Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гидродинамика жидкости несжимаемой вязкой

В классической гидродинамике уравнение движения вязкой несжимаемой жидкости записывается в форме дифференциального уравнения Навье — Стокса, которое получается на основе второго закона Ньютона.  [c.262]

Существуют и другие модели несжимаемых жидкостей, используемые в специальных разделах гидродинамики и учитывающие некоторые специфические свойства этих сред. Таковы, например, электропроводящие вязкие несжимаемые среды, изучаемые в магнитной гидродинамике, двухфазные несжимаемые среды, представляющие собой смеси жидкостей и газов или смеси жидкостей и твердых взвешенных частиц и т. п.  [c.25]


Уравнения магнитной гидродинамики представляют собой совокупность уравнений электродинамики и гидродинамики, в которых учтена связь между движением сплошной среды и магнитным полем. В частности, стационарное течение несжимаемой вязкой электропроводящей жидкости в постоянном магнитном поле описывается следующей системой уравнений [3, 4]  [c.61]

В технике большое значение имеет теплообмен при больших числах Re. В связи с этим в гидродинамике и теплообмене вязкой жидкости важное место занимает теория пограничного слоя. В настоящее время методы пограничного слоя хорошо разработаны для несжимаемой жидкости и сжимаемого газа. Получены решения ряда задач о теплообмене и гидравлическом сопротивлении при ламинарном и турбулентном течении жидкости в трубах и соплах, задач о распределении скорости и температуры в неизотермических струях и ряда других задач. Наибольшее (распространение методы пограничного слоя получили при решении задач теплообмена и сопротивления при внешнем (безотрывном) обтекании тел.  [c.11]

В современной гидродинамике для описания турбулентных течений используется гипотеза Рейнольдса о том, что действительное (актуальное) движение определяется уравнениями Навье-Стокса [13]. Применим эти уравнения для случая изотермического трехмерного движения несжимаемой вязкой ньютоновской жидкости. При актуальном движении жидкости, по Рейнольдсу, имеет место линейная суперпозиция осреднен-пых и пульсационных гидродинамических величин  [c.37]

Определяющим для последующего развития теории упругости и всей механики сплошной среды явился континуальный подход Коши, разработанный им в 20-х годах. Однако еще раньше толчок для развития теории упругости и гидродинамики вязкой жидкости дали два мемуара Навье, представленные им Парижской академии наук в 1821 и в 1822 гг. В них Навье, следуя П. С. Лапласу и используя феноменологическую молекулярную модель среды, впервые вывел уравнения теории упругости изотропного тела (в смещениях) и уравнения движения несжимаемой вязкой жидкости (так называемые уравнения Навье — Стокса).  [c.48]

Теоретическая (рациональная) гидродинамика стремится приближенно предсказать движение реальной жидкости путем решения краевых задач для соответствующих систем дифференциальных уравнений в частных производных. При составлении этих уравнений в качестве аксиом принимают законы движения Ньютона. Предполагается также, что рассматриваемая жидкость (обычная жидкость или газ) всюду непрерывна и что на любую часть поверхности действует вполне определенное давление или какое-либо другое внутреннее напряжение (сила, приходящаяся на единицу площади), которое, по крайней мере локально, является дифференцируемой функцией координат, времени и направления. Наконец, устанавливается связь этих напряжений с движением жидкости посредством введения различных параметров, характеризующих данное вещество (плотность, вязкость и т. д.), и функциональных зависимостей (закон адиабатического сжатия и т. п.). Исходя из таких допущений, математики составили системы дифференциальных уравнений для различных идеализированных жидкостей (несжимаемой невязкой, сжимаемой невязкой, несжимаемой вязкой и т. д.).  [c.15]


Ввиду трудностей, описанных в 20, основное внимание математиков было сосредоточено на уравнениях Навье — Стокса для несжимаемых вязких жидкостей в предположении, что величины и р можно считать примерно постоянными. Большинство специалистов считает, что теоретическая гидродинамика, основывающаяся на уравнениях Навье — Стокса, дает довольно точное приближение динамики реальных жидкостей, если число Маха М настолько мало, что можно пренебречь эффектами сжимаемости. Они уверены в том, что (перефразируя Лагранжа) если бы уравнения Навье — Стокса были интегрируемы, то при малых числах Маха можно было бы полностью определить все движения жидкости (ср. 1). Для того чтобы исследовать, насколько обоснована такая уверенность, мы преобразуем сначала эти уравнения к более удобному виду.  [c.50]

Если ограничиться теми предпосылками, которые могут быть взяты только из одной науки — механики, то можно выделить две ветви гидродинамики 1) гидродинамику идеальной несжимаемой жидкости и 2) гидродинамику вязкой несжимаемой жидкости. Развитие исследований по каждой такой ветви происходило обособленно и различными путями. Такое различие развития указанных ветвей гидродинамики обусловлено многими причинами и прежде всего различием служебной роли в практике человека, которую играет, с одной стороны, давление жидкости, а с другой — внутреннее трение жидкости. Свойство жидкости оказывать давление на стенки как при равновесии, так и при движении позволяло и позволяет использовать это давление как для преодоления действия силы тяжести, так и для приведения в движение соответственных двигателей, механизмов и приборов. С такой полезной ролью давления  [c.10]

В данной главе рассматриваются законы движения жидкостей и газов. Приведены основы гидродинамики невязких и вязких, несжимаемых и сжимаемых жидкостей и газов. Рассмотрены применение теории функций комплексного переменного и конформных отображений в гидро- и аэродинамике турбулентное движение, теория пограничного слоя, метод интегральных соотношений и многие другие вопросы механики жидкости и газов.  [c.342]

ЛАГРАНЖЕВО ОПИСАНИЕ ТУРБУЛЕНТНОСТИ 10.1. Уравнения гидродинамики несжимаемой вязкой жидкости в переменных Лагранжа  [c.483]

Уравнения движения. Вывод дифференциального уравнения движения вязкой жидкости требует громоздких математических выкладок. В связи с этим будет дан упрощенный вывод этого уравнения 1[Л. 171] для случая одномерного течения несжимаемой вязкой жидкости. Для трехмерного движения уравнение будет приведено без вывода. Уравнения движения подробно рассматриваются в курсах гидродинамики и монографиях по теплопередаче, например в [Л. 61, 154, 268].  [c.132]

Уравнение (228), представляющее неинтегрируемое в общем случае уравнение типа Риккати, было выведено впервые Н. А. Слезкиным ), который рассмотрел его в чисто теоретическом аспекте, без применений в гидродинамике. В дальнейшем Л. Д. Ландау ) решил автомодельную задачу о распространении круглой струи, бьющей из бесконечно малого по размерам источника с нулевым расходом (Q = 0), но конечным импульсом (/ФО) в пространстве, заполненном той же несжимаемой вязкой жидкостью.  [c.538]

Как известно из гидродинамики, два течения вязкой несжимаемой жидкости, находящейся в поле внешних сил, являются геометрически подобными, если они обладают одинаковыми числами Рейнольдса (i ) и Фруда (Fr). В силу полной математической аналогии указанный вывод должен быть распространен и на акустические течения.  [c.222]

Уравнения гидродинамики несжимаемой вязкой жидкости в переменных Лагранжа  [c.460]

Формулы (8.26) показывают, что в идеальной жидкости или, приближенно, в вязкой жидкости при Я оо сопротивление и подъемная сила пропорциональны квадрату скорости движения характерной площади с1 и плотности жидкости. Во многих важных случаях эти закономерности, полученные из постановки задачи только с помощью П-теоремы, хорошо соответствуют опыту и всегда точно отвечают теоретическим расчетам в рамках гидродинамики идеальной несжимаемой жидкости.  [c.422]


Значительная часть книги посвящена численному интегрированию уравнений движения несжимаемой вязкой жидкости в нестационарном случае. В силу того что эти уравнения имеют высокий порядок и в силу сложности граничных условий применяется итерационный алгоритм, основанный на последовательном интегрировании двух связанных подсистем уравнений второго порядка — для переноса вихря и для функции тока. Разные типы этих подсистем уравнений (соответственно параболический и эллиптический) позволяют изложить разнообразные численные схемы, которые широко используются при решении и других задач вычислительной гидродинамики.  [c.5]

Формулы (146), (147), (151) имеют важное значение в теории упругости, гидродинамике и других разделах механики сплошных сред. В теории упругости тензор напряжений Р заменяется линейной функцией тензора деформаций [обобщенный закон Гука (1635—1703)], в гидродинамике вязкой жидкости — также линейной функцией тензора скоростей деформаций (обобщенный закон Ньютона). Покажем это на простом примере вязкой несжимаемой жидкости.  [c.255]

Следует, однако, иметь в виду, что течений жидкости, строго отвечающих условиям потенциальности, в природе и технике не встречается. Представление о безвихревом характере движения является идеализацией, которая лишь с большей или меньшей степенью достоверности воспроизводит отдельные классы реальных течений. И тем не менее эта идеализация имеет важнейшее не только теоретическое, но и прикладное значение. Оно обусловлено тем, что вязкость жидкости, являющаяся первопричиной (для несжимаемой жидкости единственной) возникновения вихрей, проявляется, как правило, в ограниченных областях вблизи твердых поверхностей или в относительно узкой полосе за обтекаемым телом. В остальной части потока его завихренность может оказаться настолько малой, что поток можно считать потенциальным. Разумеется, встречается немало случаев, когда поток является сплошь завихренным и ни в какой его части влияние вязкости нельзя считать малосущественным. Такой поток может быть рассчитан только методами теории вязкой жидкости. Однако в тех случаях, когда допущение о потенциальности обосновано, его использование может значительно облегчить решение основной задачи гидродинамики. К числу таких случаев относится, например практически важная задача об обтекании твердых тел безграничным потоком (так называемая внешняя задача гидроаэродинамики).  [c.225]

Уравнение движения. В классической гидродинамике уравне-нме движения вязкой несжимаемой жидкости записывается в форме дифференциального уравнения Навье—Стокса, которое выводится на основе второго закона Ньютона. В проекции на ось Ох 8 0 уравнение имеет вид  [c.155]

Черкасский В. с. Расчет закрученного потока вязкой несжимаемой жидкости в трубе с тангенциальной подачей жидкости. — В кн. Теплофизика и физическая гидродинамика. Новосибирск. Институт теплофизики СО АН СССР, 1978, с. 49-54.  [c.195]

Для уравнений плоского двумерного нестационарного движения вязкой среды построен скалярный потенциал - аналог линии частицы жидкости - являющийся переменной лагранжева типа. Дано применение уравнений гидродинамики, записанных в этих переменных, к различным классам конвективных динамических и тепловых процессов. Рассматривались реологические модели жидкостей ньютоновская несжимаемая и сжимаемая, нелинейно-вязкая, вязкоупругая, а также турбулентный поток. Для изотермического процесса удалось построить простое преобразование уравнений А.С. Предводителева (жидкость дискретной структуры) к классическим уравнениям Стокса.  [c.128]

Первые работы Стокса, относяш,иеся главным образом к теоретической гидродинамике, выходили в Философских трудах Кембриджского университета. Для нас наиболее интересна его работа, в которой он линеаризовал общие уравнения движения вязкой несжимаемой жидкости и получил уравнения нестационарного ползущего течения. Эти уравнения он применил к расчету затухания колебаний маятника со сферическим грузом под действием сил сопротивления воздуха (1851 г.) [47]. Когда частота колебаний маятника приближается к нулю, он движется относительно воздуха с практически постоянной скоростью. Стокс развил в этой работе теорию сопротивления, испытываемого падающим телом сферической формы. Полученное им соотношение носит название формулы Стокса [формула (2.(3.3)]. Оказалось, что эта формула применима и к случаю осаждения всевозможных мелких частиц, скорость которых невелика. В математическом отношении предложенный Стоксом вывод этой формулы отличается элегантностью и приводится во многих учебниках гидродинамики. Он относится к таким случаям, когда частицы находятся достаточно далеко друг от друга, так что на движение каждой из них не влияет движение соседних частиц. Прожив долгую жизнь (он умер в возрасте 84 лет), Стокс прославил кембриджскую школу математической физики многими другими серьезными достижениями.  [c.26]

Часть классической гидродинамики посвящена изучению течений таких жидкостей в условиях различной сложности. Настоящая глава посвящена другому простейшему текучему телу — ньютоновской или стоксовой, вязкой и несжимаемой жидкости. Следуя процедуре, из главы 4, мы сначала выведем для нее реологические уравнения состояния, а затем применим их в анализе напряженного состояния наиболее простых типов течения.  [c.127]

Уравнения гидродинамики вязкой жидкости. В большинстве случаев процессы в тонкой пленке зазора уплотнения можно рассматривать в режиме ламинарного движения вязкой несжимаемой жидкости. Мысленно выделив в объеме жидкости некоторый элемент со сторонами 8х, 5у, 6г (рис. 1.18), заменим действие на него остальной части жидкости реакциями связи — давлением р и касательным напряжением х. Кроме того, на рассматриваемый элемент могут действовать гравитационная, центробежная и другие массовые силы, равнодействующая которых J, отнесенная к  [c.31]


В конце сборника помещено дополнение. В нем обсуждаются некоторые не нашедшие отражения в основном тексте аспекты практического применения рассматриваемого метода граничных интегральных уравнений [на примере задач гидродинамики несжимаемых идеальной и вязкой (в приближении Стокса) жидкостей и теории упругости] и рассматриваются численные методы решения, близкие к применяемым в сборнике (в частности, вариационные и вариационно-разностные методы).  [c.7]

С математической точки зрения общая задача гидродинамики вязкой несжимаемой жидкости сводится к решению следующей совместной системы четырёх дифференциальных уравнений с частными производными второго порядка  [c.97]

В предшествующих параграфах была развита гидродинамическая геория смазки на основе тех уравнений, которые могут быть получены из общих уравнений гидродинамики вязкой несжимаемой жидкости с помощью отбрасывания 1) всех инерционных членов и 2) некоторых слагаемых, обусловленных вязкостью. Гидродинамическая теория трения в подшипниках с учётом всех слагаемых от вязкости и при отбрасывании всех инерционных членов, т. е. на основе бигармонического уравнения для функции тока, была подробно развита  [c.208]

Эти замечания удобно проиллюстрировать на примере теоретической гидродинамики. Если мы предполагаем, что жидкость несжимаема я ядеальна, т. е. лишена вязкости, то мы в состоянии решить много зад1ч, так как в нашем распоряжения оказываются очень эффективные математические методы решения, в то время как уравнения движения сжимаемой и вязкой жидкости решены для очень малого числа самых простых случаев.  [c.341]

Перейдем к выводу лагранжевых уравнений динамики несжимаемой вязкой жидкости. Будем пользоваться декартовыми компонентами векторов X и X, которые обозначим (Хь Хг, Хз) и (xi, л 2, Хз). Как указывалось выше, переход от эйлеровых уравнений гидродинамики к лагранжевым заключается прежде всего в замене независимых переменных (Хь Хг, Хз, t) на (хь хг, Хз, t). При этой замене переменных мы переходим от декартовых координат к нестационарным криволинейным и неортогональным координатам, сопутствующим движению жидкости. Действительно, каждая координатная поверхность Xi = onst во все моменты времени состоит из одних и тех же жидких частиц в начальный момент времени такие поверхности суть плоскости, но с течением времени они, перемещаясь вместе с жидкостью, искривляются.  [c.485]

Таким образом, задача о движении несжимаемого гелия II сводится к двум задачам обычной гидродинамики для идеальной и для вязкой жидкостей. Сверхтекучее движение определяется уравнением Лапласа с граничным условием для нормальной производной dtpsldn, как в обычной задаче  [c.722]

Основоположником численного анализа дифференциальных уравнений в частных производных следует считать Ричардсона (1910), первое числеиноо решение уравнений в частных производных для задач гидродинамики вязкой жидкости дано Томой в 1933 году. Очень важным этапом для дальнейшего развития вычислительной гидромеханики стала работа Аллена и Саусвслла, выполненная вручную, по расчету обтекания цилиндра вязкой несжимаемой жидкостью. Развитие ЭВМ придало применению численных методов в механике жидкости и газа лавинообразный характер. Не претендуя на полноту описания этого перспективнейшего направления, отметим имена фон Неймана, Харлоу, Фромма, Сполдинга, Петанкара, О.М.Белоцерковского, А.А.Самарского, С.К-Годунова.  [c.7]

Первый шаг в создании гидродинамики вязкой жидкости был сделан Навье в мемуаре 1822 г. Навье развил молекулярный подход, аналогичный примененному им при выводе уравнений теории упругости, но осложненный учетом движения среды. В качестве основной гипотезы он (следуя, вообще говоря, Ньютону) принял пропорциональнссть дополнительной силы взаимодействия молекул (при их движении) скорости их сближения или расхождения. В результате сила взаимодействия молекул определяется по Навье формулой / (p)F, где / (р) — быстро убывающая с ростом р функция расстояния р между молекулами, а F — скорость их взаимного сближения. Используя, как и во второй половине мемуара о деформируемом твердом теле, принцип виртуальных перемещений и ограничившись рассмотрением несжимаемой жидкости, Навье получил уравнение движения во вполне современной форме  [c.66]


Смотреть страницы где упоминается термин Гидродинамика жидкости несжимаемой вязкой : [c.23]    [c.157]    [c.6]    [c.658]    [c.547]    [c.462]    [c.621]    [c.694]    [c.588]    [c.588]    [c.588]    [c.217]    [c.133]    [c.145]    [c.24]   
Динамика вязкой несжимаемой жидкости (1955) -- [ c.10 ]



ПОИСК



Гидродинамика

Гидродинамика вязкой жидкости

Жидкость вязкая

Жидкость несжимаемая

Уравнения гидродинамики несжимаемой вязкой жидкости в переменных Лагранжа



© 2025 Mash-xxl.info Реклама на сайте