Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства твердых тел теплопроводность

Учебное пособие содержит те разделы физики твердого тела, знание которых необходимо для четкого представления об энергетическом спектре электронов в твердом теле, для понимания классификации веществ на металлы, полупроводники и изоляторы. Подробно рассматриваются тепловые свойства твердых тел — гармонические колебания, теплоемкость и теплопроводность кристаллической решетки. Уделяется внимание вопросам химической связи в твердом теле и возможности интерпретации ее с помощью магнитных исследований.  [c.2]


Частные производные в формуле (142) определяются из формулы (141). В качестве определяющего размера рассматриваемой геометрической системы принят диаметр поверхности трения тормозного шкива ё. Величины физических параметров, входящих в систему дифференциальных уравнений (коэффициенты теплопроводности и температуропроводности), удельная теплоемкость и удельные веса элементов трущихся пар тормозов приведены в табл. 95. При изменении температуры в достаточно узких пределах эти величины, характеризующие свойства твердых тел, можно считать постоянными для всех точек тела [217].  [c.604]

Выше были рассмотрены методы исследования тепловых свойств веществ, основанные на основной стадии процесса теплопроводности, в которой отсутствует влияние начального теплового состояния тела и расчетные уравнения вследствие этого имеют относительно простой вид. Наряду с ними существует значительное количество различных методов опытного изучения тепловых свойств твердых тел, в которых используется теория начальной стадии процесса теплопроводности.  [c.112]

Определенный интерес вызывает возможность определения объемного веса клеевых прослоек на основе не-наполненных клеев по ее тепловой проводимости. В целом ряде работ [Л. 80, 92, 133, 135] отмечается наличие связи между теплопроводностью и объемным весом различных материалов. Следуя аналогии свойств твердых тел, можно предполагать наличие определенного вида связи между теплопроводностью и объемным весом для клеевых прослоек.  [c.240]

Нестационарные методы экспериментального определения коэффициента Я, веществ основаны на теории теплопроводности, при нестационарном тепловом потоке. Эти методы нашли большое применение при исследовании теплофизических свойств твердых тел (см. 5-3), а в последнее время используются при исследовании коэффициента X жидкостей и газов.  [c.305]

Процессы переноса энергии играют фундаментальную роль в физике твердого тела. Именно поэтому трудно себе представить монографию, посвященную описанию свойств твердых тел, в которой в той или иной степени не обсуждалась бы проблема теплопроводности. Однако изложение это носит обычно ограниченный характер, связанный с общей тематикой книги, т. е. либо рассказывается только о теплопроводности металлов, либо обсуждается теория теплопроводности и не обсуждаются экспериментальные данные и т. д. В настоящее время накопился обширный теоретический и экспериментальный материал, и поэтому существует необходимость в создании обобщающих монографий, которые ли бы целиком посвящены рассмотрению процессов переноса энергии в различных типах твердых тел (металлах, аморфных телах, полупроводниках, сверхпроводниках и т. д.) и в которых с единой точки зрения был бы описан и проанализирован имеющийся теоретический и экспериментальный материал. Предлагаемая книга Р. Бермана в значительной мере служит этой цели. Автор монографии в течение многих лет занимается изучением процессов теплопроводности в различных типах твердых тел. Известен целый ряд его интересных исследований в этой области.  [c.5]


Система уравнений, описывающая течение смазки в УГД контакте, выводится с учетом ряда допущений (их обсуждение см., например, в [5, 7, 32]) из уравнений гидродинамики, теплопереноса и теории упругости. Основные допущения заключаются в следующем толщина слоя смазки существенно меньше радиусов контактирующих тел, силы вязкого трения значительно больше инерционных, локально контактирующие тела заменяются полупространствами. Связь между тензором скоростей деформации и тензором напряжений, т.е. реологическая модель среды, является заданной. Зависимости свойств смазки — вязкости, плотности, теплопроводности, теплоемкости — от давления и температуры полагаются известными. Известными являются физические свойства твердых тел. При исследовании микро-УГД смазки задается топография поверхности. Система УГД уравнений замыкается начально-краевыми условиями.  [c.499]

Передача тепла — явление распространения теплоты от одних тел к другим. Теплота всегда стремится распространяться от более нагретых тел к менее нагретым. Передача тепла может происходить тремя способами теплопроводностью, конвекцией и лучеиспусканием. Теплопроводность — свойство твердых тел проводить тепло от одной части тела к другой. Конвекция — передача теплоты путем перемещения холодных и теплых слоев жидкого или газообразного вещества. Лучеиспускание — передача теплоты через излучение.  [c.228]

О ВОЗМОЖНОСТИ ВЫСОКОТЕМПЕРАТУРНЫХ МЕТОДОВ ОПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ ТВЕРДЫХ ТЕЛ НА ОСНОВЕ ТОЧНОГО РЕШЕНИЯ НЕЛИНЕЙНОГО УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ  [c.260]

О возможности высокотемпературных методов определения теплофизических свойств твердых тел на основе точного решения нелинейного уравнения теплопроводности. В е р т о г р а д с к и й. В. А. В кн. Теплофизические свойства твердых тел при высоких температурах . М., Изд-во стандартов, 1968.  [c.486]

Теплопроводность и электропроводность горных пород при высокой температуре. Моисеенко У. И. В кн. Теплофизические свойства твердых тел при высоких температурах . М., Изд-во стандартов, 1968.  [c.488]

Уже в первые десятилетия нашего века нелинейные проблемы обсуждались не только применительно к механике (задача трех тел, волны на воде и т. д.) и к акустике, но и в связи с исследованием свойств твердых тел (учет ангармоничности колебаний атомов в кристаллической решетке в теории теплопроводности). Нелинейные задачи ставились зарождающейся радиотехникой (детектирование и генерация колебании) они непрерывно появлялись в других разделах науки и техники. Однако нелинейные трудности в этих различных областях казались совершенно специфическими и не связанными друг с другом. И лишь в 20-30-е годы в значительной мере благодаря деятельности Леонида Исааковича Мандельштама — создателя советской школы нелинейных физиков — среди специалистов различных областей физики и техники начало вырабатываться нелинейное мышление , и они начали перенимать нелинейный опыт друг у друга. Общность нелинейных явлений различной природы и общность их моделей, образов и методов рассмотрения стали почти очевидными. Сформировался своеобразный нелинейный язык, оперирующий такими понятиями, как нелинейный резонанс, автоколебания, синхронизация, конкуренция, параметрическое взаимодействие и т. д. Этот язык сопутствовал формированию современной теории колебаний и волн.  [c.13]

Рассмотрим нагрев какого-либо однородного и изотропного тела (в дальнейшем будем рассматривать только такие тела). Изотропным называют тело, обладающее одинаковыми физическими свойствами по всем направлениям. При нагреве такого тела температура его в различных точках изменяется во времени и теплота распространяется от мест с более высокой температурой к местам с более низкой температурой. Из этого следует, что в общем случае процесс передачи теплоты теплопроводностью в твердом тел,е сопровождается изменением температуры как в пространстве, так и во времени, т. е.  [c.347]

Испарение (кипение) и конденсация, плавление твердых тел и отвердевание расплавов — процессы теплообмена, отличительной чертой которых является выделение скрытой теплоты фазового перехода на поверхности раздела. Отвод теплоты от этой поверхности или подвод к ней осуществляется через соприкасающиеся фазы посредством теплопроводности, конвекции и, возможно, излучения. Поскольку физические свойства фаз (например, воды и пара) различны и скачкообразно изменяются при переходе через межфазную границу, то математическую формулировку процессов переноса составляют отдельно для каждой непрерывной фазы (см. пп. 1.1.2 и 1.1.3), после чего описывают механическое и тепловое взаимодействие между ними.  [c.55]


Механизм распространения теплоты теплопроводностью зависит от физических свойств тела в газообразных телах перенос теплоты теплопроводностью происходит в результате соударения молекул между собой в металлах — путем диффузии свободных электронов в капельных жидкостях и твердых телах-диэлектриках — путем упругих волн (упругие колебания кристаллической решетки).  [c.270]

Это уравнение выражает зависимость изменения во времени температуры в некоторой точке тела от свойств поля и производительности источников теплоты в окрестности этой точки, т. е. устанавливает связь между пространственными и временными изменениями температуры. Решая уравнение теплопроводности, можно определить температурное поле в твердом теле. При этом искомая функция Т(х,у,2,с) должна удовлетворять уравнению (2.5) и, следовательно, соответствовать закону сохранения энергии. Однако для получения однозначного решения уравнения (2.5) необходимо выполнение следующих условий  [c.81]

Необходимость написания книги Влияние шероховатости твердых тел на трение и износ обусловлена тем, что принятые в настоящее время критерии оценки микрогеометрии (параметров шероховатости) оказались недостаточными для изучения таких важных служебных свойств, как контактная жесткость, электро- и теплопроводность, газопроницаемость, а также для изучения процесса трения и изнашивания. Развитая за последние годы теория контактирования, трения и изнашивания твердых тел позволяет установить связь между некоторыми параметрами шероховатости поверхности и важнейшими эксплуатационными свойствами. В работе использован комплексный критерий оценки шероховатости, учитывающий форму неровностей и их распределение по высоте.  [c.3]

Термические свойства стекла характеризуют его как материал, отличающийся ОТ других твердых тел исключительно низкой теплопроводностью и способностью изменять коэффициент теплового расширения в очень широких пределах (в 10 и более раз).  [c.452]

Конвективный теплообмен — в общем случае процесс переноса тенла в жидкой или газообразной среде с неоднородным распределением скорости, температуры и концентрации, осуществляемый совместным действием двух механизмов перемещением макроскопических частей среды и тепловым движением микрочастиц. Первый из этих механизмов называется конвективным переносом, тогда как второй — молекулярным. В свою очередь применительно к теплообмену последний механизм подразделяется на теплопроводность и диффузию. Влияние конвективного переноса на теплообмен проявляется в зависимости от величины и направления скорости течения среды, от профиля скорости в потоке и от режима течения (ламинарного или турбулентного). Влияние молекулярного переноса на теплообмен проявляется в зависимости от состава и термодинамических и переносных свойств компонент газового потока. В технических приложениях иногда производят дальнейшее дифференцирование терминов и используют понятия теплоотдача и теплопередача . Под теплоотдачей подразумевают теплообмен между твердым телом и омывающей его жидкой или газообразной средой, теплопередачей — теплообмен между жидкими или газообразными средами, разделенными твердой стенкой.  [c.370]

В настоящей главе рассматривается особое свойство температурного поля твердого тела, которое может быть использовано при приближенном решении задач теплопроводности в весьма общем виде. Благодаря  [c.165]

Метод, изложенный в предыдущем параграфе, требует выполнения условий (2-13). Указанная предпосылка оказывается не всегда осуществимой применительно к твердым телам с высокой теплопроводностью, для которых первое условие не удается практически осуществить. Величина критерия Био в лучшем случае может достигать величин 8—10. Тогда прибегают к применению метода двух точек, справедливого для любого конечного значения Био. В нем используется важнейшее свойство регулярного теплового режима, состоящее в том, что температурное поле во времени остается подобным самому себе. Следовательно, если знать значение температур для двух произвольных точек тела, то отношение этих температур будет равно постоянной величине, яе зависящей от времени  [c.73]

Таким образом, распределение температур в стенке канала и величина температурной неравномерности будут определяться рядом теплофизических и гидродинамических факторов, поскольку имеет место сложный теплообмен — совместное действие конвективного теплообмена (зависящего от гидродинамики потока и от физических свойств теплоносителя) и теплопроводности в твердом теле. Для реакторостроения наибольший интерес представляет исследование распределения температур в стенках канала, что позволит рассчитать максимальные температуры стенок для конкретных условий.  [c.599]

В отличие от радиационных горелок раскаленные твердые тела здесь не только не интенсифицируют отдачу тепла из зоны горения, а наоборот, увеличивают пирометрический коэффициент горелки. Причиной этого служит, во-первых, взаиморасположение раскаленных тел по отношению к нагреваемым холодным телам (или к окружающему пространству) и, во-вторых, соотношение лучеиспускающих свойств нагреваемых тел. Может играть роль также теплопроводность огнеупоров. Если, например, разместить огнеупорные стержни у выходного сечения работающей туннельной горелки, можно иногда  [c.170]

В дальнейшем экспериментальная техника была усовершенствована Бриджменом, который довел гидростатическое давление с 62 до 120 МПа, а затем до 300 МПа. Это стало возможным в результате разработки оптимального метода уплотнения. Свои опыты Бриджмен начал в 1905 г. Выполнение исследований по специальной программе позволило ему установить эмпирические зависимости объема и температуры жидкости от давления, изучить влияние гидростатического давления на электрические и термоэлектрические свойства, теплопроводность, сжимаемость, а также исследовать процессы сварки и полиморфные превращения в твердых телах под давлением. Была установлена абсолютная сжимаемость многих изученных твердых тел, которая была представлена в функции давления в виде  [c.132]


В этом же разделе рассматриваются важнейшие методы определения наиболее часто используемых в теплотехнических расчетах свойств плотности твердых тел коэффициента поверхностного натяжения энтальпии и теплоемкости вещества термодинамических свойств на линии фазового перехода теплопроводности вязкости.  [c.9]

Бриджмен получил давление 12 ООО кгс/см . Это давление, за исключением давления 21 ООО кгс/см в единичном эксперименте с водой, стало предельным максимальным давлением, полученным до 1930 г. В этом диапазоне давлений по производящей большое впечатление систематической экспериментальной программе, похожей на программу Вертгейма, Бриджмен исследовал зависимость объема и температуры жидкости от давления, процесс сварки под давлением, электрическое сопротивление под давлением, полиморфные превращения в твердых телах под давлением, влияние сжатия на термоэлектрические свойства, теплопроводность под давлением, вязкость под давлением и сжимаемость твердых тел.  [c.92]

Определение коэффициента теплопроводности жидких сплавов при высоких температурах методом зонной плавки с градиентом температуры. Лозовский В. Н., Уд я иска я А. И., Николаева Е. А. В кн. Теп.чофнзи-ческие свойства твердых тел при высоких температурах . М., Изд-во стандартов, 1968.  [c.489]

Уравнение (2.44) является дифференциальным уравнением теплопроводности однородного неподвижного тела, выражающим зависимость температуры любой его точки от координат и времени. Как отмечалось выше, величина а = X /(Срр) называется коэффициентом температуропроводности. Для твердых тел вместо Ср следует подставлять с — удельную теплоемкость тела. Коэффициент а характеризует теплопнерционные свойства вещества, т. е. скорость изменения температуры любой его точки, поскольку определяет способность вещества проводить теплоту, а ср — меру теплсвой инерции вещества.  [c.162]

Низкие значения коэффициента теплопроводности газов объясняют то обстоятельство, что всякий теплоизоляционный материал представляет собой композицию твердого тела с воздухом. Именно воздух, находящийся в порах или в полостях, образуемых твердым скелетом , придает материалу свойства плохого проводника тепла с коэффициентом теплопроводности, не намного большим, чем для воздуха. Отсюда ясно, что величина л должна изменяться в одну сторону с так называемым объемным весом материала, т. е. весом единицы объема, фактически занимаемого материалом. Этот объемный вес всегда меньше удельного веса, который мог бы быть измерен в результате спрессовки материала и ликвидации включенных в него пор и полостей. Однако, с другой стороны, увеличение размеров воздушных включений в материал приостанавливает улучшение его теплоизоляционных свойств, поскольку в воздухе начинает формироваться организованное движение, и дополнительно к теплопроводности возникает также конвекция. Следует еще иметь в виду, что в передаче тепла по пористому материалу в большей или меньшей степени принимает участие и теплообмен излучением твердых стенок, замыкающих собой воздушные включения. Поэтому эффективный коэффициент теплопроводности теплоизоляционных материалов не может быть непосредственно выражен  [c.16]

ТЕПЛОЕМКОСТЬ (решеточная — теплоемкость, связанная с поглощением теплоты кристаллической решеткой удельная— тепловая характеристика вещества, определяемая отношением теплоемкости тела к его массе электронная — теплоемкость металлов, связанная с поглощением теплоты электронным газом) ТЕПЛООБМЕН (излучением осущесгв-ляется телами вследствие испускания и поглощения ими электромагнитного излучения конвективный происходит в жидкостях, газах или сыпучих средах путем переноса теплоты потоками вещества и его теплопроводности теплопровод-ноетью проходит путем направленного переноса теплоты от более нагретых частей тела к менее нагретым, приводящего к выравниванию их температуры) ТЕПЛОПРОВОДНОСТЬ (решеточная осуществляется кристаллической решеткой стационарная характеризуется неизменностью температуры различных частей тела во времени электронная — теплопроводность металлов, осуществляемая электронами проводимости) ТЕПЛОТА (иенарения поглощается жидкостью в процессе ее испарения при данной температуре конденсации выделяется насыщенным паром при его конденсации образования — тепловой эффект химического соединения из простых веществ в их стандартных состояниях плавления поглощается твердым телом в процессе его плавления при данной температуре сгорания — отношение теплоты, выделяющейся при сгорании топлива, к объему или массе сгоревшего топлива удельная — отношение теплоты фазового перехода к массе вещества фазового перехода — теплота, поглощаемая или выделяемая при фазовом переходе первого рода) ТЕРМОДЕСОРБЦИЯ — удаление путем нагревания тела атомов и молекул, адсорбированных поверхностью тела ТЕРМОДИНАМИКА — раздел физики, изучающий свойства макроскопических физических систем на основе анализа превращений без обращения к атомно-молекулярному строению вещества  [c.286]

Во всех вышеупомянутых работах было показано, что при заданных заранее переменных условиях на поверхности тела (близких к реальным) использование закона Ньютона, а следовательно, и коэффициента теплообмена неприемлемо. Однако закон зависимости температуры стенки от координат и от времени не может быть задан apriori , а должен быть получен путем совместного решения уравнений распространения теплоты в жидкости и твердом теле вместе с уравнениями движения, причем на границе твердое тело — жидкость температуры и тепловые потоки равны, т. е. должна решаться так называемая сопряженная задача теплообмена [Л. 4-4, 4-5]. При такой постановке учитывается взаимное тепловое влияние тела и жидкости, которое при прежней постановке не учитывалось, в результате чего теплообмен оказывался не зависящим от свойств тела, его теплофизических характеристик, размеров, распределения источников в теле и т. д., что, очевидно, противоречит физическому смыслу. Особенно важно рассматривать задачи теплообмена как сопряженные для случая нестационарного теплообмена. Действительно, даже в предельном случае, когда коэффициент теплопроводности твердого тела очень большой (Xj->-oo), температуру поверхности нельзя считать постоянной, так как хотя она и не зависит от координат точек поверхности, но изменяется во времени. Однако в отличие от стационарного теплообмена даже н в этом предельном случае  [c.258]

Для получения низких значений коэффициента теплопроводности применяются давления среды в порах меньшие, чем атмосферное. В этом случае конвективный перенос тепла в среде отсутствует, а перенос тепла путем теплопроводности уменьшается за счет уменьшения теплопроводности среды, заполняющей поры, а также ухудшения тепловых контактов между твердыми частицами пористого тела, которые затрудняют проявление собсгвениых свойств этого тела.  [c.11]


Широкое распространение применительно к полимерным системам получила фононная теория теплоперенога Л. 35—38]. В ряде работ ТЛ. 39, 40] экспериментально установлена согласованность температурной зависимости теплопроводности полимеров с основными положениями фононной теории теплопереноса. С другой стороны, результаты экспериментов при низких температурах Л. 41], а также теоретический расчет теплофизичеоких параметров по скорости распространения упругих волн в растворах и твердых телах [Л. 42] не подтверждают правомерность применения фононной теории теплопр-реноса для таких сложных веществ, как полимеры. Альтернативный характер носят и другие положения фононной теории теплопереноса применительно к полимерным системам. Так, если руководствоваться результатами работы (Л. 43], то длина свободного пробега фононов в широком интервале температур для аморфных полимеров равняется среднему межатомному расстоянию и не зависит от температуры. Однако из приведенного выше обзора по физико-химическим свойствам полимеров видно, что за счет гибкости макромолекул (Л. 22] плотность упаковки структурных элементов полимера может претерпеть существенные изменения. Таким образом, специфика структуры полимерных систем накладывает неопределенность на понятие длины  [c.32]

В книге рассмотрены методы изучения и описаны свойства дисперсных золовых натрубных отло ений. Изложены основы теорий загрязнения топок с запыленными пламенами. Даны обобщенные уравнения для расчета коэффициентов теплопроводности, вязкости и диффузии в газе (паре), жидкости и твердом теле. Полученные уравнения применены для решения ряда практических задач еатдинамики, приборостроения и теплофизики.  [c.2]

Имеется довольно обширная литература, посвященная теплопроводности в гетерогенных средах, появление которой объясняется главным образом технологической важностью применения таких материалов в качестве теплоизоляции. Изоляционные материалы на основе минеральных волокон можно рассматривать как одну из разновидностей композиционных материалов, в которых окружающий воздух играет роль непрерывной матрицы. Вследствие наличия в таких материалах двух фаз — газообразной и твердой— их называют двухфазными материалами. Однако использо-Bainie такого термина для композиционных материалов, в которых оба компонента находятся в твердом состоянии, оказалось ие вполне точным. Само понятие композиционный уже указывает на присутствие в таком материале более одного компонента и оказывается вполне достаточным для его характеристики. Несмотря на несомненное принципиальное сходство между волокнистыми теплоизоляциоными и композиционными материалами, имеется и существенное различие, оказывающее заметное влияние на свойства, связанные с явлениями переноса в композиционных материалах. В изоляционных материалах непрерывная фаза (воздух или какой-либо другой газ) находится в непосредственном контакте с волокнистым твердым телом. В композиционных материалах конструкционного назначения матрица и армирующий наполнитель приводятся в контакт в процессе формования под действием заданного давления и температуры. Любой дефект, образующийся в процессе формования, например иесмачивание части армирующего наполнителя полимерным связующим, присутствие воздушных включений на поверхностях уплотненного волокнистого мата, препятствует равномерному распределению компонентов и в дальнейшем приведет к возникновению сопротивления на границе раздела фаз. Кроме того, очевидно, что в течение определенного периода времени под действием, например, влаги, влияние этих неблагоприятных условий будет увеличиваться. Хотя этот эффект может быть легко обнаружен, поскольку он приводит к ухудшению механических свойств композиционных материалов, оказывается, что в литературе отсутствуют какие-либо сведения о его влиянии на тепло- и электропроводность.  [c.287]

Неметаллы и металлы рассматриваются параллельно. Основные экспериментальные методы (гл. 2), а также краткое изложение главных особенностей теплопроводности (гл. 3) относятся к обоим типам веществ. Далее рассматриваются фононы, являющиеся носителями тепла в неметаллах, механизмы их рассеяния и вклад в теплопроводность (гл. 4—8). Некристаллические твердые тела, например стекла, обсуждаются отдельно (гл. 9). Изучаются свойства электронов в металлах и их рассеяние, а также теплопроводность металлов и сплавов, обусловленная электронами и фононами (гл. 10—12). Так как теория электронов хорошо известна в связи с электропроводностью, она обсуждается более кратко, чем для фоно-нов. О теплопроводности сверхпроводников только упоминается. Наконец, рассматриваются полупроводники, в которых важны как решеточная, так и электронная теплопроводности (гл, 13).  [c.12]


Смотреть страницы где упоминается термин Свойства твердых тел теплопроводность : [c.286]    [c.349]    [c.243]    [c.254]    [c.96]    [c.90]    [c.21]    [c.348]    [c.16]    [c.486]    [c.487]   
Тепловые трубы Теория и практика (1981) -- [ c.19 , c.201 ]



ПОИСК



Теплопроводность твердых тел



© 2025 Mash-xxl.info Реклама на сайте