсюда более свобод-  [c.471]

Целью термической обработки поковок является устранение дефектов, возникших при нагреве и обработке давлением (перегрев, остаточные напряжения), улучшение обрабатываемости резанием, подготовка структуры металла к окончательной термической обработке (после обработки резанием).  [c.143]

Общая схема литья. Процесс получения отливки складывается из следующих основных операций изготовления литейной формы плавки металла заливки металла в форму затвердевания металла и охлаждения отливки выбивки отливки из формы обрубки и очистки отливки термической обработки отливки контроля качества отливки и сдачи ее на механическую обработку. Каждая из перечисленных сложных и многопереходных по характеру операций должна осуществляться таким образом, чтобы был обеспечен высокий уровень качества отливки по всем показателям, включая точность размеров и чистоту поверхности, благоприятную структуру металла, а также отсутствие наружных и внутренних литейных и металлургических дефектов.  [c.45]


Собранная форма, состоящая из скрепленных опок, с помощью специального ковша заливается через литниковую систему и остается на месте заливки до завершения кристаллизации и охлаждения тела отливки. Затем опоки раскрепляются и на специальной установке производится выбивка отливки из формы. Затем производятся обрубка и очистка, во время которых от отливки отделяется литниковая система с прибылями, удаляются остатки формовочной и стержневой смесей и осуществляется очистки поверхности отливки от различных дефектов. Проводимая после этого термическая обработка имеет целью устранить грубозернистую, дендритную структуру металла, литейные напряжения и подготовить металл отливки к механической обработке.  [c.47]

К недостаткам сварных соединений относятся коробление деталей в результате неравномерности нагрева и охлаждения свариваемых изделий изменение структуры металла вблизи сварных швов, ведущее к понижению прочности опасность появления трещин, шлаковых включений, непровара и других дефектов швов.  [c.221]

Существенное влияние на прочность сварного шва оказывает качество электродов, а также подготовка деталей к сварке. Наличие ржавчины, масла, мазута, краски на поверхности деталей, подлежащих сварке, может привести к непровару (один из наиболее серьезных дефектов), неоднородности структуры металла шва, наличию шлаков и окислов, а также к образованию других дефектов в сварных швах. Проверка качества швов производится визуально, с помощью рентгеновских лучей, ультразвука и радиоактивных изотопов, а также путем испытания сварных конструкций под давлением или нагрузкой.  [c.452]

В общем случае дислокационные структуры, развивающиеся прц деформации в металлах с ОЦК-решеткой [289, 290], аналогичны структурам металлов с ГЦК-решеткой с высокими значениями энергии дефекта упаковки, что было показано еще в первых исследованиях струк-  [c.121]

Контроль соединений, выполненных стыковой контактной сваркой. Особенность контроля этих соединений заключается в том, что структура металла в околошовной зоне очень неоднородна и представляет собой чередующиеся слои металла с зернами разной величины (до шести слоев с каждой стороны от шва). Каждый слой параллелен линии сплавления. Ширина слоев находится в пределах от 1 до 3 мм, а величина зерна в соседних слоях может существенно отличаться. Такая структура приводит к тому, что УЗ-колебания интенсивно отражаются от границ слоев. В результате при контроле эхо-методом возникает высокий уровень шумов от структуры шва. Выявление дефектов на фоне. этих шумов затруднено. Однако, выбрав оптимальное направление озвучивания, можно повысить амплитуду сигналов от дефектов при неизменном уровне шумов. Тем самым можно добиться повышения отношения сигнал — шум при выявлении дефектов,  [c.356]

Еще один подход к выявлению дефектов рассматриваемых сварных швов основан на том, что эти дефекты возникают в случае нарушения технологии сварки. Но при этом и структура металла сварного соединения отличается от той, которая возникала бы, если бы рел<имы сварки были выдержаны в соответствии с заданными условиями. Поэтому, наблюдая за структурой соединения, можно с большой достоверностью предсказывать вероятность появления дефектов. Этот способ особенно эффективен при грубых нарушениях термического цикла сварки. Хуже выявляются дефекты, возникающие при нарушениях режима осадки. В качестве измеряемой характеристики можно использовать затухание УЗ-колебаний в сварном шве, например, при прозвучивании его по зеркально-теневой схеме [32]. Если разность амплитуд сигналов, регистрируемых при прозвучивании по этой схеме основного мелкозернистого металла и металла шва, мала (не превышает 4 дБ), то сварное соединение бракуется. Если же эта разность достигает 10 дБ и более, следовательно, термический цикл не был нарушен, что привело к достаточному укрупнению зерна, и появление дефектов маловероятно.  [c.358]

Известно, что строение отдельно взятого металлического зерна никогда не бывает однородным по всему сечению. Еще в большей степени это справедливо для тонких поверхностных слоев, находящихся в зоне контакта при трении. Усталостные трещины возникают на дефектах, всегда имеющихся в твердом теле они связаны как со структурой металла, так и со следами обработки. В этом случае число циклов, приводящих к разрушению материала, составляет 10 —10 .  [c.16]

Дополнительные сложности возникают при контроле литья, в структуре металла которого имеется аустенит, вызывающий оседание порошка в виде изогнутых, похожих на трещины, черточек в данном случае чувствительность контроля должна быть такова, чтобы ложные оседания порошка не мешали расшифровке дефектов.  [c.54]

Дальнейшее развитие коррозионных трещин происходит в результате совместного действия трех основных факторов, которые дополняют друг друга 1) электрохимического—неоднородности структуры металла, дефекты защитных пленок, дно коицентра-  [c.334]

При микроструктур ном анализе (микрранализ) исследуется структура металла при увеличении в 50—2000 раз с помощью оптических микроскопов. Микроисследование позволяет установить качество металла, в том числе обнаружить пережог металла, наличие окислов по границам зерен, засоренность металла неметаллическими включениями (оксидами, сульфидами), величину зерен металла, изменение состава металла при сварке, микроскопические трещины, поры и некоторые другие дефекты структуры.  [c.153]

При циклических режимах нагружения длительно проработавших аппаратов металл подвергается деформационному старению. При этом изменяется дислокационная структура металла и перераспределяются примесные атомы (например, азота) в кристаллах. В результате старения металла повышаются пределы прочности сГв и текучести ат(сго2), значительно снижаются пластические характеристики (относительное удлинение 5 и сужение ц/). Металл становится более хрупким, и это приводит к ускорению усталостного разрушения. Поскольку в вершине дефектов всегда наблюдается концентрация деформаций, там и старение протекает быстрее.  [c.126]


Общепринятая технология сварки с подогревом приводит к образованию широких гвердых участков подкалки в около-шовных зонах с крупноигольчатой мартенситной структуро й Укрупнение зерен, наряду с сопутствующими закалочными процессами, способствует скоплению на их границах дефектов кристаллической структуры, росту внутренней энерг ии i снижению сопротивления коррозионному разрушению Структура аустенитного металла шва при этом более 1етеро-генная и вторичные избыточные фазы образуют замкнуплс цепочки. Подогрев при сварке способствует росту количества избыточных фаз в структуре металла шва.  [c.150]

Исследование микроструктуры. Исследование микроструктуры дает возможность более глубоко изучить структуру основного металла и характерных зон сварного соединения, чем исследование макроструктуры. По микроструктуре обследуемого объекта можно установить 1) характер изменения структуры металлов и сплавов после деформации, различных видов термической обработки и других технологических операций, а также коррозионных или эрозионных воздействий на материал рабочей среды в аппарате 2) установить форму и размер структурных составляющих, микроскопических трещин и т.п. повреждений металла 3) структуру наплавленного металла, структуру, образовавшуюся в зоне термического влияния 4) примерное содержание углерода в основном и наплавленном металле и в различных участках шва 5) приблизительный режим сварки и скорость ох.1тажде-ния металла шва и зоны термического влияния 6) количество слоев сварного шва и дефекты шва и структуры.  [c.308]

В теории надежности отмечается два основных подхода формирования моделей - полуэмпирический (феноменологический) и структурный. Феноменологический подход основан на обобщении результатов наблюдений и экспериментов, выявлении основных статистических закономерностей и прогнозировании функционирования технических систем. Среди этого класса моделей приведены многостадийная модель накопления повреждений, теория замедленного разрушения, статистическая модель разрушения и др. Структурный подход предусматривает прежде всего исследование структурных особенностей рассматриваемого объекта (например, при анализе прочностных свойств металлических деталей необходимо учитывачь структуру металла и связанных с ней дефектов - микро фещин, дислокаций, конфигурации и положения границ зерен и г.д.). Ко второму классу можно отнести моде ш хрупкого разрушения, пластического разрушения, так называемую объединенную структурную модель, причем автором особо подчеркивается перспективность дальнейшего развития структурного моделирования.  [c.128]

Магнитные магнитопорошко- вый феррозондовый магнитографиче- ский Поверхностные слои магнитных деталей Поверхностные слои деталей Сварные соединения из магнитных металлов Поверхностные несплош-" ности (трещины, волосовины и др.). Магнитная структуро-скопия Дефекты несплошности Измерение магнитных полей Трещины и непровары глубиной до 10% толщины стенки  [c.476]

Вопрос о смещениях атомов вокруг точечного дефекта рассматривался выше без учета электронной структуры металла. Учет электронной подсистемы кристалла приводит при исследовании этого вопроса к некоторым новым результатам. Для выяснения лишь их общей качественной стороны ограничимся простейшей моделью газа свободных электронов проводимости. Появление точечного дефекта сопроволедается изменением распределения зарядов в металле. В случае вакансии удаление положительного иона вызывает появление на его месте эффективного отрицательного заряда, отталкивающего электроны проводимости. При добавлении примесного атома его валентные электроны могут перейти в электронный газ и в результате появится соответствующий заряд в месте расположения иона примеси. Этот заряд, как и в случае вакансии, экранируется электронами проводимости. Таким образом, появление дефекта сопровонсдается измененпем пространственного распределения плотности электронов, соответствующим изменению их волновых функций.  [c.86]

Большое влияние на образование термоусталостных трещин оказывает и неоднородная структура, разнородные дефекты и другие подобные явления в поверхностном слое металла. Необходимо учитывать и то, что при резких охлаждениях возникают дополнительно в большом количестве ранзотипные дефекты в металле, которые могут перемещаться, соединяться и т. д. Такие скопления дефектов являются местными концентраторами напряжений, приводящих к ускоренному образованию трещин и пор. Зарождение пор происходит по границам зерен из-за локализации там пластической деформации.  [c.237]

Наблюдаемые дефектные структуры металла после снятия нагрузки не отражают всей совокупности и последовательности структур, присущих кристаллической рещетке. Неустойчивость дефектной структ фы любого масштабного уровня наступает при определенном критическом уровне поступающей энергии или соотношении возмущений. Неоднородности определенного масштабного уровня зависят от скорости перемещения дефектов и ее соотношения с коэффициентом диффузии. Поэтому к одному и тому же типу дефектной структуры металла можно прийти при разном соотношении параметров внешнего воздействия. Более того, при достижении мезоскопического масштабного уровня реализуемые типы дефектных структур тождественны для металлов с различным типом кристаллической решетки (ГЦК, ОЦК И ГПУ).  [c.144]

Приведенные представления об эволюции дислокационно-дисклинационной структуры металлов отражают факт упорядоченности и самоор-ганизованности всей совокупности реализуемых ситуаций в кристалле в процессе накопления дефектов кристаллической решетки. Последовательность их возникновения направлена на поддержание устойчивости кристаллической решетки, чтобы наибольшую энергию при внешнем воз-  [c.144]

Допустимость дефектов в сварных стыках арматуры по результатам УЗ К оценивают только с использованием СОП. Применение безобразцового метода не представляется возможным в связи с тем, что на контролируемом соединении в условиях контакта отсутствует свободная поверхность для размепдения преобразователей на бездефектном месте и, следовательно, нельзя получить амплитуду. До опорного сигнала. Кроме того, структура металла Diea таких соединений, особенно при сварке стержней больших диаметров, в значительной степени отличается от структуры основного материала. Поэтому сигналы от зоны сварки и от основного материала существенно отличаются (приблизительно на К) дБ), чго недопустимо на практике. В связи с этим для настройки чувствительности дефектоскопа используют сварные бездефектные образцы, того же диаметра, изготовленные из стали того же класса, чт" и контролируемые соединения. Амплитуду Л о на этом образце п аряют в такой последовательности (рис. 6.46)  [c.344]

Описание структурной модели. Результаты представленных в 2.1 экспериментальных исследований, а также приведенные в п. 2.2.1 представления о неравновесных границах зерен являются базисом для разработки структурной модели наноструктурных материалов, полученных ИПД [12, 150, 207]. Предметом этой модели является описание дефектной структуры (типов дефектов, их плотности, распределения) атомно-кристаллического строения наноструктурных материалов, а задачей — объяснение необычных структурных особенностей, наблюдаемых экспериментально высоких внутренних напряжений, искажений и дилатаций кристаллической решетки, разупорядочения наноструктурных интерме-таллидов, образования пересыщенных твердых растворов в сплавах, большой запасенной энергии и других. На этой основе становится возможным объяснение, а также предсказание уникальных свойств наноструктурных материалов (гл. 4 и 5). Вместе с тем, как было показано выше, типичные наноструктуры в сплавах, подвергнутых ИПД, весьма сложны. Более простым является пример чистых металлов, где основным элементом наноструктуры выступают неравновесные границы зерен. Структурная модель металлов, подвергнутых ИПД, может быть представлена следующим образом.  [c.99]



Смотреть страницы где упоминается термин Структура металлов, дефекты : [c.62]    [c.28]    [c.204]    [c.15]    [c.10]    [c.61]    [c.29]    [c.190]    [c.215]    [c.18]    [c.154]    [c.235]   
Конструкционные материалы Энциклопедия (1965) -- [ c.261 ]



ПОИСК



Дефекты структуры

Кристаллическое строение металлов и дефекты кристаллических структур

Металлы дефекты



© 2025 Mash-xxl.info Реклама на сайте