Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Профиль крыла в дозвуковом потоке

В конце тридцатых годов возникла практическая необходимость создания метода расчета распределения давления вдоль профиля крыла в дозвуковом потоке газа и, особенно, определения критического числа  [c.98]

Определение аэродинамических коэффициентов профиля крыла в дозвуковом потоке по измеренным давлениям на его поверхности  [c.155]


Глава Л V///. Основы теории профиля и крыла в дозвуковом потоке Используя уравнение связи  [c.440]

Силы давления зависят от формы тела, ориентации его относительно потока, плотности, давления и скорости воздуха. Помещенное в воздушный поток тело деформирует его. На рис, 4.1 показана картина обтекания профиля крыла при дозвуковой скорости потока. Вблизи передней кромки поток разделяется на две области (границей раздела является критическая точка К). Струйки воздуха деформируются, что приводит согласно уравнению постоянства расхода к изменению скорости и плотности, а следовательно, и давления на поверхности тела.  [c.139]

В дозвуковом потоке сила сопротивления складывается из двух составляющих силы трения по поверхности и результирующей сил давления. Суммарная сила давления не равна нулю, как в идеальной жидкости, так как пограничный слой искажает основной поток и изменяет распределение давления. Следует подчеркнуть, что в конечном счете эти силы сопротивления вызваны влиянием вязкости жидкости. Хорошо обтекаемым называется тело, для которого сопротивление трения много больше сопротивления давления (пластина, параллельная потоку, крыло с малым углом атаки). Для плохо обтекаемого тела (шар, цилиндр) основным является сопротивление давления (или, как иногда называют, сопротивление формы). На рис. 7.8 для наглядности показаны профиль крыла и цилиндр, имеющие одинаковый коэффициент сопротивления. Этот рисунок показывает, насколько велико может быть сопротивление давления для плохо обтекаемого тела по сравнению с сопротивлением трения хорошо обтекаемого тела.  [c.184]

Из определения понятия критического числа Мкр можно заключить, что в дозвуковых потоках следует отдать предпочтение таким профилям, которые при том же значении потребной величины подъемной силы (коэффициента с у) имеют по возможности большее значение Мкр, а следовательно, меньшее Ср . Иными словами, надо стремиться к тому, чтобы одна и та же площадь, заключенная между кривыми распределения давления по верхней и нижней поверхностям крыла, достигалась при пологих кривых распределения давления, а не за счет резких пиков разрежения. Такого рода профили с повышенными значениями Мкр были созданы у нас в Союзе и за рубежом и получили широкое распространение в авиации и турбостроении.  [c.261]


Общепринятый способ конструирования крыла, состоящий в подборе подходящего решения прямой задачи, недостаточно точен для отыскания прецизионных докритических профилей. Из-за невозможности проводить вычисления в бесконечной области граничные условия переносят на конечное расстояние. Для функции тока там выставляют значения, определяемые асимптотикой на бесконечности. Это приводит к погрешности порядка (1/В, где с/ — хорда профиля, В — диаметр расчетной области. Если задача решается относительно вектора скорости, приходится видоизменять граничные условия из теоремы Коши-Ковалевской следует, что в дозвуковом потоке идеального газа нельзя задавать постоянный вектор скорости на границе конечной области, так как в этом случае единственным решением во всей области является равномерный дозвуковой поток. Это обстоятельство затрудняет как конструирование, так и вычислительную проверку докритических контуров.  [c.164]

Цель работы — найти распределение давления по профилю крыла вычислить коэффициенты подъемной силы, лобового сопротивления и продольного момента (момента тангажа), а также критические числа Маха и некоторые другие аэродинамические характеристики профиля в дозвуковом потоке.  [c.155]

Сжимаемый поток. Согласно линеаризованной теории коэффициент давления на профиле скользящего крыла в дозвуковом сжимаемом потоке можно получить из соответствующего коэффициента для  [c.220]

Необходимое условие возникновения О. т. вязкой Жидкости — повышение давления в направлении течения, т. е. убывание скорости. Типичным примером такого течения при дозвуковых скоростях потока является течение у поверхности с образующими криволинейной формы (напр., у профиля крыла при больших углах атаки, сферы), в диффузоре, канале с уступом и др. При обтекании тела криволинейной формы (рис. 1) в пределах толпщны б пограничного слоя по нормали к поверхности скорость течения убывает от значения на  [c.515]

Сверхкритическим называется обтекание профиля крыла дозвуковым (на бесконечности) потоком, когда на нем возникают зоны сверхзвуковых скоростей. Считается, что если при обтекании фиксированного профиля монотонно повышать число М о, то после достижения критического значения Мкр во всем диапазоне Мкр < Моо реализуется сверхкритическое обтекание. Как отмечалось в 1 гл. 5, Мкр зависит только от формы профиля и показателя адиабаты.  [c.169]

Рассмотрим расчет сопротивления стреловидных крыльев с до-звуковыми передними кромками, обтекаемых сверхзвуковым потоком под углом атаки. Как известно из предыдущего, по своим свойствам возмущенный поток около таких крыльев в направлении нормали к передней кромке является дозвуковым. Такое обтекание сопровождается перетеканием газа нз области повышенного давления в область, где оно меньше (с нижней стороны на верхнюю или обратно) и является причиной соответствующего силового воздействия на крыло. Для определения этого воздействия можно воспользоваться результатами исследования возмущенного движения несжимаемой жидкости около профиля в виде плоской пластинки, расположенной в потоке под углом атаки (см, 6,3).  [c.363]

Характеристики сил, действующих на крыло, определяются обычно испытаниями в аэродинамических трубах. Геометрические параметры крылового профиля даны на рис, 15-16. Углом атаки называют угол между линией хорды и направлением свободного потока. Экспериментальные данные, полученные при исследовании двумерного обтекания некоторого дозвукового крылового профиля, приведены на рис. 15-17 [Л. 16], где даны зависимости от угла атаки коэффициентов Свс и С А, отношения подъемной силы к силе лобового сопротивления и положения центра давления. Оптимальное отношение подъемной силы к силе сопротивления для этого крыла имеет место при угле атаки около 1,5°, а подъемная сила увеличивается линейно  [c.413]


Теория подъемной силы крыла, движущегося с дозвуковыми скоростями, основана на понятии циркуляции. Возникновение циркуляции может быть описано следующим образом. Рассмотрим крыло, находящееся первоначально в покое и получающее внезапно поступательную скорость. Уравнения движения в этом случае допускают решение, представляющее поток без циркуляции и, следовательно, без подъемной силы. Однако этот поток имеет бесконечную скорость в острой задней кромке крылового сечения. Так как всегда существует некоторая вязкость, то поток отрывается от профиля с последующим образованием вихря, называемого начальным вихрем. Реакция начального вихря вызывает циркуляцию вокруг профиля. Конечная величина циркуляции определяется условием плавного схода потока с задней  [c.32]

В большинстве практических случаев толщина крыльев большого удлинения достигает более 10% длины хорды. Отрыв на таких крыльях имеет место только в концевой части, где пограничный слой турбулентный. Если удлинение прямого крыла мало и не превышает 4, а толщина профиля составляет около 4% длины хорды, то при большой дозвуковой скорости отрыв ламинарного пограничного слоя происходит у передней кромки при малой величине С/,. Поэтому, если поток не присоединяется с образованием пузыря .  [c.201]

Одним из важных, ставшим теперь классическим, является раздел аэродинамики, изучающий обтекание профиля плоским потоком идеальной несжимаемой жидкости. Этот раздел имеет и первостепенное прикладное значение, являясь основой изучения дозвукового обтекания крыла и многих других вопросов гидро- и аэродинамики. Законы, характеризую--щие обтекание профиля идеальной несжимаемой жидкостью, были установлены в получивших всеобщее признание работах Н. Е. Жуковского и С, А, Чаплыгина. Сюда, прежде всего, относятся теорема Жуковского о подъемной силе, связавшая величину подъемной силы с циркуляцией скорости вокруг профиля, и условие Чаплыгина — Жуковского, дающее возможность зафиксировать величину циркуляции, исходя из предположения о единственной физически возможной схеме безотрывного обтекания  [c.85]

В связи с тем, что критическое число Маха зависит от формы профиля, большое практическое значение имеет задача профилирования несущего крыла, при обтекании которого потоком заданной дозвуковой скорости Моо нигде на профиле не образуется сверхзвуковых зон.  [c.143]

Проблемой учета сжимаемости при обтекании крыловых профилей занимались и виднейшие зарубежные ученые. Так, немецким профессором Л. Прандтлем и английским профессором Глау-эртом была создана приближенная теория крыла в дозвуковом потоке. Как показали исследования, она оказалась справедливой лишь для очень тонких профилей, обтекаемых под весьма малыми углами атаки.  [c.22]

Глава ХУНГ Основы теории профиля и крыла в дозвуковом потоке Используя вновь биноминальное разложение, будем иметь  [c.398]

Глава XVIII. Основы теории профиля и крыла в дозвуковом потоке  [c.402]

Сжимаемый поток. Согласно линеаризованной теории, коэффн-ииент давления на профиле скользящего крыла в дозвуковом сжимаемом потоке можно получить из соответствующего коэффициента для того же крыла в несжимаемой жидкости по формуле Прандтля — Глауэрта (7.1.14), заменив в ней число Мсо на M osx  [c.285]

Образование области О. т. существенно влияет на аэродинамич. (гидродинамич.) характеристики тел. Напр., аэродинамическое сопротивление шара, движущегося с дозвуковой скоростью, в основном определяется О. т. на поверхности задней полусферы. Турбу-лизация ламинарного пограничного слоя изменяет профиль скорости в пограничном слое, уменьшает зону О. т. и в неск. раз уменьшает силу аэродинамич. сопротивления шара. На верхней поверхности крыла самолёта при нек-ром угле атаки также возникает О. т. (рис. 2), область к-рого с увеличением угла атаки возрастает. При этом подъёмная сила крыла сначала проходит через макс, значение при а р, а затем быстро уменьшается. Для предотвращения отрыва потока в авиац. технике на крыле устанавливают предкрылки и закрылки , увеличивающие кинетич. энергию потока в пограничном слое крыла, что позволяет увеличивать ос р и макс, подъемную силу крыла.  [c.516]

Что касается области больших дозвуковых скоростей, то исследования опирались в то время только на эксперимент. Первые систематические опыты с применением критерия подобия по числу М поставил Дж. Стэк в 1934 г., в результате чего дана количественная оценка резкого изменения состояния потока около профиля крыла при подходе к скорости звука Это явление наступало при скорости невозмуш енного потока, для которой местная скорость обтекания на поверхности крыла впервые достигает значения местной скорости звука. Такая скорость невозмущенного потока была названа критической , а соответствующее ейчисло М впоследствии обозначалось как Мкр-  [c.320]

Развитие приближенного метода Чаплыгина и, в частности, решение задачи о циркуляционном обтекании профиля сжимаемым потоком обусловили в значительной степени успех теории решеток, находящихся в потоке газа, которую можно рассматривать как обобщение теории обтекания профиля крыла. Именно использование приближенного метода Чаплыгина позволило исследовать дозвуковое обтекание решеток. Б этом направлении во второй половине 40-х годов были выполнены значительные работы (Л. И. Седов, Г. Ю. Степанов, Линь Цзя-цзяо, Дж. Костелло). Укажем, что расчет чисто сверхзвукового течения в решетках производится преимущественно по методу характеристик Прандтля — Вуземана, а теория смешанного до-и сверхзвукового течения до настоящего времени не разработана.  [c.322]


Теперь мы хотим понаблюдать, что случится, если приводить в движение профиль крыла с острой задней кромкой. (Мы называем переднюю часть крыла, омываемую потоком, передней кромкой, а тыльную часть, где поток покидает поверхность крыла, задней кромкой.) Передняя кромка обычно закругленная, по крайней мере, для крыльев, используемых при дозвуковых скоростях, тогда как заднюю кромку делают как можно острее. На рис. 21 и 22 показаны фотографии течения, в котором ЛИППИ тока стали видимыми благодаря введению тонкого алюминиевого порошка, который, предположительно, следует за линиями тока жидкости. Мы видим, что в первый момент, как ноказано на рис. 21, жидкость стремится обогнуть острую кромку. Одпако можно сказать, что жидкости не нравится этот процесс, потому что па кромке требуется очень высокая (теоретически бесконечная) скорость. Вместо  [c.49]

В [5] приведены необычные на первый взгляд сведения о том, что после укорочения задних (кормовых) участков профилей крыла и киля самолета Конкорд путем введения донного торца сопротивление уменьшилось. Аналогичные результаты получены в [6] при экспериментальном исследовании обтекания дозвуковым и трансзвуковым потоком осесимметричного тела с задним торцом. Исследования проведены при разных укорочениях тела путем введения торца. Эти результаты также показывают, что введение донного торца до определенного размера не увеличивает сопротивление.  [c.489]

Указанное выше первое приближение метода Христиановича при пренебрежении деформацией профиля содержало соответствующее правило пересчета распределения безразмерной скорости по профилю, получаемого при его обтекании потоком несжимаемой жидкости, на распределение этой скорости при обтекании профиля потоком сжимаемой жидкости ). Это правило сводило также задачу об определении критического числа при обтекании профиля газом к задаче об определении на нем минимального коэффициента давления при его обтекании несжимаемой жидкостью. Расчеты по учету сжимаемости воздуха в указанном выше упрощенном виде дали удовлетворительное совпадение с экспериментом и нашли в то время широкое применение при аэродинамическом проектировании профилей крыльев, предназначенных для полета с большими дозвуковыми скоростями. Подробные исследования влияния сжимаемости воздуха на аэродинамические характеристики профилей (на основе метода С. А. Христиановича) были выполнены В. С. Полядским (1943).  [c.99]

Теория псевдоаналитических функций и квазиконформных отображений в принципе позволяет обобщить изложенный метод на случай дозвукового течения сжимаемого газа. В монографии [66] О это достигнуто путем доказательства существования обобщенного решения задачи Гильберта (содержащей задачу Дирихле) для квазилинейного равномерно эллиптического уравнения, описывающего квазиконформное отображение. Это отображение позволяет найти скорость набегающего потока и профиль крыла по заданному распределению скорости (при условии выполнения двух условий разрешимости, обеспечивающих замкнутость контура). По-видимому, тот же результат, но уже для классического решения, может быть получен на основе принципа подобия для псевдоаналитических функций, аналогично теореме существования дозвукового обтекания заданного профиля потоком достаточно малой дозвуковой скорости (см. 2). Псевдоаналитическая функция, выражающая сопряженную комплексную скорость Ш = и — гу, допускает представление  [c.146]

На фиг. 86 приведена фотография обтекания хвостовой части крылового профиля при большой дозвуковой скорости невозмущённого набегающего потока. В образующейся при этом около крыла местной сверхзвуковой зоне виден скачок уплотнения  [c.208]

В 2 настоящей главы излагается приближенная теория профиля крыла для случая М< Мкр, известная в литературе под названием теории Прандтля-Глауэрта. Однако эта теория оказывается справедливой только для очень тонких профилей, обтекаемых под малыми углами атаки. В 1940 г. акад. С. А. Христианович в работе Обтекание тел газом при больших дозвуковых скоростях [53] создал новую теорию учета влияния сжимаемости на распределение давления, а следовательно, на аэродинамические характеристики крыла. В основу своей работы С. А. Христианович положил метод изучения газовых потоков, предложенный акад. С. А. Чаплыгиным в 1896 г. и опубликованный в 1902 г. в его докторской диссертации О газовых струях , являющейся ныне фундаментом многих исследований по газовой динамике.  [c.395]

При проведении исследований в дозвуковой аэродинамической трубе с открытой рабочей частью вначале измеряется давление на профиле крыла, которое устанавливается в потоке как прямое под заданным углом атаки ап- Затем эта же модель поворачивается на угол скольжения % и закрепляется под углом атаки a=an 0sx (при этом, очевидно, в нормальной к передней кромке плоскости угол атаки остается равным ап, как и при прямом обтекании профиля).  [c.223]

Подтвердить предположение о зависимости распределения naviemm при прочих равных условиях только от нормальной составляющей скорости можно также путем смены выходного насадка на сопле дозвуковой аэродинамической трубы, подобрав его таким образом, чтобы труба давала скорость набегающего потока, равную Vo Osx- Очевидно, при правильности рассматриваемого предположения результаты продувки прямого крыла в этом случае должны совпадать с результатами косой обдувки под углом X того же крыла при скорости невозмущеньо-го потока, даваемого трубой, равной Voo. Расчет аэродинамических характеристик профиля при прямой или косой его обдувке по известному распределению коэффициентов давления производится соответственно по формулам (4.1.12), (4.1.18) и (4.1.20).  [c.223]

При М] > М р около поверхности крыла возникает зона течения со сверхзвуковыми скоростями, в связи с чем течение приобретает новые качества. Величина М1 р является границей двух основных режимов обтекания профиля при дозвуковой скорости набегающего потока докритического (М1<М1кр) и закритиче-ского (М1>М  [c.30]


Смотреть страницы где упоминается термин Профиль крыла в дозвуковом потоке : [c.135]    [c.141]    [c.104]    [c.427]    [c.79]   
Альбом Течений жидкости и газа (1986) -- [ c.0 ]



ПОИСК



Крыла поток

Крылов

Определение аэродинамических коэффициентов профиля крыла в дозвуковом потоке по измеренным давлениям на его поверхности

Основы теории профиля и крыла в дозвуковом потоке Понятие о критическом числе

Поток дозвуковой

Приближенная теория Г. Ф. Бураго обтекания дозвуковым потоком произвольных крыловых профилей

Профиль крыла

Профиль крыловой



© 2025 Mash-xxl.info Реклама на сайте