Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплопроводность кристаллической решетки

Учебное пособие содержит те разделы физики твердого тела, знание которых необходимо для четкого представления об энергетическом спектре электронов в твердом теле, для понимания классификации веществ на металлы, полупроводники и изоляторы. Подробно рассматриваются тепловые свойства твердых тел — гармонические колебания, теплоемкость и теплопроводность кристаллической решетки. Уделяется внимание вопросам химической связи в твердом теле и возможности интерпретации ее с помощью магнитных исследований.  [c.2]


Теплопроводность кристаллической решетки  [c.42]

Результаты измерений показывают, что теплопроводность кристаллической решетки Яр по составу уменьшается, что связано с рассеянием фононов на дефектах деформированной решетки.  [c.33]

Проведено измерение общей теплопроводности при комнатной температуре, вычислена теплопроводность кристаллической решетки, проведены рентгеноструктурные и микрострук-турные исследования изучаемой тройной системы и показана возможность корреляции тепловых и структурных свойств.  [c.178]

ТЕПЛОВОЕ РАСШИРЕНИЕ И ТЕПЛОПРОВОДНОСТЬ КРИСТАЛЛИЧЕСКОЙ РЕШЕТКИ  [c.343]

ТЕПЛОПРОВОДНОСТЬ КРИСТАЛЛИЧЕСКОЙ РЕШЕТКИ (ГЛ- XI  [c.344]

ТЕПЛОПРОВОДНОСТЬ КРИСТАЛЛИЧЕСКОЙ РЕШЕТКИ 1ГЛ. XI  [c.350]

ТЕПЛОПРОВОДНОСТЬ кристаллической решетки (гл. XI  [c.354]

Магний — щелочноземельный металл, II группы Периодической системы элементов, порядковый номер 12 (см. табл. 1), атомная масса 24,312. Цвет светло-серый. Характерным свойством магния является малая плотность 1,74 г/см , температура плавления магния 650 °С. Кристаллическая решетка гексагональная (с/а = 1,62354). Теплопроводность магния значительно меньше, чем у алюминия 125 Вт/(м-К), а коэффициенты линейного расширения примерно одинаковы (26,1 10 при (20—100 С) I. Технический магний Мг1 содержит 99,92 % Mg. В качестве примесей присутствуют Ре, Si, Ni, Na, Al, Мп. Вредными примесями являются Ре, Ni, Си и S1, снижающие коррозионную стойкость магния. Механические свойства литого магния сГв = 115 МПа, о ,., = 25 МПа, б 8 %, Е = = 45 ГПа, НВ 300 МПа, а деформированного (прессованные прутки) Оц 200 МПа, ст ,., = 9 МПа, б =-- 11,5 %, НВ 400 Л Па. На воздухе м, 11 ит легко воспламеняется. Используется в пиротехнике и химической промышленности.  [c.337]

Эти колебания в реальных веществах имеют затухающий характер, в связи с чем наблюдаются затухание тепловых упругих волн и невысокое значение коэффициента теплопроводности. В теории теплопроводности предполагается, что колебания нормального вида квантуются. В дискретной кристаллической решетке связь между ангармоническими колебаниями приводит к взаимодействию фононов между собой. Для описания этого процесса можно воспользоваться понятием длины свободного пробега. По аналогии с кинетической теорией газов теплопроводность твердого тела можно предста-  [c.157]

Теплопроводность представляет собой процесс распространения теплоты при непосредственном соприкосновении отдельных частиц тела, имеющих различные температуры. Этот вид переноса теплоты может происходить в любых телах, но механизм переноса теплоты зависит от агрегатного состояния тела. В жидкостях и твердых телах — диэлектриках — перенос теплоты осуществляется путем непосредственной передачи теплового движения молекул и атомов соседним частицам вещества. В газообразных телах распространение теплоты теплопроводностью происходит посредством диффузии молекул и атомов, а также за счет обмена энергией при соударении молекул. В металлах распространение теплоты происходит в основном в результате диффузии свободных электронов и упругих колебаний кристаллической решетки, причем последнее имеет второстепенное значение.  [c.89]


Механизм распространения теплоты теплопроводностью зависит от физических свойств тела в газообразных телах перенос теплоты теплопроводностью происходит в результате соударения молекул между собой в металлах — путем диффузии свободных электронов в капельных жидкостях и твердых телах-диэлектриках — путем упругих волн (упругие колебания кристаллической решетки).  [c.270]

В процессе работы реактора происходит передача энергии у-квантами и замедляющимися нейтронами атомам углерода, что вызывает разогрев графитовой кладки. При этом доля генерируемого в графите тепла составляет л 5% тепловой мощности реактора. Наряду с разогревом кладки вследствие смещения атомов углерода из узлов кристаллической решетки происходит значительное снижение теплопроводности графита, а также накопление запасенной энергии. Температура кладки непосредственно определяет величину и характер радиационной деформации ее элементов. Влияние этих радиационно-термических эффектов учитывается при конструировании кладок для обеспечения отвода тепла, генерируемого в графите.  [c.228]

Для условий работы электродов в ЭИ-устройствах S - 14-20 мкм, а глубина лунки при этом оценивается в 10-15 мкм. Результаты расчета и экспериментальные измерения говорят о том, что скорость съема металла с эрозионного следа под действием плазменной струи близка к скорости движения фронта нагрева до температуры фазового перехода за счет теплопроводности. Закаленный металл, застывший в виде кольцевых валиков или отдельных островков-наплывов на не подвергнутой электрической эрозии поверхности, имеет слабое сцепление с материалом электрода, в связи с чем при последующих импульсах он отслаивается. Причиной слабого сцепления может явиться недостаточное количество запасенной в расплавленном металле тепловой энергии для расплавления поверхности электрода и образования единой кристаллической решетки. Это подтверждается также формой зависимости эрозии электрода от количества подаваемых импульсов (рис.4.6). С увеличением количества импульсов эрозия возрастает не по прямой линии, а по ломаной с различными наклонами. Участки с наибольшей крутизной (большой эрозионный износ) соответствуют отслаиванию валиков или отдельных островков-наплывов металла от электрода.  [c.170]

Отдельные составляющие твердой фазы теплозащитного материала могут находиться в кристаллическом либо в аморфном состоянии. Механизм переноса тепла в этих состояниях резко отличен. В свою очередь кристаллы подразделяются на проводники и диэлектрики в зависимости от того, что является основным носителем тепловой энергии электроны или колебания кристаллической решетки — фононы. В последнем случае проводимость определяется длиной свободного пробега, т. е. расстоянием, на котором сохраняется правильная структура кристаллической решетки или так называемый дальний порядок. Аморфные диэлектрики, у которых зерна кристаллов расположены хаотично, имеют меньший коэффициент теплопроводности по сравнению с кристаллическими диэлектриками, у которых структура более упорядочена. При 50 К коэффициент теплопроводности кристаллического кварца в 150 раз выше, чем у аморфного кварцевого стекла.  [c.75]

Это соотношение отличается от закона Видемана — Франца, описывающего электронную проводимость в металлах. В графите перенос тепловой энергии примерно на 99% происходит за счет колебаний кристаллической решетки, а электронная проводимость мала. Это положение подтверждается также тем, что добавка в графит бора изменяет его электрические свойства в широких пределах без заметного воздействия на теплопроводность.  [c.169]

Чем больше внутренних электронов, тем сильнее рассеиваются кристаллической решеткой движущиеся электроны. Поэтому теплопроводность металлов, принадлежащих к одной к той же подгруппе периодической системы элементов, должна, как правило, уменьшаться с увеличением атомного номера, поскольку при этом число валентных электронов не меняется, а число внутренних возрастает.  [c.6]


Посторонние атомы или ионы, внедренные в кристаллическую решетку, искажают силовое поле решетки и вызывают дополнительное рассеяние электронов. Вследствие этого теплопроводность сплавов должна быть меньше, чем теплопроводность каждого из исходных компонентов.  [c.6]

Коэффициент теплопроводности изменяется в весьма широких пределах в зависимости от природы тела, что объясняется различным механизмом переноса тепла, который имеет место в этих телах. Теплопроводность любого твердого вещества состоит из электронной проводимости, обусловленной движением свободных электронов, и так называемой ионной проводимости, связанной с тепловыми колебаниями кристаллической решетки. Удельный вес указанных проводимостей в различных телах различен.  [c.7]

В настоящее время отсутствует не только точное решение, но даже точное написание уравнения процесса переноса электричества в металлах и сплавах вследствие сложной зависимости его от характеристических параметров металла. Еще худшее положение в теории теплопроводности, так как процесс переноса тепла является еще более сложным. Имеющиеся решения обычно сводятся к установлению взаимосвязи между электропроводностью и теплопроводностью. Несмотря на различие методов, эта зависимость имеет один и тот же вид отношение коэффициента теплопроводности Я к произведению коэффициента электропроводности а на абсолютную температуру Т есть величина постоянная L. Кроме того, известно, что теплопроводность в металле осуществляется двумя способами электронами (электронная теплопроводность Хе) и упругими колебаниями атомов в узлах кристаллической решетки (фо-нонная теплопроводность Лф).  [c.115]

К металлам относятся вещества, обладающие хорошей электрической проводимостью, теплопроводностью, ковкостью, необходимой вязкостью, металлическим блеском, прочностью на разрыв, упругостью при деформации и рядом других свойств. В твердом состоянии они имеют кристаллическое строение. Все перечисленные свойства отражают внутреннее строение металла, заключающееся в том, что в металле электроны принадлежат всей кристаллической решетке, а не отдельным атомам или ионам. Благодаря такому расположению электронов возникают особые силы, обеспечивающие так называемый металлический тип связи атомов в решетке.  [c.394]

Медь — металл красного, в изломе розового цвета. Температура плавления 1083 °С. Кристаллическая решетка ГЦК с периодом а = 0,31607 нм. Плотность меди 8,94 г/см . Медь обладает высокими электропроводимостью и теплопроводностью Удельное электрическое сопротивление меди 0,0175 мкОм.м. В зависимости от чистоты медь изготовляют следующих марок МОО (99,99 % Си), МО (99,97 % Си), М1 (99,9 % Си), М2 (99,7 % Си), М3 (99,50 % Си). Присутствующие в меди примеси оказывают большое влияние на ее свойства.  [c.406]

Неметаллические бескислородные соединения. Карбид кремния Si (или карборунд) представляет собой соединения кремния с углеродом [21, 63, 67, J01 ]. Кроме модификации с гексагональной кристаллической решеткой ( - Si ) имеется модификация с кубической структурой типа алмаза (Р - Si ). Карбид кремния отличается высокой твердостью, теплопроводностью, огнеупорностью, специфическими электрическими и полупроводниковыми свойствами (табл. 9).  [c.142]

Радиационная устойчивость. Оксид бериллия в большей степени, чем какой-либо керамический материал, обладает способностью рассеивать нейтроны. Именно эта способность и определила применение оксида бериллия в атомных реакторах в качестве замедлителей нейтронов. Под воздействием радиоактивного излучения вследствие смещения ионов и возникновения дефектов в кристаллической решетке происходит изменение некоторых физических и теплофизических свойств ВеО. В результате облучения меняется гексагональная решетка, причем отношение осей с/а увеличивается с 1,622 до облучения до 1,627 после облучения, при этом наблюдается удлинение образца на 0,1—0,2%. Наиболее заметно снижаются у облученного ВеО теплопроводность (на 30—50%) и прочность (до 80% первоначальной). После термической обработки первоначальные свойства спеченного ВеО почти полностью восстанавливаются.  [c.136]

Всем кристаллам присуща анизотропия, т.е. неравномерность свойств по направлениям, определяемая различными расстояниями между атомами в кристаллической решетке. Наиболее сильно анизотропия выражена у металлов, имеющих асимметричное кристаллическое строение. В таких кристаллах в зависимости от направления существенно изменяются показатели физических свойств, прочностные характеристики, модуль упругости, термический коэффициент расширения, коэффициенты теплопроводности и электро-  [c.8]

Излучение лазера, сфокусированное специальными оптическими устройствами, может выделять на поверхности металла большое количество теплоты. Часть этой теплоты в виде квантов света поглощается электронами проводимости металла. Они передают свою энергию кристаллическим решеткам. Нагрев последующих слоев осуществляется вследствие теплопроводности. Особенностью светового нагрева является отражение части  [c.455]

Теплопроводность сплавов ухудшается при развитии внутренних напряжений третьего рода (в пределах кристаллической решетки), например в результате образования твердых растворов в сплавах с непрерывным рядом твердых растворов. При этом минимум теплопроводности имеет место примерно при равной концентрации компонентов. Теплопроводность металлов возрастает с увеличением их зерна [78]. Считают, что коэффициент теплопроводности аддитивен для многофазных сплавов.  [c.230]


В углеродисто и малолегированной стали аустенит устойчив только при температурах выше Ас1, немагнитеа вязок твердость НВ 180—220 обла дает пониженной теплопроводностью Кристаллическая решетка аналогична V—Ре.  [c.28]

Напряжения второго рода возникают вследствие неоднородности кристаллического строения и различия физико-механических свойств фаз и структур сплавов. Фазы, например в черных металлах, феррит, аустенит, цементит, графит обладают различной кристаллической решеткой их плотность, прочность и упругость, теплопроводность, теплоемкость, характеристики теплового расширения различные. Структуры, представляющие собой смесь фаз, например перлит в сталях, а также закалочные структуры, в свою очередь, обладают отличными от смежных структур свойствами. Различие кристаллической ориентации зерен металла обусловливает анизотропию физико-механических свойств микрообъемов металла. В результате совместного действия этих факторов возникают внутри-зеренные и межзеренные напряжения еще в нронессе первичной кристаллизации и при последующих прев эащениях во время охлаждения. При высоких температурах напряжения уравновешиваются благодаря пластичности материала. Однако они проявляются в низкотемпературной области, возникая при фазовой перекристаллизации и выпадении вторичных и третичных фаз (фазовый наклеп), при каждом общем или местном повышении температуры (из-за различия теплопроводности и коэффициентов линейного расширения структурных составляющих), приложении внешних нагрузок (из-за различия и анизотропии механических свойств), а также нрп наклепе, наступающем в результате общего или местного перехода напряжений за предел текучести материала.  [c.152]

С колебаниями атомов кристаллической решетки связаны многие физические явления в твердых телах — теплоемкость, теплопроводность, термическое расширение, электропроводность и др. Теория коле баннй атомов трехмерного кристалла крайне сложна. Поэтому мы сначала рассмотрим распространение упругих волн в однородной упругой струне и в кристаллах без учета их дискретной структуры. Затем рассмотрим колебание атомов в одно-ме13Ной решетке. После этого полученные результаты обобщим для случая трехмерной кристаллической решетки.  [c.141]

При рассмотрении колебаний атомов кристаллической решетки а также теплоемкости твердых тел, связанной с этими колебания ми, предполагалось, что силы, действующие между атомами, упру гие и атомы совершают гармонические колебания с малыми ам плитудами около их средних положений равновесия. Это позволи ло разделить весь спектр колебаний на независимые моды, рассчи тать в этом приближении тепловую энергию кристалла и получить формулу для теплоемкости, хорошо описывающую ее поведение при низких и высоких температурах. Однако для объяснения ряда явлений, таких, например, как тепловое расширение твердых тел и теплопроводность, сделанных предположений уже недостаточно и необходимо принимать во внимание тот факт, что силы взаимодействия между атомами в решетке не совсем упругие, т. е. они зависят от смещения атомов из положения равновесия не линейно, а содержат ангармонические члены второй и более высоких степеней, влияние которых возрастает с ростом температуры.  [c.183]

При объяснении явления теплопроводности мы уже не можем считать, что атомы совершают строго гармонические колебания, распространяющиеся в кристаллической решетке в виде системы не взаимодействуюш,их между собой упругих волн. Такие волны распространялись бы в кристалле свободно без затухания, следовательно, имели бы неограниченный свободный пробег тепловой поток, даже при малых градиентах температуры, мог бы существовать неопределенно долго, прежде чем установилось бы тепловое равновесие, а теплопроводность была бы бесконечна.  [c.188]

Рений (Re) имеет плотность 21,02 г/см , температуру плавления 3180°С, кипения 5627°С, теплопроводность при 20°С составляет 170 Вт/(м -К), модуль нормальной упругости 469 МПа, твердость 2.50 НВ. При 90°С рений переходит в сверхпроводящее состояние. Он расположен в V11A группе Периодической системы элементов Д. И. Менделеева под номером 75, имеет весьма тяжелую массу, равную 186,31, кристаллическая решетка гексагональная, плотноупакованная (ГП), атомный радиус л = 0,138 hmi. Параметры кристаллической решетки и = 0,2758 нм, с = 0,45 нм, с а = = 1,615  [c.96]

В металлах перенос теплоты осуществляется главным образом вследствие диффузии свободных электронов. Доля упругих колебании крпсталлнческо решетки в общем процессе переноса теплоты незначительна из-за огромной иодвижности электронов ( электронного газа ). По этой же причине теплопроводность металлов значительно выше диэлектриков и других веществ. При повышении температуры колебание кристаллической решетки не только способствует переносу энергии, но в то же время создает помехи движению электронного газа , что сказывается на электро-и теплопроводности металлов. Теплопроводность чистых металлов (кроме алюминия) с повышением температуры уменьшается, особенно резко теплопроводность снижается при наличии примесей, что объясняется увеличением структурных неоднородностей, которые препятствуют направленному движению электронов и приводят к их рассеиванию. В отличие от металлов теплопроводность сплавов с возрастанием температуры увеличивается.  [c.64]

Когда подобраны активный ион и матрица, следует рассмотреть диаграмму состояний, которая показывает, что получается в результате взаимодействия двух (и более) веществ. В твердотельной электронике в качестве активной среды применяют сложные оксиды (например, 5 А12О,, X 3 У,Оз — гранат), так как они обладают высокими прозрачностью в нужном диапазоне длин волн, теплопроводностью и температурой плавления, а также отсутствием взаимодействия с агрессивными средами. При выборе оптимального состава активной среды необходимо учитывать изоморфное замещение с минимальным искажением кристаллической решетки матрицы ее ионов ионами редкоземельного элемента и метод выращивания монокристаллов.  [c.58]

Параллельно под руководством И. В. Курчатова проводились исследования, в процессе которых открыты весьма интересные явления, имевшие важнейшее значение для работы реакторов и понимания действия излучения на вещество. При изучении физических свойств графита в условиях интенсивного нейтронного облучения были обнаружены значительные их изменения уменьшение теплопроводности и электропроводности,, изменение объема и механической прочности. Далее было установлено, что при отжиге облученного графита выделяется скрытая энергия, запасенная кристаллической решеткой. Эти исследования позволили выяснить природу радиационных нарушений в графите и решить ряд практических задач, возникших Т1ри проектировании и эксплуатации ядерных реакторов с графитовым замедлителем.  [c.5]

На горячих участках твердого и жидкого металлического тела электроны обладают большей средней энергией, чем на холодных. Легко переходя в области с низкой температурой, электроны вносят добавочную энергию и повышают температуру. Большой подвижностью общих электронов объясняют высокую электро- и теплопроводность металлов. Следовательно, с увеличением валентности теплопроводность металлов должна расти и для металлов с однотипной кристаллической решеткой должна быть периодической функцией порядкового номера со-01ветствующих химических элементов. На опыте это и наблюдается. Например, для натрия, магния и алюминия с числом валентных электронов 1, 2 и 3 коэффициент теплопроводности при 325" К составляет соответственно 100,8 135,4 и 178 ккал м-ч-град). В отличие от металлов в телах с ионной к ковалентной связью главную роль играет теплопроводность основной решетки, вызванная колебаниями ее узлов. Такие тела относительно мало теплопроводны.  [c.6]


ТЕПЛОЕМКОСТЬ (решеточная — теплоемкость, связанная с поглощением теплоты кристаллической решеткой удельная— тепловая характеристика вещества, определяемая отношением теплоемкости тела к его массе электронная — теплоемкость металлов, связанная с поглощением теплоты электронным газом) ТЕПЛООБМЕН (излучением осущесгв-ляется телами вследствие испускания и поглощения ими электромагнитного излучения конвективный происходит в жидкостях, газах или сыпучих средах путем переноса теплоты потоками вещества и его теплопроводности теплопровод-ноетью проходит путем направленного переноса теплоты от более нагретых частей тела к менее нагретым, приводящего к выравниванию их температуры) ТЕПЛОПРОВОДНОСТЬ (решеточная осуществляется кристаллической решеткой стационарная характеризуется неизменностью температуры различных частей тела во времени электронная — теплопроводность металлов, осуществляемая электронами проводимости) ТЕПЛОТА (иенарения поглощается жидкостью в процессе ее испарения при данной температуре конденсации выделяется насыщенным паром при его конденсации образования — тепловой эффект химического соединения из простых веществ в их стандартных состояниях плавления поглощается твердым телом в процессе его плавления при данной температуре сгорания — отношение теплоты, выделяющейся при сгорании топлива, к объему или массе сгоревшего топлива удельная — отношение теплоты фазового перехода к массе вещества фазового перехода — теплота, поглощаемая или выделяемая при фазовом переходе первого рода) ТЕРМОДЕСОРБЦИЯ — удаление путем нагревания тела атомов и молекул, адсорбированных поверхностью тела ТЕРМОДИНАМИКА — раздел физики, изучающий свойства макроскопических физических систем на основе анализа превращений без обращения к атомно-молекулярному строению вещества  [c.286]

Относительно этих фактов высказывалось предположение, что уменьшение теплопроводности углеродистых сталей после закалки вызывается увеличением содержания примесей в твердом растворе (в который они переходят при закалке), а теплопроводность аустенита низка потому, что "1--железо обладает большей способностью растворять примесные элементы, чем а-железо. Однако теплопроводность и чистого железа зависит от строения атомной решетки железа. Согласно ряду достоверных исследований, теплопроводность чистого железа имеет минимум в области превращения а- в у-железо (900°), т. е. для объемноцентрирован-ной решетки железа характерно уменьшение теплопроводности с температурой, а для плотной гранецентрированной упаковки атомов железа характерен положительный температурный коэффициент теплопроводности. Таким образом, для чистого железа, влияние на теплопроводность которого различной растворимости примесей в модификациях решетки вряд ли следует принимать во внимание, заметна связь между температурным коэффициентом теплопроводности и строением кристаллической решетки железа.  [c.122]

Отжиг и отпуск, снимая напряжения кристаллической решетки и способствуя выделению растворенных примесей, обычно вызывают увеличение теплопроводности и электропроводности. Закалка, фиксируя высокотемпературную структуру и состав твердого раствора при низких температурах, обычно способствует уменьшеникр проводимости тепла и электричества. Однако здесь имеются некоторые особенности, на которые следует обратить внимание.  [c.123]

Рассмотрим причины высокой теплопроводности металлов. Ионы в узлах кристаллической решетки совершают колебательные движения. Средняя амплитуда этих колебаний определяет TeMneipa-rypy металла. Чем выше температура, тем больше средняя амплитуда колебаний. В неметаллах в передаче тепловой энергии от одного объема к другому принимают участие только ионы. В металлах, кроме ионов, в процессе передачи тепла участвует также легкоподвижный электронный газ. Поэтому скорость передачи тепла в металлах значительно выше, чем в неме- таллах.  [c.12]


Смотреть страницы где упоминается термин Теплопроводность кристаллической решетки : [c.391]    [c.188]    [c.219]    [c.6]    [c.60]   
Смотреть главы в:

Введение в физику твердого тела  -> Теплопроводность кристаллической решетки

Теория твёрдого тела  -> Теплопроводность кристаллической решетки



ПОИСК



Кристаллическая решетка

Кристаллические

Фонон-фоиониое взаимодействие. Тепловое расширение и теплопроводность кристаллической решетки



© 2025 Mash-xxl.info Реклама на сайте