Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Слой вихревой турбулентный

При поперечном обтекании круглого цилиндра и при обтекании шара на передней части этих тел образуется ламинарный пограничный слой (по крайней мере, при достаточно низких числах Рейнольдса, когда переход к турбулентному пограничному слою не происходит). Расчет местной плотности теплового потока в окрестности критической точки и на лобовой поверхности тел выполняется рассмотренными методами. Однако в сечении цилиндра или шара, расположенном несколько выше по потоку, чем миделево, происходит отрыв ламинарного пограничного слоя (отрыв турбулентного пограничного слоя происходит несколько ниже миделева сечения). После отрыва пограничного слоя на поверхности тела наблюдаются колебания местного коэффициента теплоотдачи, соответствующие сложному вихревому характеру течения с уносом вихрей от поверхности в гидродинамический след.  [c.274]


Характер поперечного смывания одиночных труб зависит от числа Рейнольдса. При малых числах Рейнольдса (порядка нескольких единиц) наблюдается безотрывное смывание поверхности труб потоком жидкости. При больших числах Рейнольдса плавно омывается лишь фронтовая половина. В кормовой части трубы вследствие отрыва пограничного слоя жидкости от поверхности возникает сложное вихревое течение, причем если пограничный слой у поверхности имеет ламинарное движение, то угол от лобовой точки трубы до места отрыва составляет значение порядка 80°. Когда характер движения пограничного слоя становится турбулентным, этот угол увеличивается.  [c.186]

Выше указывалось, что характер распределения скорости и температуры в пограничном слое при кипении является сходным с соответствующими профилями в пограничном слое при свободной конвекции однофазной жидкости. Поэтому теплоотдачу при пленочном кипении можно представить формой зависимости, которая применяется при конвекции однофазной жидкости. При вихревом (турбулентном) движении паровой пленки теплоотдача описывается зависимостью [Л. 146]  [c.313]

Несколько более сложно обстоит дело,- если желать заменить 6 просто длиной X (отсчитываемой от начала пластинки). Для этого, надо выразить толщину 6 через-х, что можно сделать с помощью следующих приближенных рассуждений. Так как линии тока вихревого турбулентного движения в пограничном слое не выходят за границу этого слоя, средняя граница пограничного слоя должна совпадать с линией тока осредненного движения, расположенной на расстояний 6 от пластинки.- Отсюда - вытекает, что угол наклона этой границы к оси Ох должен равняться отношению средней вертикальной скорости (в направлении оси  [c.274]

Область резкого снижения коэффициента сопротивления (10 < Re < 3-10 ) (участок НМ), в которой с увеличением скорости V сила сопротивления уменьшается. явление, получившее название кризиса сопротивления , вызвано сужением вихревой области за частицей вследствие перехода так называемого ламинарного пограничного слоя в турбулентный.  [c.146]

Будет рассмотрена модель пограничного слоя в ламинарном и турбулентном потоках и обсуждено ее использование в различных аспектах теоретического и экспериментального исследования решеток. Расчет точки перехода ламинарного пограничного слоя в турбулентный имеет определенное значение в практике профилирования лопаток турбомашин к сожалению, этот важный параметр до сих пор определяется в основном эмпирическим путем. В том случае, когда толщина пограничного слоя сравнима с толщиной профиля лопаток, реальное течение в решетке существенно отличается от потока невязкой жидкости это особенно заметно при наличии областей отрыва потока и вихревых следов.  [c.199]


Турбулентное течение за пределами буферного слоя проявляется настолько интенсивным вихревым, пульса-ционным обменом оличества движения и тепла, что влиянием молекулярного переноса пренебрегают. Тогда (г) и (д) дадут  [c.187]

По-видимому, ВЧ неустойчивость связана с образованием в вихревой трубе крупномасштабных когерентных вихревых структур (КВС) сдвигового характера, подобно тому, как это наблюдается в турбулентных слоях смешения струй с различными скоростями течения (рис. 3.18, 3.19).  [c.123]

При детальном анализе движения в псевдоожиженном слое Рове [659] предположил, что большая разность плотностей (рр — р) частиц и жидкости будет способствовать подавлению турбулентности. При малой разности (рр — р) вихревые потоки жидкости будут хаотически перемещать частицы по слою. Следовательно, псевдоожиженные слои жидкости часто являются турбулентными, хотя поток может быть ламинарным, а частицы мало подвижны при низких расходах потока. Газовые псевдоожиженные слои, как правило, ламинарны, но при высоких расходах потока может возникнуть турбулентность.  [c.404]

При турбулентном потоке жидкости или газа (Re>Re Крит) НЗ стенках канала (трубы) неподвижный слой жидкости исчезает, так как на стенках канала появляются вихри. Следовательно диффузионное перемещение реагента к твердой стенке, ограничи вающей поток вещества, заменяется вихревым переносом и ско рость химической реакции значительно возрастает.  [c.309]

От линии отрыва отходит, как мы знаем, уходящая в глубь жидкости поверхность, ограничивающая область турбулентного движения. Движение во всей турбулентной области является вихревым, между тем как при отсутствии отрыва оно было бы вихревым лишь в пограничном слое, где существенна вязкость жидкости, а в основном потоке ротор скорости отсутствовал бы. Поэтому можно сказать, что при отрыве происходит проникновение ротора скорости из пограничного слоя в глубь жидкости. Но в силу закона сохранения циркуляции скорости такое проникновение может произойти только путем непосредственного перемещения движущейся вблизи поверхности тела (в пограничном слое) жидкости в глубь основного потока. Другими словами, должен произойти как бы отрыв течения в пограничном слое от поверхности тела, в результате чего линии тока выходят из пристеночного слоя в глубь жидкости. (Поэтому и называют это явление отрывом или отрывом пограничного слоя.)  [c.231]

При протекании жидкости (газа) через трубы, каналы, проточные части машин и аппаратов поток претерпевает более или менее значительные деформации, вызывающие такое неравномерное распределение скоростей, которое, в свою очередь, приводит к появлению вязкостных напряжений в толще потока. Работа этих напряжений обусловливает диссипацию энергии. Кроме того, во многих случаях течение сопровождается турбулентным перемешиванием слоев жидкости и отрывами потока от стенок с образованием стационарных вихревых зон. Эти явления, в свою очередь, влияют на распределение и величину напряжений, а значит и на величину потерь энергии.  [c.151]

Положение точки отрыва вихрей от цилиндра не является стабильным. При большой степени турбулизации потока, характеризуемой числом Re>2 10 , течение не только в канале, где установлена труба, но и в пограничном слое переходит в турбулентное. Отрыв турбулентного пограничного слоя от цилиндра происходит при ср = = 120... 140°. Последнее обстоятельство улучшает обтекание цилиндра вследствие уменьшения вихревой зоны и резко увеличивает теплоотдачу.  [c.345]

В работе [659] предполагается, что при малом значении (рр — — р) частицы и поток жидкости возмущены, так что пузыри не могут устойчиво существовать, поскольку нет постоянного сквозного протока жидкости. Временно свободные от частиц объемы создаются центробежной силой турбулентного вихря, но это не пузырь, как мы его здесь понимаем. Жидкие псевдоожиженные слои обычно имеют низкое значение (рр — р). Если жидкость — вода, то нри скоростях, вызывающих значительное распшрение слоя, вихревое движение сопровождается образованием временных пустых объемов, часто напоминающих пузыри. В газовых псевдоожиженных слоях происходит более интенсивное образование пузырей. Авторы работы [818] постулировали, что при псевдоожижении с изменением агрегатного состояния весь избыточный газ по сравнению с минимально необходимым для процесса псевдоожижения циркулирует по слою в виде пузырей. Ценц [899] связывал дальнейший рост пузырей с образованием снарядного режима течения, когда диаметр пузыря равен диаметру канала. Авторы работы [650] получили подтверждение этих теорий с помощью эмпирических зависимостей для образования пузырей и частоты их отрыва средняя толщина пузырькового слоя у определяется по приближенному соотношению  [c.413]


Характер поперечного омывання одиночных труб зависит от числа Рейнольдса. При малых числ.и Рейнольдса (Re S) наблюдается безотрывное омывание поверхпостн труб потоком жидкости. При больших числах Рейнольдса плавно омывается лишь фронтовая половина. В кормовой части тру( Ы вследствие отрыва пограничного слоя жидкости от поверхности нозникает сложное вихревое течение. Когда движение пограничного слоя становится турбулентным, область вихревого течения уменьшается, а безотрывного—увеличивается.  [c.250]

При свободном движении жидкости в пограничном слое температура жидкости изменяется от t до а скорость —от нуля у стенки, проходит через максимум и на большом удалении от стенки снова равна нулю (рис. 3-25). Вначале толщина нагретого слоя мала и течение жидкости имеет струйчатый, ламинарный характер. Но по направлению движения толщина слоя увеличивается, и при определенном ее значении течение жидкости становится неустойчивым, волновым, локонообразным и затем переходит в неупорядоченно-вихревое, турбулентное, с отрывом вихрей от стенки. С изменением характера движения изменяется и теплоотдача. При ламинарном движении вследствие увеличения толщины пограничного слоя коэффициент теплоотда-  [c.88]

Успешно решены также ми. -задачи о вихревых и волновых движениях идеальной жидкости (о вихревых нитях, слоях, вихревых цепочках, системах вихрей, о волнах на поверхности раздела двух жидкости , о капиллярных волнах и др.). Развитие вычислит, методов Г. с использованием ЭВМ позволило решить также ряд задач о движении вязкой жидкости, т. е. получить в нек-рых случаях решения полной системы ур-ний (1) и (2) без упрощающих предположений. В случае турбулентного течения, характеризуемого интенсивным перемешиванием отдельных. элементарных объёмов ж идкостк и связанным с этим переносом массы, nir-пульса и теплоты, пользуются моделью осредпсппого по времепи движе1Н1я, что позволяет правильно описать осн. черты турбулентного течения жидкости и получить важные практнч, результаты.  [c.466]

Исследование вихревого установившегося потока производится в двумерных решетках, в частности, в плоском потоке невязкой несжимаемой жидкости через вращающиеся круговые рещетки. Течение вязкой жидкости изучается в плоских установившихся потоках при больших числах Рейнольдса, когда влияние вязкости сводится к образованию на профилях пограничного слоя и турбулентных следов за решеткой.  [c.14]

В геттингенской школе Праядтля получили всестороннее развитие идеи теории пограничного слоя, вихревой теории крыла конечного размаха ( несущие линии и поверхности) и полуэмпирической теории турбулентности. Здесь были выполнены в 20—30-х годах важные работы но сверхзвуковой аэродинамике Из геттингенской школы вышли или свею были органически связаны Я. Аккерет, А. Бетц, Г. Блазиус, А. Буземан, Т. Карман, М. Мунк,  [c.282]

При больших числах Рейнольдса представляют интерес течения невязкой жидкости с постулированными на основании опыта тангенциальными (вихревыми) поверхностями разрыва скорости, которые можно рассматривать как отрывные течения при числе Рейнольдса, равном бесконечности. Весьма важные результаты получены с помощью асимптотических методов решения уравнений Навье — Стокса при числе Рейнольдса, стремящемся к бесконечности, которые являются развитием классической теории пограничного слоя Прандтля. Эти методы применяются в тех случаях, когда нарушаются основные предположения теории пограничного слоя, например вследствие изменения граничных условий. К таким случаям относятся и характерные области отрывных течений (отрыва и присоединения). При отрыве сверхзвукового потока эти области могут приобретать общие локальные свойства, не зависящие от конкретного вида отрывного течения, что способствовало дальнейшему развитию теории сверхзвуковых отрывных течений и стимулировало пересмотр представлений об отрыве при малых скоростях. Хотя при достаточно больших числах Рей-лольдса течение в пограничном слое становится турбулентным, интервал больших докритических чисел Рейнольдса представляет практический интерес, а результаты, получаемые с помощью асимптотических методов, позволяют осуществить общий анализ отрывных течений, определить критерии подобия и, несомненно,  [c.234]

Течение в лобовой части цилиндра, в том числе и в критической точке, может быть описано уравнениями ламинарного пограничного слоя, а пара-1летры на внешней границе определяются на основании анализа потенциального потока (по уравнению Эйлера) [1, 2]. В работе [3] для расчета теплопередачи и касательных напряжений в лобовой критической точке рассмотрено влияние на ламинарный пограничный слой вихревой ячеистой структуры, состоящей из парных вихрей с осями, параллельными образующим цилиндра, с вращающейся каждой парой вихрей в противоположных направлениях. В [3, 4] влияние турбулентности на теплоотдачу рассчитывалось на основании анализа в лобовой точке вихрей Тейлора—Гертлера, которые интенсифицируют теплообмен. В области смешанного обтекания расчетное определение чисел Nu возможно только для ср <[ 70° при дальнейшем увеличении ср возникают явления перехода и отрыва пограничного слоя, и учет этих явлений в теоретическом плане еще недостаточно разработан.  [c.4]


Теоретики обычно считают, что труднее рассчитать коэффициенты теплопередачи на корытце профиля, чем на спинке. Даже в передней части профиля лопатки экспериментальные значения коэффициента теплопередачи в ламинарном пограничном слое, как правило, оказываются выше расчетных. В работе [9.44] сделан вывод, что трудности расчета процесса теплопередачи на вогнутом корытце профиля турбинной лопатки частично объясняются взаимодействием в ламинарном пограничном слое между вихревым- течением Гёртлера и турбулентным ядром потока, а также недостаточным пониманием механизма воздействия этих факторов на процесс перехода ламинарного пограничного слоя в турбулентный. Теоретическое и экспериментальное исследование трансзвуковой сопловой решетки [9.45] показало, что главным препятствием для точного расчета коэффициентов теплопередачи является несостоятельность критериев перехода ламинарного пограничного слоя в турбулентный, особенно на корытце профиля.  [c.275]

Таким образом, небольшие колебания режима вызывают в этой области значительные смещения вала, которые легко переходят в циклические вихревые движения. При возникновении вихрей ламинарное течение масла становится турбулентным, в связи с чем резко возрастает трение и тепловыделение в подшипнике. В масляном слое возникают кавитацион-. ные процессы, приводящие к разрушению материала додшипника.  [c.341]

Эти критерии получены на основе анализа дифференциальных уравнений движения закрученного потока в трубе в проекциях на оси хкув приближении погра ничного слоя. Использование этого приближения для течений с интенсивным радиальным градиентом давления требует дополнительного исследования и тщательного обоснования, отсутствующего в цитируемых публикациях. Достаточность этих критериев для описания течения закрученных потоков в теплообменных аппаратах, циклонах, горелоч-ных устройствах с предварительной закруткой потока некоторых классов не обеспечивается, когда речь идет об интенсивно закрученных потоках, которые наблюдаются в камерах энергоразделения вихревых труб [15, 62, 196]. Это связано с неоднозначностью обеспечения подобия режимов течения в них при равенстве приведенных выше критериев. Вопрос о подобии потоков в камерах энергоразделения в вихревых трубах интересует исследователей достаточно давно [15, 18, 29, 40, 47, 62, 70, 204]. Пытаясь объяснить наблюдаемые эффекты по энергоразделению турбулентным противоточным теплообменом, А.И. Гуляев предположил, что в геометрически подобных вихревых трубах режимы подобны тогда, когда одинаковы такие критерии, как показатель изоэнтро-пы к= С /С , число Рейнольдса Re-= Kp i/v, число Прандтля Рг = v/a, число Маха М = и безразмерный относительный  [c.10]

Микро- и макроструктур закрученного потока представлякгг особый интерес для понимания физического механизма процессов течения и тепломассообмена. На структуру турбулентного течения существенно влияют особенности радиального распределения осредненных параметров и кривизна обтекаемой газом поверхности. При этом поле турбулентных пульсаций при закрутке всегда трехмерно и имеет особенности, отличающие его от турбулентных характеристик осевых течений [16, 27, 155, 156]. Одно из основных и характерных отличий состоит в том, что в камере энергоразделения вихревой трубы наблюдаются значительные фадиенты осевой составляющей скорости, характеризующие сдвиговые течения. Эти градиенты наиболее велики на границе разделения вихря в области максимальных значений по сечению окружной составляющей вектора скорости. Приосевой вихрь можно рассматривать как осесимметричную струю, протекающую относительно потока с несколько отличной плотностью, и естественно ожидать при этом появления эффектов, наблюдаемых в слоях смешения струй [137, 216, 233], прежде всего, когерентных вихревых структур с детерминированной интенсивностью и динамикой распространения. Экспериментальное исследование турбулентной структуры потоков в вихревой трубе имеет свои специфические сложности, связанные с существенной трехмерностью потока и малыми габаритными размерами объекта исследования, что предъявляет достаточно жесткие требования к экспериментальной аппаратуре. В некоторых случаях перечисленные причины делают невозможным применение традиционных  [c.98]

Анализ результатов траверсирования различными зондами объема камеры энергоразделения позволяет выделить следующие характерные особенности распределения параметров в вихревой трубе с дополнительным потоком. Как и в обычных разделительных вихревых трубах, работающих при ц 1, четко различаются два вихря — периферийный и приосевой, перемещающиеся в противоположных направлениях вдоль оси. Первый — от соплового сечения к дросселю, второй — в обратном направлении. Распределение параметров осредненного потока существенно неравномерно как по сечению, згак и по длине камеры энергоразделения. Радиальные градиенты статического давления и полной температуры уменьшаются от соплового сечения к дросселю, а их максимальные значения наблюдаются в сопловом сечении. Распределение тангенциальных и осевых компонент скорости качественно подобны для различных сечений, однако, количественно вдоль трубы они претерпевают изменения. Поверхность разделения вихрей в большей части вихревой зоны близка к цилиндрической, о чем свидетельствуют пересечения осевых скоростей для различных сечений примерно в одной точке оси абцисс Т= 0,8 (см. рис. 3.9 и 3.10). Это хорошо согласуется с результатами исследований вихревых труб с диффузорной камерой энер-горазцеления, работающих при ц < 0,8, и позволяет в составлении аналитических методик расчета вихревых труб с дополнительным потоком вводить допущение dr /dz = О, а радиус разделения вихрей Tj для этого класса труб считать равным примерно 0,8. Как и у обычных труб, интенсивность закрутки периферийного потока вдоль трубы снижается -> 0), а возвратное при-осевое течение формируется в основном из вводимых дополнительно масс газа, скорость которых на выходе из трубки подвода дополнительного потока имеет осевое направление. По мере продвижения к отверстию диафрагмы приосевые массы в процессе турбулентного энергомассообмена с периферийным вихрем приобретают окружную составляющую скорости. Затухание закрутки периферийных слоев происходит тем интенсивнее, чем больше относительная доля охлажденного потока. Опыты показывают, что прй оптимальном по энергетической эффективности  [c.112]

В частности, в осесимметричных струях такие структуры идентифицируются с неустойчивостью вихревого слоя и его сворачиванием в концентрации завихренности — вихри. Снос этих вихрей вниз по потоку сопровожцается процессом их последовательного слияния попарно, что и определяет расширение слоя смешения. Каскад попарных слияний вихрей заканчивается образованием последовательности клубков. В конце начального участка крупномасштабные клубки разрушаются и генерируют мелкомасштабную турбулентность. Взаимодействие упорядоченных, когерентных структур с хаотическим турбулентным фоном определяет динамику развития структурного турбулентного движения.  [c.127]

Фултона [18], Шспера [19] и Ван-Демтсра [20] ). Строгое теоретическое рассмотрение сложного турбулентного течения газа, которое имеет место в вихревой трубе, является чрезвычайно трудной задачей, особенно в связи с тем, что профиль скоростей потока внутри трубы экспериментально пока еще не определен. Однако качественно эффект охлаждения можно объяснить следую-п им образом. Вращающийся поток воздуха внутри трубы создает в радиальном направлении градиент давления, возрастающий от оси к стенке трубы. Влияние турбулентности на такое ноле давлений выражается в адиабатическом перемешивании. Это приводит к созданию адиабатического распределения температур, при котором более холодный газ оказывается в области, расположенной вблизи оси трубы. Однако вследствие теплопроводности, приводящей к уменьшению градиента температур в радиальном направлении а также непостоянства значений угловой скорости в разных местах трубы адиабатическое распределение полностью осуществлено быть не может. Ван-Демтор описывает последний эффект следующим образом Если угловая скорость непостоянна, то вступает п действие другой механизм, приводящий к возникновению потока механической энергии в радиальном направлении наружу. Вследствие турбулентного трения (вихревой вязкости) внутренние слои жидкости или газа стремятся заставить внешние слои двигаться с той  [c.13]


Шестое представление. Т. Дж. Блэк /269/, изучив известные результаты экспериментов С. И. Клайна, Г. А. Эйнштейна и других, предложил свою теорию турбулентности пристенного слоя. По Т. Дж. Блэку, основная роль случайных турбулентных пульсаций в потоке со сдвигом состоит не в непосредственном и локгшьном переносе осредненного импульса, а в порождении сильной трехмерной неустойчивой с фукту-ры подслоя. Эта неустойчивость в свою очередь вызывает быстрое разрушение структуры потока в подслое, которое повторяется во времени и пространстве на всей поверхности, обтекаемой турбулентным потоком. Это явление Блэк представляет в следующем виде имеется более или менее равномерно расположенная на поверхности система зон, в которых происходит разрушение структуры подслоя. Эта система движется по потоку со скоростью, примерно равной скорости перемещений турбулентных возмущений в слое. В движущейся зоне разрушения структуры энергия передается от основного движения к вращательному и каждая зона разрушения рассматривается как движущийся генератор вихрей. Непрерывная потеря кинетической энергии в этой зоне требует непрерывного локального оттока среды от стенки. В результате каждое разрушение поперек основного потока и образует непрерывные вихревые листки, расположенные под некоторым у1 лом к стенке.  [c.26]

В газогидродинамике дискретная молекулярная структура игнорируется и среда рассматривается как сплошная. Понятие сплошная среда" тесно связано с понятием вязкость . Для отдельных молекул понятие вязкость физического смысла не имеет. Вязкость также теряет физический смысл, когда размеры патока меньше размеров свободного пробега молекул. Вязкость можно рассматривать как проводимость количества движения между отдельными точками ( слоями ) движущегося потока /191/. Такое представление вязкости является общим независимо от того, какие частицы - молекулы или более крупные образования -являются носителями количества движения между точками движущегося потока. При ламинарном движении количество движения между отдельными точками переносится молекулами, а при турбулентном движении - турбулентными молями (частицами), возникающими из-за беспорядочного пульсирующего или вихревого движения турбулентного потока. При этом масштабы турбулентных молей изменяются от максимальной величины, сопоставимой с размерами потока, до минимальной, определяемой вязкостью.  [c.48]

Рассмотрим процесс поперечного обтекания одиночной цилиндрической трубы потоком жидкости (рис. 17.7). Плавное обтекание цилиндра возможно только при малых скоростях потока — при Re < 5. При всех значениях Re > 5 наблюдается отрыв потока от стенки трубы и образование в кормовой части двух симметричных вихрей, которые с увеличением скорости потока вытягиваются по течению, удаляясь от трубы. Ламинарный пограничный слой, образующийся на лобовой части по обе стороны от точки О, ирн 5 < Re < 2-10 отрывается от поверхности трубы в точке а, характеризующейся углом ф 82° (рис. 17.7, а). Увеличение толщины пограничного слоя от минимального в точке О до максимального в точке отрыва а приводит к увеличению термического сопротивления и уменьшению коэффициента теплоотдачи а. Коэффициент а имеет максн.мальное значение в точке О, минимальное — в точке отрыва а. В кор.мовой части значения а вновь увеличиваются за счет разрушения пограничного слоя и образования вихрей, турбулизирующих поток. При значительных числах Рейнольдса (Re > 2-10 ) ламинарный пограничный слой переходит в турбулентный (точка Ь на рис. 17.7, б) и место отрыва от трубь перемещается по потоку (точка а). Это приводит к улучшению обтекания цилиндра (ср 120") и уменьшению вихревой зоны.  [c.191]

При турбулентном режиме течение жидкости вихревое, с непрерывным перемешиванием всех слоев жидкости (от лат. turbulentus - бурный, беспорядочный).  [c.40]


Смотреть страницы где упоминается термин Слой вихревой турбулентный : [c.158]    [c.398]    [c.232]    [c.94]    [c.225]    [c.296]    [c.83]    [c.436]    [c.210]    [c.43]    [c.121]    [c.121]    [c.64]    [c.161]    [c.48]    [c.106]    [c.95]    [c.101]    [c.6]   
Техническая гидромеханика (1987) -- [ c.367 ]



ПОИСК



Вихревые усы

Слой вихревой

Слой вихревой турбулентный, метод Клин

Слой вихревой, диффузия его турбулентный

Слой турбулентный



© 2025 Mash-xxl.info Реклама на сайте