Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сталь коррозионная усталость

Нанесение металлических покрытий, особенно цинковых, повышает сопротивление стали коррозионной усталости никелевое покрытие менее эффективно.  [c.18]

Легирование придает сталям повышенную коррозионную стойкость, улучшает их механические характеристики и т. д. Стали легируют хромом, никелем, молибденом, кремнием и другими элементами. Увеличивая содержание в стали хрома более 12%, никеля - до 10 % и молибдена до 3-5 %, т. е. превращая сталь в нержавеющую, при одновременной оптимальной ее термообработке, удается существенно повысить сопротивление стали коррозионной усталости [18, 71]. В то же время введение в малоуглеродистые стали только одного никеля снижает их сопротивление растрескиванию в хлоридных средах [8].  [c.119]


Сопротивление сталей коррозионной усталости можно также повысить, создавая на их поверхности белый слой , возникающий при определенных режимах механической обработки в результате вторичной поверхности [4, 71].  [c.125]

Особенностью этого вида разрушения по сравнению с обычной коррозионной усталостью является соизмеримость периодически напряженных участков с размерами отдельных кристаллов металла (напряжения второго рода). В связи с этим на кавитационную стойкость сплавов большое влияние оказывают механическая прочность, структура и состояние границ зерен сплава. Например, чугун с шаровидным графитом более устойчив к кавитации, чем обычный чугун, а еще более устойчивы стали.  [c.341]

Глубина питтингов на хромистой стали после годичной эксплуатации в морской воде сравнима с питтингами на углеродистой стали через 16 лет. Следовательно, при столь длительной выдержке стали с малым содержанием хрома не имеют преимуществ перед углеродистой сталью. Низколегированные хромистые стали (<5 % С) обладают большей устойчивостью к коррозионной усталости в рассолах нефтяных скважин, не содержащих сероводорода [46].  [c.126]

Коррозионная усталость проявляется в разнообразных водных средах, в отличие от коррозионного растрескивания, вызываемого определенными, специфичными для каждого металла ионами. Под действием коррозионной усталости происходит разрушение стали в пресной и морской воде, в конденсатах продуктов сгорания, в других распространенных химических средах при этом чем выше скорость общей коррозии, тем быстрее металл разрушается вследствие коррозионной усталости.  [c.157]

Коррозионная усталость часто бывает причиной неожиданного разрушения вибрирующих металлических конструкций, рассчитанных на надежную работу в воздушной среде при нагрузках ниже предела выносливости. Например, неточно центрированный вал гребного винта на судне будет нормально работать до тех пор, пока не появится течь и участок вала, выдерживающий максимальные знакопеременные нагрузки, не окажется в морской воде. Тогда в течение нескольких дней могут образоваться трещины, из-за которых вал быстро разрушится. Стальные штанги насосов для откачки нефти из буровых скважин имеют ограниченный срок службы ввиду коррозионной усталости, возникающей в буровых водах. Несмотря на применение высокопрочных среднелегированных сталей и увеличение толщины штанг, разрушения этого типа приносят миллионные убытки нефтяной промышленности. Металлические тросы также нередко разрушаются вследствие коррозионной усталости. Трубы, по которым подаются пар или горячие жидкости, могут разрушаться подобным образом, вследствие периодического расширения и сжатия (термические колебания).  [c.157]


Среднелегированные стали лишь немногим устойчивее к коррозионной усталости, чем углеродистые стали.  [c.159]

Термическая обработка не повышает стойкость к коррозионной усталости ни углеродистых, ни среднелегированных сталей остаточные напряжения вредны.  [c.159]

Коррозионностойкие стали, особенно содержащие хром, обладают более высокой стойкостью к коррозионной усталости, чем другие стали.  [c.160]

У всех сталей стойкость к коррозионной усталости в соленой воде меньше, чем в пресной.  [c.160]

Существуют способы снижения склонности к коррозионной усталости. Для углеродистых сталей тщательная деаэрация растворов солей повыщает предел усталости до его уровня на воздухе (рис. 7.17). Аналогичный результат дает катодная защита при потенциале —0,49 В.  [c.161]

Реальность данного механизма коррозионной усталости подтверждают исследования, показавшие что ползучесть (медленная пластическая деформация), которая также осуществляется путем переползания дислокации, ускоряется общей коррозией напряженного металла. Чем выше скорость коррозии, тем выше и скорость ползучести. Прекращение коррозии, например путем катодной защиты, ведет к уменьшению скорости ползучести до исходного значения. Влияние коррозии на ползучесть мелкозернисты, металлов наблюдается у меди, латуни [82], железа и углеродистой стали [831.  [c.164]

В некоторых грунтах (например, содержащих органические кислоты) скорость коррозии свинца может превышать скорость коррозии стали, однако в почвах с высоким содержанием сульфатов коррозия незначительна. Растворимые силикаты, которые присутствуют во многих грунтах и природных водах, также действуют как эффективные ингибиторы коррозии. Если свинец используют в условиях с периодическим колебанием температуры, то из-за высокого коэффициента расширения (30-10 /°С) металл может подвергаться межкристаллитному растрескиванию вследствие усталости или коррозионной усталости.  [c.358]

Исследование коррозионной усталости сталей  [c.54]

С повышением содержания воды в нефтяной эмульсии снижается отрицательное влияние сероводорода. Например, если сероводород в практически безводной нефти снижает предел усталости стали от 250 до 160 МПа, а в нефти с 44 %-ным содержанием воды с 180 до 160 МПа, то наличие сероводорода в пластовой воде без нефти снижает предел усталости с 60 до 50 МПа. В насыщенных сероводородом средах в диапазоне содержания воды от следов до 40 % стали имеют одинаковое сопротивление коррозионной усталости — 160 МПа и лишь при повышении количества воды больше 40 -50 % предел коррозионной усталости снижается до сравнительно низких значений - 50 МПа.  [c.31]

Белый слой, характеризующийся благоприятным сочетанием остаточных макронапряжений и структуры, наиболее эффективно повышает трещиностойкость стали и является весьма перспективным способом повышения стойкости стальных деталей к коррозионному растрескиванию. Сопротивление стали коррозионному растрескиванию зависит от содержания в ней углерода. Так же, как и сопротивление коррозионной усталости, максимальная стойкость к коррозионному растрескиванию наблюдается у стали с содержанием углерода 0,4-0,65 % (рис. 31). Это связано с тем, что при указанном содержании углерода количество остаточного аустенита небольшое (до 10 %) и увеличивается с ростом содержания углерода в стали. При этом уменьшается способность металла к релаксации локальных напряжений вследствие уменьшения подвижности дислокаций. В сталях, легированных хромом в количестве 12 % и более, релаксация напряжений облегчается вследствие уменьшения активности углерода, переходящего в карбиды. В результате этого, а также из-за увеличения пассивирующего действия хрома рост трещин резко замедляется.  [c.116]


V Сопротивленад стали коррозионной усталости зависит и от формы цикла (от закономерности, по которой изменяются напряжение и деформации при циклическом нагружении). Форма цикла определяется условиями эксплуатации деталей и конструкций и бывает различной синусоидальной, пилообразной, трапецеидальной и прямоугольной. Цикл нагружения может быть как симметричным, так и асимметричным. Форма цикла влияет на процессы упрочнения металла в зоне перед вершиной трещины (зона предразрушения), а также на процессы накопления искажений кристаллической решетки, отдыха и перераспределения там напряжений. Кроме того, форма цикла, определяя скорость деформирования, а также время пребывания материала в деформированном состоянии, влияет на электрохимические (коррозия и наводороживание) процессы в трещине. При малоцикловом нагружении в синтетической морской воде и других средах наименьшая долговечность наблюдается для синусоидальной формы цикла при переходе к трапецеидальной форме, а затем к прямоугольной долговечность металла несколько возрастает. Отмечено, что форма цикла сказывается на сопротивлении усталости также при многоцикловом усталостном нагружении, однако в условиях малоцикловой усталости это влияние проявляется сильнее [21,71,72].  [c.51]

Сопротивление коррозионной усталости зависит также от величины амплитуды циклического деформирования. Рост амплитуды ведет к увеличению интенсивности электрохимических (локальная коррозия й наводороживанйе) процессов в вершине трещины, снижая тем самым время до разрушения. Со снижением амплитуды уменьшается интенсивность электрохимических процессов, но с увеличением времени до разрушения повышается к время контакта со средой, т. е. увеличивается роль электрохимических процессов, протекающих во времени. По> тому влияние величины амплитуды деформирования на сопротивление сталей коррозионной усталости неоднозначно и определяется условиями испытаний. Известно, что с ростом агрессивности среды воздействие амплитуды циклического деформирования на долговечность материала снижается. При малоцикловой коррозионной усталости с увеличением амплитуды отрицательное воздействие среды ослабевает, и, начиная с некоторого (критического) значения амплитуды, среда практически уже 52  [c.52]

Рациональная термическая обработка существенно повышает сопротивление стали коррозионной усталости. Так, эффективным методом повышения сопротивления среднеуглеродистых сталей периодическому нагружению в агрессивных средах является повер остная закалка токами высокой частоты. Эффективность поверхностной закалки увеличивается с ростом агрессивности сред. Ее защитное действие, с учетом того, что закалка не влияет на коррозионную стойкг>сть сталей, сводится к созданию в металле остаточных сжимающих напряжений [71]. Одним из путей повышения сопротивления сталей мартенситной и тро-остит-мартенситной структуры служит и так называемая термомеханическая обработка (ТМО). Последняя заключается в нагревании стали до Температуры аустенизации, деформировании скручиванием с последующей закалкой в масле и отпуске при температурах 110-450 С.  [c.125]

Никель является одним из лучших легирующих элементов, увеличивающих сопротивление стали коррозионной усталости в рассолах нефтяных скважин, содернсащих сероводород. В отсутствие сероводорода хром такнсе является, повидимому, благоприятным легирующим элементом (табл. 2 на стр. 613).  [c.32]

Тонкая обработка поверхности (тонкая шлифовка, полировка), как правило, повышает коррозионную стойкость металлов, облегчая образование более совершенных и однородных пассивных и других защитных пленок, а также повышает предел коррозионной усталости (см. с. 338). Это влияние сказывается главным образом в начальной стадии коррозии, пока не исчезает в результате коррозии металла его исходная поверхность, и имеет большое практическое значение в мягких условиях коррозии, например при атмосферной коррозии металлов. Ниже приведены данные В. О. Кренига о влиянии характера обработки поверхности углеродистой стали (0,8% С) на ее коррозионную стойкость во влажной атмосфере — время до начала коррозии, сут.  [c.326]

Способы защиты от коррозионной усталости деталей и аппаратов в значительной степени аналогичны рассмотренным выше методам защиты от коррозионного растрескивания. Подробно разработаны методы заигиты от коррозионной усталости конструкционных марок углеродистой стали.  [c.117]

Рис. 87. Кривые коррозионной усталости стали 45, полученные при испытании образцов во влажном воздухе, содержащем 0,27% 80а (по оси абсцисс отложено число циклов Л -Ю ) / — азотированной 2 — неазоти-рованной Рис. 87. Кривые коррозионной усталости стали 45, полученные при <a href="/info/28746">испытании образцов</a> во <a href="/info/30597">влажном воздухе</a>, содержащем 0,27% 80а (по оси абсцисс отложено число циклов Л -Ю ) / — азотированной 2 — неазоти-рованной
Эффективным способом повышения усталостной прочности конструкционных марок углеродистой стали является азотирование, сульфидирование и др. На рис. 87 приведены кривые коррозионной усталости неазотированноп и азотированной ста-  [c.118]


Успехи, достигнутые в коррозионной науке и технике машиностроения с момента выхода первого издания, требуют обновления большинства глав настояш,ей книги. Детально рассмотрены введенное недавно понятие критического потенциала ииттингообразования и его применение на практике. Соответствующее место отводится также критическому потенциалу коррозионного растрескивания под напряжением и более подробному обзору различных подходов к изучению механизма этого вида коррозии. Раздел по коррозионной усталости написан о учетом новых данных и их интерпретации. В главу по пассивности включены результаты новых интересных экспериментов, проведенных в ряде лабораторий. Освещение вопросов межкристаллитной коррозии несенсибилизированных нержавеющих сталей и сплавов представляет интерес для ядерной энергетики. Книга включает лишь краткое описание диаграмм Пурбе в связи с тем, что подробный атлас таких диаграмм был опубликован профессором Пурбе в 1966 г.  [c.13]

Пресные и особенно слабосрленые воды в большей степени влия -ют на коррозионную усталость стали, чем на медь. Нержавеющая сталь и никель или никелевые сплавы также более устойчивы, чем углеродистая сталь. В целом, склонность металла к коррозионной усталости в большей степени определяется его коррозионной стойкостью, чем механической прочностью.  [c.158]

Для того чтобы коррозионный процесс оказывал влияние на усталостную прочность, скорость коррозии должна превышать некое минимальное значение. Эти величины удобно определять путем анодной поляризации опытных образцов в деаэрированном 3 % растворе Na l. При этом скорость коррозии рассчитывают по закону Фарадея из плотностей тока и определяют критические значения, ниже которых коррозия уже не влияет на усталостную прочность. (Эти измеренные плотности тока не зависят от общей площади поверхности анода.) Значения минимальных скоростей коррозии при 30 цикл/с для некоторых металлов и сплавов приведены в табл. 7.5. Можно ожидать, что эти значения будут увеличиваться с возрастанием частоты циклов. Для сталей критические скорости коррозии не зависят от содержания углерода, от приложенного напряжения, если оно ниже предела усталости, и от термообработки. Среднее значение 0,58 г/(м сут) оказалось ниже общей скорости коррозии стали в аэрированной воде и 3 % Na l, т. е. 1—10 г/(м -сут). Но при pH = 12 скорость общей коррозии падает ниже критического значения и предел усталости вновь достигает значения, наблюдаемого на воздухе [721. Существование критической скорости коррозии в 3 % Na l объясняет тот факт, что для катодной защиты стали от коррозионной усталости требуется поляризация до —0,49 В, тогда как для защиты от коррозии она составляет —0,53 В.  [c.160]

Достоинство покрытий протекторного типа (например, цинка или кадмия, электроосажденных на сталь) в том, что основной металл катодно защищен и на тех участках, где на покрытии есть дефекты. В одном из наиболее ранних исследований коррозионной усталости, проведенном Б. Хэйгом в 1916 г. в связи с преждевременным разрушением стальных буксировочных тросов, контактирующих с морской водой, было показано, что гальванические покрытия заметно увеличивают срок службы тросов [77]. Цинковые покрытия по алюминию эффективны, в отличие от кадмиевых  [c.161]

На практике катодную защиту можно применять для предупреждения коррозии таких металлических материалов, как сталь, медь, свинец и латунь, в любой почве и почти всех водных средах. Можно предотвратить также питтинговую коррозию пассивных металлов, например нержавеющей стали и алюминия. Катодную защиту эффективно применяют для борьбы с коррозионным растрескиванием под напряжением (например, латуней, мягких и нержавеющих сталей, магния, алюминия), с коррозионной усталостью большинства металлов (но не просто усталостью), межкристаллитной коррозией (например, дуралюмина, нержавеющей стали 18-8) или обесцинкованием латуней. С ее помощью можно предупредить КРН высоконагруженных стрей, но не водородное растрескивание. Коррозия выше ватерлинии (например, водяных баков) катодной защитой не предотвращается, так как пропускаемый ток протекает только через поверхность металла, контактирующую с электролитом. Защитной плотности нельзя также достигнуть на электрически экранированных поверхностях, например на внутренней поверхности трубок водяных конденсаторов (если в трубки не введены вспомогательные аноды), даже если сам корпус конденсатора достаточно защищен.  [c.215]

Рис. 13.2. Подтравливание никелевого гальванического покрытия на стали в результате контактной коррозии в 3 % растворе Na l (ХЮО). Трещина образовалась вследствие циклического нагружения при испьгганиях на коррозионную усталость [2а] Рис. 13.2. Подтравливание никелевого <a href="/info/48864">гальванического покрытия</a> на стали в результате <a href="/info/39675">контактной коррозии</a> в 3 % растворе Na l (ХЮО). Трещина образовалась вследствие <a href="/info/28783">циклического нагружения</a> при испьгганиях на коррозионную усталость [2а]
В табл. 29 приведены результаты исследования защитной способности разработанных ингибиторов в условиях коррозии стали 20 под напряжением в среде NA E, которые свидетельствуют о том, что эти реагенты в жестких условиях эксплуатации металлического оборудования эффективно препятствуют развитию сероводородного растрескивания (СР) и коррозионной усталости (КУ) металла.  [c.276]

Коррозионная среда (ЗЗ %-ный раствор Na l) понизила предел усталости незащищенной стали на 30 %, стали с дробеструйной обработкой на 26 %, а с алюминиевым металлизационным покрытием на 11 %. Меры, снижающие пористость покрытий - крацевание металлической щеткой, пропитка кремнийорганической жидкостью ГКЖ-94 - значительно повышают предел коррозионной усталости стали марки ОХ18Н10Т.  [c.84]

Рис. 32. Кривые малоцинковой усталости (7, 2, 3) и коррозионной усталости 4, 5, б) в 3 %-ном растворе Na I образцов из закаленной и высоко-отпущенной стали 40Х при мягком наг-ру/кении Рис. 32. Кривые малоцинковой усталости (7, 2, 3) и <a href="/info/6596">коррозионной усталости</a> 4, 5, б) в 3 %-ном растворе Na I образцов из закаленной и высоко-отпущенной стали 40Х при мягком наг-ру/кении

Смотреть страницы где упоминается термин Сталь коррозионная усталость : [c.122]    [c.81]    [c.135]    [c.592]    [c.581]    [c.654]    [c.117]    [c.229]    [c.451]    [c.454]    [c.5]    [c.33]    [c.34]    [c.34]    [c.84]    [c.117]   
Коррозия и борьба с ней (1989) -- [ c.156 ]



ПОИСК



Адсорбционное и коррозионное влияние жидких сред на усталость сталей

Влияние ингибиторов на коррозионную усталость сталей

Исследование коррозионной усталости сталей

Коррозионная усталость

Усталость

Усталость коррозионная нержавеющих сталей

Усталость — Понятие коррозионная сталей высокопрочных



© 2025 Mash-xxl.info Реклама на сайте