Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость движения ламинарного или турбулентного

Пограничный слой может быи. ламинарным или турбулентным. От состояния пограничного слоя в значительной мере зависит и величина сопротивления трения. Обычно в передней части пластинки пограничный слой имеет ламинарный характер по мере увеличения толщины ламинарного слоя он теряет устойчивость и переходит в турбулентный пограничный слой. Состояние пограничного слоя (т. е. будет ли он ламинарным или турбулентным) зависит главным обр азом от числа Рейнольдса, характеризующего движение в этом слое и записываемого в виде  [c.236]


Как уже указывалось, описанная выше структура горящего факела представляет принципиальную схему. Сложные процессы массообмена, зависящие от характера движения газов (ламинарное или турбулентное) оказывают влияние на структуру факела. Структура, о которой шла речь выше, наиболее соответствует ламинарному факелу, при котором фронты горения устойчиво сохраняют свою форму и имеют вид, показанный на рис. 65. Мас-сообмен между зонами /, II и III через поверхности Fj jjj  [c.121]

Движение газовоздушной смеси может быть ламинарным или турбулентным. При турбулентном движении скорость распространения пламени значительно больше, чем при ламинарном. Очевидно, что устойчивое горение газовоздушной смеси может происходить только в определенном диапазоне скоростей истечения ее из горелки. Если скорость истечения газовоздушной смеси из горелки (при форсированной работе) значительно превысит скорость распространения пламени, то наступит явление отрыва пламени от выходного насадка горелки. Наоборот, если скорость истечения газовоздушной смеси будет значительно меньше нормальной скорости распространения пламени, то пламя начнет втягиваться в горелку и дойдет до того места, где происходит смешение газа с воздухом, т. е. произойдет явление, называемое проскоком пламени.  [c.128]

Устойчивость движения электролита в межэлектродном пространстве имеет большое значение. Сравнение поверхности деталей, обработанных в условиях с неустойчивым движением электролита, с поверхностью тех же деталей, обработанных в условиях с устойчивым движением электролита, дает право заключить, что одним из важных этапов в проектировании и отладке процесса является обеспечение устойчивого движения (желательно ламинарного или турбулентного с вихревым движением, но с высокими частотами возникновения вихрей во времени и пути).  [c.49]

При движении жидкостей или газов различают два основных течения ламинарное и турбулентное. Переход от одного вида течения к другому происходит вследствие потери потоком устойчивости. В теории устойчивости движения вязких сред (гидродинамической устойчивости) из-за значительной математической сложности пока рассмотрены отдельные частные случаи течений, причем вопросы  [c.187]

Этот вывод следует также из рассмотренных в разделе 6 исследований устойчивости движения проводящей среды в присутствии магнитного поля. Вопросы устойчивости имеют непосредственное отношение-к проблеме магнитной турбулентности, так как известно, что турбулентное движение развивается в результате неустойчивости тех или иных ламинарных течений. Кроме того, основной для турбулентного движения механизм переноса энергии от движений больших масштабов к движениям меньших масштабов также может быть истолкован как неустойчивость крупномасштабных движений, приводящая к возникновению  [c.49]


Исследование процессов управления движением вязкой газовой среды и соответствующим изменением силового и теплового воздействия непосредственно связано с изучением устойчивости ламинарного пограничного слоя и его перехода в турбулентное состояние. В связи с этим важно знать, какой тип пограничного слоя встречается с большей вероятностью — турбулентный или ламинарный. Следует отметить, что наиболее распространенным является взгляд на турбулентное движение жидкости как на более естественное ее состояние и признание того факта, что ламинарное движение встречается при таких небольших числах Рейнольдса, когда отклонение от этогО движения, вызванное возмущениями, имеет тенденцию к затуханию.  [c.88]

В ряде случаев ламинарное движение жидкости в трубе обладает слабой устойчивостью или вообще неустойчиво и уступает место турбулентному движению.  [c.44]

Неустойчивость наиболее часто проявляется при движении вязкой и теплопроводящей жидкости типичным примером является переход ламинарного движения в турбулентное. Именно поэтому теория устойчивости была более всего разработана применительно к задачам гидродинамики. Существующая теория основывается на исследовании поведения возмущений разного рода во времени, накладываемых на основное движение, т. е. имеет динамический характер. В случае малых возмущений уравнения движения (а также переноса тепла) приводят к системе частных решений, характеризующих так называемые возмущения (или моды) вида А ехр Если декремент X (в общем случае комплексный) имеет поло-  [c.5]

Турбулентный пограничный слой встречается чаще, чем ламинарный. При больших числах Рейнольдса он может устанавливаться на обтекаемой поверхности сразу, начиная от передней критической точки, или возникать на некотором расстоянии от нее в результате нарушения устойчивости ламинарного пограничного слоя и превращения его в турбулентный. С момента образования турбулентного пограничного слоя движение перестает быть установившимся, даже если граничные условия не зависят от времени компоненты скорости и другие величины испытывают беспорядочные пульсационные изменения.  [c.48]

В заключение отметим, что решения рассмотренных уравнений вязкой жидкости лишь формально могут существовать при любых числах Я. В действительности же только то решение описывает реальное течение, которое является устойчивым по отношению к бесконечно малым возмущениям. Согласно экспериментальным данным стационарное течение тела является устойчивым при малых числах Рейнольдса, а начиная с некоторого достаточно большого числа Рейнольдса такого обтекания не существует. В первом случае траектории частиц среды имеют достаточно гладкий характер, среда движется как бы слоями, т. е. имеет место слоистое или ламинарное течение. Во втором случае частицы движутся беспорядочно, происходят хаотические пульсации скорости,, т. е. имеет место турбулентное движение.- Поскольку мы, изучая основы механики сплошных сред, не будем рассматривать вопросы устойчивости и теорию турбулентности, все приведенные далее решения описывают лишь ламинарные течения.  [c.529]

В механике сплошной среды специально исследуется вопрос, насколько и в каких условиях та или иная модель, формы движения реализуются в действительности. Так, например, привычное ламинарное (слоистое) движение жидкости существует не всегда, а при определенных обстоятельствах переходит в другую, качественно отличную форму — движение, называемое турбулентным. Некоторые формы равновесия упругих тел, хотя и удовлетворяют уравнениям равновесия, но в реальности не осуществляются, являясь неустойчивыми. В той или иной мере, но во всех разделах механики сплошной среды важное место занимают проблемы устойчивости равновесия и движения.  [c.17]

Проблема турбулентности возникла в середине прошлого века, когда между теоретической гидродинамикой (с ее уравнениями Навье-Стокса) и прикладными задачами о течении жидкости или газа обнаружилось множество противоречий. Например, экспериментаторам было известно, что при достаточно больших скоростях течения жидкости по трубе сопротивление движению должно расти как квадрат средней (по сечению) скорости (закон Шези). Из теории же следовало, что сопротивление растет пропорционально первой степени скорости (закон Пуазейля). Первый шаг к примирению этих противоречий сделал О. Рейнольдс, опубликовавший в 1883 г. работу о результатах опытов с окрашенными струйками в потоке, где он ввел число Ке = УО/и В — диаметр, V — скорость, р — кинематическая вязкость) и впервые связал закон Пуазейля с ламинарным течением жидкости, а закон Шези с турбулентным движением. Он установил, что ламинарное движение устойчиво только при Ке < 2000, а при больших числах Ке возникает турбулентность. Так, для воды, текущей по трубе диаметром 1 см при комнатной температуре, ламинарный режим, как правило, кончается уже при средней скорости течения 30 см/с.  [c.494]


Неустойчивость наиболее часто проявляется при движении вязкой и теплопроводящей жидкости типичным примером является переход ламинарного движения в турбулентное. Именно поэтому более всего разработана гидродинамическая теория устойчивости, основывающаяся на анализе поведения во времени возмущений разного рода, накладываемых на основное движение. В случае малых возмущений уравнения движения (а также переноса тепла) приводят к системе частных решений, характеризующих так называемые нормальные возмущения (или моды), имеющие в простейшем случае вид Wj = В (лгу) ехр (—ivx). Если у частоты v (величины в общем случае комплексной) имеется отрицательная мнимая часть, то возмущение затухает со временем при положительном знаке мнимой части возмущение безгранично возрастает, следовательно, если среди нормальных возмущений имеется хотя бы одно нарастающее, движение окажется неустойчивым по отношению к этому возмущению.  [c.54]

Итак, случайные возмущения ламинарного течения приводят к возникновению сил инерции (Ар), усиливающих эти возмущения— встречные движения масс жидкости поперек потока. Силы трения препятствуют развитию возмущений, т. е. способствуют сохранению ламинарного течения. Ламинарный режим или поверхности раздела между слоями устойчивы, когда силы трения намного превышают силы инерции, т. е. при небольших значениях чисел Рейнольдса . Ламинарный режим не устойчив и при наличии случайного возмущения переходит в турбулентный, если силы инерции существенно превышают силы трения, т. е. при больших значениях чисел Ке. В этом случае случайное возмущение усиливается (рис.  [c.118]

Устойчивый ламинарный или турбулентный режим движения наступает на определенном расстоянии от входа газа в канал. При движении газа в плотном слое твердых частиц в газовом потоке создаются благоприятные условия для завихрения потока. Падающие, витаюшдае и уносимые с газом частицы вращаются вокруг осей, направленных различным образом. В результате нроисходит турбулизация пограничного слоя и создаются благоприятные условия для переноса тепла и вещества.  [c.17]

В технических устройствах происходит горение струй газо-воздушной смеси и пламя называют факелом. Факел имеет ту или иную геометрическую форму. На интенсивность и устойчивость горения большое влияние оказывает характер движения потока—ламинарный или турбулентный. Горение спо1койно неомешивающихся струй газо-воздушной смеси называется л а м и н а рн ы м горением. Такое горение встречается редко, главным образом при малопроизводительных атмосферных горелках.  [c.273]

В ламинарных течениях частицы могут выступать как своеобразные дискретные турбулизаторы. Последнее проявляется в определенной дестабилизации, нарушении устойчивости ламинарного течения взвешенными частицами. Это приводит к раннему качественному изменению режима движения. При этом турбулентный режим наступает при числе Рейнольдса зачастую в несколько раз меньшем [Л. 40], чем Некр для чистого потока. Ю. А. Буевич и В. М. Сафрай, объясняя подобный дестабилизирующий эффект в основном межкомпонентным скольжением, т. е. наличием относительной скорости частиц, указывают на существование критического значения отношения полного потока дисперсионной среды к потоку диспергированного компонента, зависящего и от других характеристик, при превышении которого наступает неустойчивость течения. Подобная критическая величина может быть достигнута при весьма малых числах Рейнольдса. Отметим, что критерий проточности Кп (гл. 1) может также достичь высоких (включая и характерных) значений при низких Re за счет увеличения концентрации, соотношения плотностей компонентов и др. Согласно (Л. 40] нарушению устойчивости способствует увеличение размеров частиц и отношения плотностей компонентов системы. Отсюда важный вывод о возможности ранней турбулизации практически всех потоков газовзвеси и об отсутствии этого эффекта для гидро-взвесей с мелкими частицами или с рт/р 1 (равноплотные суспензии).  [c.109]

Характер конвективных токов связан со структурой течения, которое может быть либо ламинарным, либо турбулентным. По латыни lamina — слой, листовое изделие. Течение называется ламинарным, т. е. слоистым, если его можно уподобить скольжению одного слоя жидкости относительно другого без их перемешивания. Поскольку при ламинарном течении направление вектора скорости остается в каждой точке устойчивым, конвекция по нормали к этому направлению никогда не возникает и соответствующий перенос того или иного субстрата должен быть исключительно микрофизической природы, т. е. иметь в своей основе тепловое движение молекул, атомов, электронов (излучение здесь не рассматривается). В частности, напряжение трения т, действующее на данный слой со стороны смежных, определяется законом Ньютона через коэффициент вязкости (молекулярной) р.  [c.75]

Турбулентный П. с. По мере увеличения расстояния вдоль поверхности тела местное число Рейнольдса возрастает и начинает проявляться неустойчивость ламинарного течения по отношению к малым возмущениям. Такими возмущениями могут служить пульсации скорости во внеш. набегающем потоке, шероховатость поверхности и др. факторы. В результате ламинарная форма течения переходит в турбулентную, при этом на главное осреднённое движение жидкости или газа в продольном направлении накладываются хаотич., пульсац. движения отд. жидких конгломератов в поперечном направлении. В результате происходит интенсивное перемешивание жидкости, вследствие чего интенсивность переноса в поперечном направлении кол-ва движения, теплоты и массы резко увеличиваются. Потеря устойчивости и переход к турбулентному режиму течения внутри П. с. происходят при нек-ром характерном числе Рейнольдса, к-рое наз. критическим. Величина Яскр зависит от мн. факторов — степени турбулентности набегающего потока, шероховатости поверхности Маха числа М внеш. потока, относит, темн-ры поверхности, вдува или отсоса вещества через поверхность тела и др. Поскольку переход ламинарного режима течения в турбулентный связан с потерей устойчивости, то сам этот процесс не является достаточно стабильным, вследствие чего имеет место перемежаемость режима течения в пределах нек-рой области, к-руго называют областью перехода.  [c.663]


Следы за тупыми телами. Метод Блума и Штайгера [1091 не ограничен только химически замороженными или равновесными течениями и может применяться не только для упрощенных граничных условий на поверхности раздела, но и для более общих граничных условий. Этот метод основан на предположении, что ядро следа является полностью турбулентным, турбулентное движение в ядре устойчиво и нетурбулентные потоки массы, отсасываемые ядром, мгновенно становятся турбулентными. Кроме того предполагалось, что ядро следа развивается внутри внешней области завихренного течения. Таким образом, все параметры потока на поверхности раздела являьотся функциявш расстояния в направлении потока и заранее неизвестны. На основе этих предположений вполне обоснованно требование равенства ламинарного и турбулентного касательных напряжений на поверхности раздела. Если турбулентная вязкость гораздо больше ламинарной, т. е. если из требования равенства касательных напряжений на поверхности раздела следует Ur г, и всегда Ыг,  [c.158]

Порядок выполнения работы. Опыты по первой части лабораторной работы проводятся на установке, изображенной на рис. 5-3. Сначала кран К приоткрывается для пропуска малого расхода воды. Уровень воды в баке поддерживается постоянным. Расход воды определяется объемным способом Q=Wjt (см. работу 1), а средняя скорость движения воды в трубе v = Qjопределения кинематической вязкости v следует измерить температуру воды Г, затем найти v по формуле Пуазейля или по построенному в соответствии с этой формулой графику. Тогда число Рейнольдса определится как Re = tлабораторной установке ее диаметр 20—50 мм). При малых чис,т1ах Рейнольдса струйка краски движется не смешиваясь с окружающей жидкостью, т. е. режим движения ламинарный. При большем открытии крана К можно, наблюдая за характером движения окрашенной струйки, установить переход от ламинарного режима к турбулентному. При этом следует, вновь найдя среднюю скорость v и кинематическую вязкость V, определить R kp. При дальнейшем увеличении расхода (числа Рейнольдса) будет наблюдаться устойчивый турбулентный режим с заметным перемешиванием краски с водой. При турбулентном режиме движения также вычисляется число Рейнольдса.  [c.351]

Характерным свойством открытой системы с большим числом (Л оо) независимых динамических переменных (г,р) является ее динамическая неустойчивость из-за перемешивания (экспоненциальной расходимости близких в начальный момент фазовых траекторий), так что любое начальное распределение функции плотности вероятностей в фазовом пространстве стремится к предельному равновесному распределению, то есть наиболее хаотичному состоянию с максимальной энтропией (в смысле Больцмана-Гиббса-Шенона). Турбулизацию движения жидкости или газа можно представить также как результат изменения топологии фазовых траекторий, приводящего к перестройке аттракторов и качественному изменению бифуркации) состояния движения. Корреляции скорости в любой точке потока ограничены малыми временными интервалами, зависящими от начальных условий, за пределами которых причинную связь между полем скоростей в различные моменты времени, в том числе корреляцию с предыдущим движением, установить невозможно. Все это подкрепляет представление о стохастическом характере пульсаций скорости в турбулентном потоке, которые возникают как результат потери устойчивости ламинарного движения гидродинамической системы при изменении внешних управляющих параметров (например, числа Ке). С этой точки зрения турбулентное движение является более хаотическим, чем ламинарное - турбулентность отождествляется с хаосом (или шумом). Отражением стохастической природы турбулентности служит плотное переплетение фазовых траекторий с различным асимптотическим поведением (топологией) и структурой окружающих их областей притяжения (аттракторов). Такое поведение траекторий в фазовом пространстве означает, что система обладает эргодичностью, то есть почти для всех реализаций случайного поля временные средние равны соответствующим статистическим средним, ее временные корреляционные функции быстро затухают, а частотные спектры непрерывны. Эргодическое свойство, по-видимому, является одной из характерных черт стационарного однородного мелкомасштабного турбулентного поля (см., например, Кампе де Ферье, 1962)).  [c.21]

Как отмечалось выше (см. 5.2), при Ке < Ке р в потоке имеет место упорядоченное параллельно струйное движение частиц (рис. 5.5, а). С возрастанием Ке и приближением его значения к критическому (т. е. с увеличением сил инерции или уменьшением сил вязкости) снижается устойчивость ламинарного движения, струйки жидкости становятся слегка извилистыми, колеблющимися (рис. 5.5,6), в потоке помимо основных —продольных составляющих скоростей частиц возникают поперечные составляющие, хотя и значительно меньших размеров. При дальнейшем увеличении числа Рейнольдса (Ке=Ре р) ламинарное движение теряет устойчивость, значительно возрастают поперечные составляющие скоростей частиц. Частицы начинают переходить из одной струйки в другую, что приводит к интенсивному перемешиванию лшдкости, образованию завихрений в потоке (рис. 5.5, в), т. е. движение становится турбулентным.  [c.76]

Не следует смешивать эту точку потери устойчивости ламинарного пограничного слоя ни с началом переходной области, ни с той точкой перехода ламинарного движения в турбулентное, которая йнтер есует практику. Под началом переходной области обычно понимают точку (сечение пограничного слоя), где развивающиеся возмущения нарастают настолько заметно, что уже начинают изменять ламинарный характер движения в пограничном слое, а под точкой перехода такую промежуточную точку переходной области, где турбулентный характер движения уже значительно проявился, например, в искажении профиля скоростей в сечениях пограничного слоя. В тех случаях, когда протяженность переходной области по сравнению с размерами тела невелика или не требуется большой точности в определении положения перехода, пользование понятием точки перехода вполне приемлемо.  [c.672]


Смотреть страницы где упоминается термин Устойчивость движения ламинарного или турбулентного : [c.29]    [c.233]    [c.255]    [c.250]   
Аэродинамика Часть 1 (1949) -- [ c.463 ]



ПОИСК



Движение ламинарное

Движение турбулентное

Движение устойчивое

Ламинарное и турбулентное движения

Ламинарное те—иве

Устойчивость движения



© 2025 Mash-xxl.info Реклама на сайте