Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стекло Свойства термические

Производство закаленного стекла. Листовое стекло, которому термическая обработка придает повышенную прочность, называется закаленным. Характерное свойство такого стекла — разрушение при сильном ударе с образованием мелких осколков с тупыми краями. Термическая обработка (закалка) сводится к нагреванию стекла с последующим быстрым охлаждением.  [c.556]

Области применения керамики из двуокиси циркония определяются высокой ее стойкостью к действию различных металлов, сплавов, стали и стекла. Свойство этой керамики плавиться и размягчаться под нагрузкой при высоких температурах позволяет использовать ее в высокотемпературных печах. Но необходимым условием в этом случае является повышение ее термической стойкости.  [c.276]


Прочность — сопротивление твердого тела действию приложенной силы — разрыва, кручения, сжатия, изгиба, удара. Стекла и эмали — хрупкие тела, их прочность непостоянна, так как зависит не только от состава, но и многих других факторов. Одним из существенных из них является масштабный фактор. Например, прочность на разрыв кварцевого стекла изменяется от 8 до 590 кгс/мм в зависимости от размера приготовленного образца [2]. Еще в большей степени влияет на свойства термическая обработка стекол. В связи с этим аддитивные формулы для расчета прочности стекла на разрыв, сжатие и другие виды нагружения не применяют.  [c.16]

Механические свойства стекол зависят от химического состава и термической обработки. Высокие механические свойства характерны для кварцевых и бесщелочных стекол, а более низкие — для стекол, содержащих РЬО, КгО. НагО. Предел прочности силикатного стекла при изгибе равен 7—9,5 М /зС для тянутого, 4—5 Мн м для литого необработанного, 3—4 Мн м для прокатного необработанного и 9—16 Мн м для закаленного.  [c.393]

Термические свойства стекол зависят от состава и методов переработки. Так стекла, содержащие окислы А1 и Ре, лучше проводят  [c.393]

Вследствие своих специфических свойств химическое никелирование находит применение во многих отраслях машиностроения и приборостроения для покрытия металлических изделий сложного профиля (с глубокими каналами и глухими отверстиями), для увеличения износоустойчивости трущихся поверхностей деталей машин, для повышения коррозионной стойкости в среде кипящей щелочи н перегретого пара, для замены хромового покрытия (с последующей термической обработкой химического никеля)., чтобы использовать вместо коррозионно-стойкой стали более дешевую сталь, покрытую химическим никелем, для никелирования Крупногабаритной аппаратуры, для покрытия непроводящих материалов, пластмасс, стекла, керамики и т и  [c.4]

С инженерной точки зрения стекло представляет интерес из-за своей низкой себестоимости, достаточно высокой удельной прочности, однородности, высокого сопротивления удару, отличной химической и теплостойкости, а также благодаря своей технологичности. Отличные изоляционные качества стекла позволили использовать его для термической изоляции конструкций. Хорошие диалектические свойства привели к использованию стекла в обтекателях антенн радиолокаторов.  [c.83]


Таким образом, в результате проведенной работы установлено, что состав стекла и чистота обработки его поверхности не оказывают существенного влияния на прочностные свойства спаев. Отсутствие различия в прочности спаев с полированной и шлифованной поверхностью стекла, вероятно, связано с тем,что прочность припоя совпадает с нижним пределом прочности стекла [41, кроме того, высокопластичный припой, обладающий большим термическим расширением, чем стекло, сжимает его поверхность, что тормозит развитие микротрещин, образующихся при шлифовке.  [c.51]

Влияние термической обработки на механические свойства материалов. Термическая обработка является одним из весьма существенных классов операций в технологии получения материалов необходимых качеств. Это относится в первую очередь к металлам, но в большой мере справедливо и для материалов, в основе которых лежат полимеры, а также для ряда силикатов (неорганическое стекло, ситаллы).  [c.267]

Физико-механические свойства. Плотность стекла сильно меняется (в 3—4 раза) в зависимости от его химического состава — уменьшается по мере увеличения содержания в стекле двуокиси кремния и повышается с ростом содержания окислов цинка, бария и свинца (при 80% РЬО его плотность приближается к 6 г см ). В результате термической закалки (интенсивное охлаждение) плотность стекла понижается.  [c.448]

Термические свойства стекла характеризуют его как материал, отличающийся ОТ других твердых тел исключительно низкой теплопроводностью и способностью изменять коэффициент теплового расширения в очень широких пределах (в 10 и более раз).  [c.452]

Термические свойства стекла зависят преимущественно от его химической природы (состава), а также от условий тепловой обработки (отжиг, закалка).  [c.452]

Пределы изменения термических свойств стекла указаны в табл. 9, а их значения для технических промышленных стекол приведены в табл. 10.  [c.453]

Общие пределы изменения термических свойств стекла  [c.453]

Оптические постоянные (показатель преломления, средняя и частные дисперсии, коэффициент дисперсии) и светопоглощение стекла практически не изменяются во времени и имеют малый температурный коэффициент они эффективно, просто и точно регулируются главным образом путем изменения химического состава стекла, а также в результате термического отжига, приводящего структуру стекла в более равновесное состояние. Существенное влияние на оптические свойства стекла оказывают, кроме того, степень его однородности, условия термической обработки ( тепловое прошлое ), а также состояние и качество обработки поверхности.  [c.457]

Кварцевое стекло отличается от всех известных стекол исключительно благоприятным комплексом физико-химических свойств — высокой жаростойкостью (1400—1500° С), низким коэффициентом теплового расширения (порядка 5Х Х10 град ), наивысшей термической стойкостью (выдерживает перепад температур 800—  [c.467]

Термические свойства кварцевого стекла  [c.468]

Кварцевое стекло — наиболее чистое силикатное стекло, получаемое плавлением (выше 1700° С) природного кристаллического кварца (горный хрусталь, жильный кварц или чистый кварцевый песок). Благодаря высокой термической и химической стойкости и другим свойствам (табл. 10) кварцевое стекло применяют для изготовления тиглей (ГОСТ 6377—52), чаш (ГОСТ 7300—54), труб (ГОСТы 8680—58 и 10239—62), наконечников (ГОСТ 9110—59), лабораторной посуды (ГОСТ 3681—68).  [c.272]

Показатели физико-химических свойств стекла можно подразделить на следующие группы весовые и объёмные, механические, термические, оптические и химические.  [c.374]

Формование изделий из листовых термопластических материалов. Вакуумный метод формования применим для изготовления из листового органического стекла деталей со сферической поверхностью и высокими оптическими свойствами. Сущность процесса заключается в следующем. Из органического стекла вырезают заготовку с припуском 2,3—2,5% на термическую усадку. Заготовка нагревается до 140—150° С в термостате или инфракрасными лампами, выдерживается при этой температуре в течение примерно 5 мин. на  [c.600]


Сталлы получают плавлением стекловидных масс или металлургических шлаков с добавками минерализаторов и последующей кристаллизацией стекла в процессе термической обработки. Ситаллы обладают высокими механическими и термическими свойствами, что позволяет применять их для изготовления листа, плит, труб и сосудов, которые могут работать в агрессивной среде при температуре до 300 °С.  [c.309]

Термические свойства. К термическим свойствам стекла относятся теплоемкость, теплопроводность, темпера-  [c.101]

Изотропность стекла и обусловливает тождественность его физических свойств во всех направлениях. Кроме того, стеклу не свойственны все те явления, которые характерны для перехода из твердого состояния в жидкое и обратно, — определенная температура плавления и резкие скачки величин вязкости и теплоемкости. Сильные колебания в значениях некоторых свойств стекла, как, например, коэффициента термического расширения, теплоемкости, теплопроводности и диэлектрической проницаемости, проявляются лишь в так называемом аномальном участке (интервале размягчения). Однако эти колебания не связаны с какой-либо точкой на температурной кривой.  [c.5]

Большинство физических свойств стекла удельный вес, механическая прочность (сопротивление сжатию и разрыву), коэффициент расширения, теплоемкость, теплопроводность, термическая прочность—подчиняется правилу аддитивности, согласно которому данное свойство стекла рассматривается как линейная функция процентного содержания отдельных его компонентов. Каждое из указанных свойств стекла определяется как сумма произведений процентного содержания каждого стеклообразующего окисла на соответствующую константу, выражающую влияние этого окисла на рассматриваемое свойство стекла.  [c.17]

Способы воздействия на свойства неорганических стекол определяются необходимостью нейтрализовать дефектный поверхностный слой. Их можно разделить на четыре группы механическая обработка (полирование), химическая обработка травление), термическая обработка (закалка), химико-термическая обработка. Так, закалка, при которой можно получить анизотропию свойств, и химико-термическая обработка стекла в несколько раз повышают показатели прочности и ударную вязкость, а также увеличивают термостойкость. Травление закаленного  [c.350]

Так называемая теория стесненных слоев постулирует, что передача усилия от низкомодульной матрицы к высокомодульным волокнам может быть равномерной и эффективной, если между ними находится межфазный слой с промежуточным модулем упругости [49]. Поскольку экспериментально показано, что частицы наполнителя могут изменять плотность упаковки макромолекул эластичного полимера и уменьшать их подвижность, а следовательно, изменять механические свойства полимера на расстояние до 150 нм от поверхности, эти представления кажутся многообещающими. Был сделан вывод, что аппреты способны уплотнять структуру полимера на границе раздела, оставаясь химически связанными с поверхностью стекла [39]. Однако эти представления трудно увязать с релаксацией напряжений в пограничной области при компенсации термических усадок [29].  [c.46]

Производство закаленного стекла. Листовое стекло которому термической обработкой придают повышен ную прочность, называется закаленным. Характерныл свойством такого стекла является разрушение ир1 сильном ударе с образованием мелких осколков с тупы ми краями. Термическая обработка (закалка) сводит ся к нагреванию стекла с последующим быстрым ох лаждением.  [c.513]

В последние годы проявляется исключительно большой интерес к новому классу материалов — аморфным металлам, называемым также металлическими стеклами. Аморфное состояние металлов аблюдалось уже давно при осаждении слоев металла из электролита и при термическом напылении на холодную подножку. В настоящее время создана весьма экономичная и высокопроизводительная технология получения аморфных металлов, в основе которой лежит быстрое (со скоростью больше 10 KJ ) охлаждение тонкой струи расплавленного металла. По-видимоиу, любой расплав можно привести к твердому аморфному состоянию. Установлено, однако, что формирование аморфных слоев облегчается, если к металлу добавить некоторое количество примесей. Еще более благоприятные условия для получения металлического стекла создаются при осаждении сплавов металл — металл и металл — металлоид . Полученные таким образом металлические стекла обладают весьма интересными свойствами, обусловленными особенностями атомной структуры.  [c.372]

В работе приведены свойства некоторых исследованных составов стекол системы SiOa— aO—SrO, полученных методом растворной керамики . Установлено, что выбранные составы стекол отличаются высокой кристаллизационной способностью. Данные реытгенофа-зового и дифференциально-термического анализов свидетельствуют о том, что в стекловидной связке происходят фазовые превращения. В стеклокерамических композициях (растворное стекло и наполнитель высокодисперсный a-AlaOa) взаимодействия между компонентами не происходит. Стеклокерамические покрытия, получаемые на основе данных составов растворных стекол, отличаются малой толщиной пленки (20—25 мкм) и высокими значениями пробивного напряжения при комнатной температуре и в вакууме при 800 С.  [c.241]

Хотя теория деформируемого слоя оказалась непригодной для композитов, армированных стекловолокном, из-за чувствительности каучукоподобных полимеров на поверхности стекла к действию воды, тем не менее она оказывается полезной при раосмотре-нии связи между жесткими полимерами и гидрофобным волокном, подобным графиту. Свойства композита, состоящего из графита и твердого полимера, ухудшаются в основном под действием термических напряжений, так как графит имеет очень низкий коэффициент линейного Теплового расширения. В данном случае невозможно гидролитическое равновесие на поверхности раздела, которое способствовало бы снятию напряжений по химическому механизму. В то же время благодаря наличию деформируемого слоя возможна меканиЧёскАя релаксация напряжений, так как связь органических. полимеров с графитом не чувствительна к воздействию воды.  [c.38]


Свойства стекла зависят от его химического состава и структуры, а также от условий термической обработки (отжига или закалки), состояния поверхности и других факторов. Зависимость ряда структурно чувствительных свойств стекла от его химического состава может быть выражена правилом аддиктивности (слагаемости), с помощью которого можно с различной степенью приближения рассчитывать эти свойства стекла, исходя из парциальных свойств (аддитивных констант) окислов (компонентов), входящих в его состав.  [c.447]

Возможность существенно изменять свойства стекла путем изменения его химического состава и структуры, а также в результате соответствующей термической, химической и механической его обработки практически широко используется в производстве для получения стекол с необходимым комплексом свойств, удовлетворяющих требованиям разнообразных отраслей народного хозяйства и новейщей техники.  [c.448]

Двойное лучепреломление наблюдается в стекле только при наличии в нем внутренних напряжений (временных или остаточных), вызываемых приложением внешних механических воздействий (растягивающих или сжимающих стекло), а также неравномерным или быстрым охлаждением стекла (закалка) или наличием в нем химически неоднородных областей — различных по составу (и особенно коэффициенту термического расширения) стеклообразных включений — свилей, шлифов, ликваций. В этих случаях стекло приобретает свойства анизотропного материала и, уподобляясь оптически одноосному кристаллу, становится двупреломляющим.  [c.458]

Флюсы — материалы нреимущественно минерального происхождения, оптимизирующие металлургические процессы нри выплавке и переплавке металлов, их сварке, пайке, термической и других видах обработки. В качестве флюсов применяют мел, доломит, мрамор, флюорит, жидкое стекло, буру, двуокись титана и др., описание которых приведено вслед за оппсанием основного материала или под своим названием. В связи с тем, что указанные материалы не обладают полным спектром свойств, необходимых для выполнешш своих технологических функций, синтезируются искусственные флюсы описание главнейших из них приведено ниже. В ГОСТ 21639.0—76н-ГОСТ 21639.11—76 приведены критерии оценок и соответствующие методы испытания флюсов для электрошлакового переплава.  [c.415]

Термические свойства стекла. Теплоёмкость стекла при 0°С в зависимости от его состава изменяется от 0,8 до 0,5 кал1г°С.  [c.377]

Доломитовые изделия изготовляются из намертво обожжённого доломита с добавлением в качестве связки органических клеящих веществ, жидкого стекла, а также 6—8% ЗЮз и соответствующего количества А1зОз и РезОз. Доломитовые изделия на органической связке, как правило, обжигу не подвергаются. По своей природе доломитовыеогне-упоры относятся к материалам с ярко выраженными основными свойствами. Кислые шлаки вступают с доломитом во взаимодействие, образуя легкоплавкие соединения, и разрушают его. Огнеупорность доломитовых изделий несколько ниже, чем магнезитовых, и находится в интервале 1800—1950° С, температура начала деформации под нагрузкой колеблется в пределах 1500—1600° С. Термическая стойкость относительно низкая, но всё же выше, чем у магнезитовых изделий. При хранении на воздухе доломитовые изделия разрушаются вследствие гидратации. Стабилизация доломита достигается введением в состав массы шлака или глины. Доломитовые огнеупоры применяются в виде порошка для наварки подин мартеновских печей, а также в виде изделий для футеровки металлургических печей и конвертеров.  [c.404]

Химико-термические методы упрочнения поверхности для повышения износостойкости за счет увеличения поверхностной твердости (цементация, азотирование, цианирование, борирование и др. процессы) весьма эффективны для повышения сопротивления абразивному изнашиванию. Для улучшения противозадирных свойств создаются (посредством сульфиди-рования, сульфо-цианирования, селенирования, азотирования) тонкие поверхностные слои, обогащенные химическими соединениями, предотвращающими схватывание и задир при трении.. Большой эффект получается при использовании метода карбонитрации. Широко применяются электрохимические методы нанесения покрытий А1, РЬ, Sn, Ag, Au и др. При восстановлении деталей (в ремонте) используется электролитическое хромирование, никелирование, железнение и др. Значительная часть технологических задач, связанных с необходимостью повышения износостойкости, коррозионной стойкости, жаропрочности, восстановительного ремонта и др. решается при использовании методов металлизации напылением, включающих газоплазменную металлизацию, электродуговую, плазменную, высокочастотную индукционную металлизацию и детонационное напыление покрытий - наносятся металлы и сплавы, оксиды, карбиды, бориды, стекло, фосфор, органические материалы. Плазменное напыление используют для нанесения тугоплавких покрытий окиси алюминия, вольфрама, молибдена, ниобия, интерметаллидов, силицидов, карбидов, боридов и др. Детонационное напыление имеет преимущество в связи с незначительным нагревом покрываемой детали и распыляемых частиц. В последнее время активно развиваются методы нанесения износостойких покрытий в вакууме катодное распыление, термическое напыление, ионное осаждение. В зависимости от реакционной способности газовой среды методы напыления  [c.199]

Окись бериллия БеО — высокоогнеупорный материал с температурой плавления 2570" , но в обычных силикатных системах, в том числе в глазури (стекле) окись бериллия играет роль илавня. Окись бериллия имеет очень низкий коэффициент термического расширения (1,56- 10" ) и устойчива против влияния химических воздействий окислительной и восстановительной среды. БеО отличается высоким электросопротивлением и малыми диэлектрическими потерями. Эти замечательные свойства БеО в значительной степени передает глазури.  [c.83]

Анализ экспериментальных данных, имеющихся в литературе, позволяет сделать некоторые выводы о поведении композиционных материалов при тепловом расширении (рис. 6.8). Для. удобства, кривые на рис. 6.8 экстраполированы к фр = 1,0, хотя в литературе приводятся, главным образом, данные для объемной доли наполнителя не выше 0,5. Основными источниками информации служила периодическая литература, хотя используются также некоторые ранее не публиковавшиеся данные. На рис. 6.8 приведены данные для композиционных материалов на основе различных полимеров, термические коэффициенты расширения которых лежат в широком интервале — от 7т = 9-10 К для полиэфирной смолы и до Ym = 72-10 s ji -i дJJд полиуретана, а также разнообразных наполнителей, коэффициенты расширения которых лежат в интервале от ур = 0,5-10 для, стекла до ур=Н-10 К для хлорида натрия. Приведены также данные для наполнителей, различающихся по форме и размерам частиц (в литературе имеется мало данных по этому вопросу). Пунктирные линии на рис. 6.8 соответствуют свойствам композиционных материалов, содержащих в качестве наполнителя ткани и волокна, а сплошные — дисперсные наполнители. Ключом к рис. 6.8 является табл. 6.6. Рис. 6.8 достаточно сложен, поэтому данные, приведенные на нем, обобщены в виде графика на рис. 6.9.  [c.263]

Большинство полимеров или полностью аморфны или содержат аморфную компоненту, даже если они кристаллизуются. Такие полимеры ниже определенной температуры, известной как температура стеклования Т , являются твердыми и жесткими стеклами. При температуре выше Т , по крайней мере при малых или средних скоростях деформирования, аморфные полимеры представляют собой эластомеры или очень вязкие жидкости. В области стеклования механические свойства полимеров претерпевают наиболее резкие изменения. Так, модуль упругости может измениться более чем в тысячу раз. Поэтому аморфных полимеров является их важнейшей характеристикой с точки зрения механических свойств. В области заметно изменяются и другие физические свойства полимеров — коэффициент термического расширения [20, 21], теплоемкость [20, 22], коэффициент преломления [23], магнитные [27] и электрические свойства [25—27]. Таблица значений Т . важнейших полимеров приведена в Приложении 3. Эластомеры или каучуки имеют ниже, а жесткие стеклообразные полимеры — выше комнатной температуры. Значение Тс может варьироваться от —123 °С для полидиметилсилок-сана до 100 °С для полистирола и до 300 °С или даже выше температуры деструкции для жесткоцепных плотно сшитых поли-  [c.23]


Шкала термометра устанавливает меру соответствия между вь >-ступающим в капилляре столбиком и измеряемой температурой. Конструкции шкал должны гарантировать однозначность механической связи с капилляром и удобство наблюдения положения мениска. Деление шкалы должно опираться на точные значения температур в фиксированных точках и интерполяционные формулы с учетом характера термического расширения термометрической жидкости и стекла. Основные трудности при делении шкалы связаны с нелинейностью свойств жидкостей и стекол. При равномерном делении шкалы в промежутке 0°С... 100 °С погрешность за счет деления не превышает 0,05 К. Экстраполяционное деление дает менее надежные результаты. Экстраполирование стоградусной шкалы на ртутном термометре из стекла 1565 до 700 °С приводит к погрешности 75 К. Экстраполяция шкалы, основанной на точках таяния льда и сублимации двуокиси углерода, до температуры кипения азота для пентанового термометра дает погрешность 23 К. В связи с большой надежностью интерполяции у платиновых термометров сопротивления градуировку промежуточных значений шкалы производят по показаниям термометров сопротивления.  [c.86]


Смотреть страницы где упоминается термин Стекло Свойства термические : [c.385]    [c.139]    [c.272]    [c.405]    [c.109]    [c.511]    [c.123]    [c.46]    [c.163]   
Материалы в машиностроении Выбор и применение Том 5 (1969) -- [ c.452 , c.454 , c.468 ]



ПОИСК



Стекло Свойства

ТЕРМИЧЕСКАЯ Свойства



© 2025 Mash-xxl.info Реклама на сайте