Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Температуры флуктуации

Для описания временного поведения флуктуаций в системе можно в качестве независимых переменных использовать либо давление и энтропию, либо плотность и температуру. Каждая пара имеет свои достоинства и недостатки. Сама форма спектра наводит на мысль выбрать давление и энтропию, поскольку флуктуации этих величин приводят к раздельным модам в спектре. Как мы увидим ниже, для простых жидкостей флуктуации давления и энтропии являются независимыми. Флуктуации же плотности и температуры включают как диффузионную, так и фононные моды. Однако в силу очень слабой зависимости диэлектрической проницаемости от температуры флуктуациями последней обычно можно пренебречь, как это сделано в выражении (39). Исключение, возможно, составляет вода. Измерения отношения интенсивностей релеевской и бриллюэновских компонент для воды 1141, 49] показывают, что следует учитывать флуктуации температуры. Впрочем, ситуация остается неясной, поскольку результаты измерений полной интенсивности даже для воды можно удовлетворительно объяснить одними флуктуациями плотности, о чем упоминалось в 2, и. 2.  [c.126]


Водяной пар является средой, которая требует определенного изучения. В установках, вырабатывающих пар, циклические напряжения термического, а не механического, происхождения возникают обычно за счет изменения температур. Флуктуация локальных напряжений может возникать вблизи участков входа выводных труб в цилиндрических котлах, где питающая вода изменяет свою температуру.  [c.291]

Отсюда видно, что, в отличие от идеального газа, в жидкости (а также в сжатом газе, не подчиняющемся уравнению состояния Клапейрона) средний квадрат флуктуации плотности зависит не только от плотности, но и от температуры. Флуктуации плотности <а значит, и рассеяние света) становятся очень большими при приближении к критической точке данного вещества, так как при атом dp/dv стремится к нулю. Этим объясняется очень сильное рассеяние света веществом, находящимся в состоянии, близком к критическому,—так называемая критическая опалесценция . Это явление было открыто задолго до развития Смолуховским и Эйнштейном теории флуктуаций, но причина его была неясна вплоть до появления их работ.  [c.271]

Однако для обычных систем, состоящих из большого числа частиц, наиболее вероятное направление процесса практически совпадает с абсолютно неизбежным. Поясним это на следующем примере. Пусть имеется равновесный газ. Выделим в нем определенный объем и посмотрим, возможно ли в этом объеме самопроизвольное увеличение давления. Из-за теплового движения чис ]о молекул в объеме непрерывно флуктуирует около среднего значения JV. Одновременно флуктуируют и температура, и давление, и внутренняя энергия, и т, д. Теория показывает, что относительная величина этих флуктуаций обратно пропорциональна корню квадратному из числа молекул в выделенном объеме, поэтому Др/р=1/ //У,  [c.28]

Как указывалось ранее (гл. I), в любом веществе происходит флуктуация тепловых колебаний, в результате которой отдельные атомы приобретают значительно большую энергию, чем средний уровень энергии атомов, характеризуемый температурой данного тела. Эти атомы могут покидать равновесные положения в узлах решетки и перемещаться в междоузлиях, оставляя места в узлах решетки незанятыми.  [c.320]

Теплообмен между газом и твердой частицей определяется в основном средней разностью их температур. Влияние флуктуации температуры можно учесть соответствующими характеристическими параметрами.  [c.298]

Равновесное содержание таких дефектов возрастает с повышением температуры, причем фактическое содержание может не совпадать с равновесным из-за флуктуации внутренней энергии.  [c.468]


Кинетика диффузионного превращения. Диффузионное превращение происходит по механизму образование зародыша и рост новой фазы . Этот тип превращения подчиняется тем же общим закономерностям, что и процессы кристаллизации жидкости (см. гл. 12). Существуют некоторые особенности, связанные с твердым состоянием исходной и образующейся фаз и относительно низкой температурой превращений. Образование зародышей критических размеров сопровождается увеличением свободной энергии системы, равным /з поверхностной энергии зародышей (остальные две трети компенсируются уменьшением объемной свободной энергии). Возникновение зародышей обеспечивается в результате флуктуационного повышения энергии в отдельных группах атомов. При превращении в сплавах образуются фазы, отличающиеся по составу от исходной, поэтому для образования зародыша необходимо также наличие флуктуации концентрации. Последнее затрудняет образование зародышей новой фазы, особенно если ее состав сильно отличается от исходной. Другой фактор, затрудняющий образование зародыша новой фазы, связан с упругой деформацией фаз, которая обусловлена различием удельных объемов исходной и образующейся фаз. Энергия упругой деформации увеличивает свободную энергию и, подобно поверхностной энергии, вносит положительный вклад в баланс энергии. Критический размер зародышей и работа их образования уменьшаются с увеличением степени переохлаждения (или перегрева) по отношению к равновесной температуре Гр, а также при уменьшении поверхностной энергии зародыша.  [c.493]

Кинетика выделения фаз при распаде твердых растворов. Распад с выделением фаз происходит по механизму образования и роста зародышей в соответствии с общими закономерностями этого механизма. Помимо затрат выделившейся объемной свободной энергии на приращение поверхностной энергии и компенсацию энергии упругих деформаций, образование зародышей тормозится еще и необходимостью больших флуктуаций концентрации. Поэтому для начала распада требуются большие степени переохлаждения (пересыщения) и длительные выдержки при соответствующих температурах. В то же время при данных температурах должны заметно развиваться процессы диффузии растворенных компонентов. Общая скорость образования новой фазы в зависимости от степени переохлаждения описывается кривой с максимумом. Чем больше степень переохлаждения, тем меньшие размеры имеют устойчивые зародыши, способные к росту. В координатах температура — время процесс описывается С-образной кривой. В реальных металлах возникновение зародышей облегчается наличием дефектов кристаллического строения.  [c.497]

Идея Смолуховского о флуктуациях плотности, которые имеют место при любых, отличных от нуля температурах среды, или о причине светорассеяния легла в основу статистической теории рассеяния света, развитой в дальнейшем разными авторами.  [c.311]

Рассеяние света в жидкостях. В 1910 г. А. Эйнштейн, исходя из идеи Смолуховского, дал количественную термодинамическую теорию рассеяния света в жидкости, учитывающую ее сжимаемость. Эйнштейн установил что интенсивность рассеянного света определяется кроме длины падающей световой волны абсолютной температурой и физическими постоянными среды — сжимаемостью, зависимостью оптической диэлектрической постоянной (обусловленной только световым полем, т. е. квадратом показателя преломления), от плотности. Эйнштейн, полагая, что рассеивающий объем и имеет форму куба, представляя флуктуацию оптической диэлектрической постоянной в виде  [c.318]

Теперь, в случае молекулярного рассеяния света, мерой оптической неоднородности служит величина (Ае) . Если считать, что флуктуации Ае определяются только двумя независимыми термодинамическими переменными — плотностью и температурой или давлением р и энтропией 5, то можно написать  [c.585]


Флуктуации давления, энтропии или температуры, концентрации и анизотропии возникают и рассасываются во времени. Разные флуктуации образуются и изменяются, следуя различным законам.  [c.592]

Действительно, временные изменения оптических неоднородностей, вызванных флуктуациями энтропии или температуры (см. (160.2)), подчиняются уравнению температуропроводности, решение которого в данном случае дает экспоненциальную зависимость от времени. Следовательно, в этом случае функция, модулирующая амплитуду световой волны, экспоненциально зависит от времени, и в рассеянном свете возникнет спектральная линия с максимумом на частоте первоначального света — центральная компонента — с полушириной  [c.595]

При сильном электрон-фононном взаимодействии область искажений может быть соизмерима с параметром а. Этот случай соответствует образованию полярона малого радиуса. Из-за сильного взаимодействия электрона с решеткой ПМР оказывается очень стабильным. За счет тепловых флуктуаций ПМР перемещается в кристалле прыжками , из одного полол<ения в другое. Если к диэлектрику прилол ено электрическое поле, то прыжки ПМР становятся направленными, т. е. возникает прыжковая проводимость. Подвижность ПМР чрезвычайно мала. Ее зависимость от температуры описывается выражением  [c.274]

Рассеяние света наблюдается не только в мутной среде, но и в чистом веществе, в котором нет никаких посторонних взвешенных частиц, т. е. на первый взгляд совершенно однородное вещество рассеивает свет, причем тем больше, чем выше температура среды. Объяснить это явление можно следующим образом. В совершенно очищенном от посторонних примесей веществе возникают оптические микроскопические неоднородности, вызывающие рассеяние света. Эти неоднородности представляют собой флуктуации плотности, которые вы-  [c.111]

Ярким примером молекулярного рассеяния является критическая опалесценция—явление интенсивного рассеяния света при критической температуре чистого вещества, при которой сжимаемость среды очень велика (теоретически (Зи/йр) —>оо). В этих условиях легко могут образоваться в небольщих объемах заметные отступления от средней плотности, так как большая сжимаемость означает, что работа, необходимая для образования случайного скопления или разрежения молекул, невелика, а энергии молекулярного теплового движения достаточно для образования заметных флуктуаций в малых объемах. На эту причину нарушения однородности среды, приводящую к интенсивному рассеянию, впервые обратил внимание Смолуховский (1908).  [c.118]

Другим примером интенсивного молекулярного рассеяния является рассеяние, возникающее при смешении некоторых жидкостей. В обычных условиях в растворах распределение одного вещества в другом происходит равномерно, так что они представляют собой среду, в оптическом отношении не менее однородную, чем чистые жидкости. Это означает, что распределение концентрации растворенного вещества во всем объеме одинаково и флуктуации концентрации очень малы. Однако существует много комбинаций веществ, которые при комнатной температуре растворяются друг в друге очень плохо, но при повышении температуры их растворимость резко возрастает н при некоторой критической температуре они способны смешиваться в любых соотношениях. Критическая температура смешения характеризует такое состояние с.меси, когда легко осуществимы местные отступления от равномерного распределения, т. е. нарушения оптической однородности, приводящие к интенсивному рассеянию света.  [c.119]

Интенсивность рассеяния зависит от степени нарушения оптической однородности. Чем сильнее нарушения, т. е. чем сильнее изменения показателя преломления п при изменении плотности р (чем больше дп др), тем интенсивнее рассеяние. В свою очередь, изменения плотности (флуктуации плотности) тем значительнее, чем больше вызывающая их энергия теплового движения кТ к — постоянная Больцмана Т—абсолютная температура) и сильнее сжимаемость вещества [р = — (1/н) (с(и/с(р)]. Расчеты показывают, что интенсивность света /, рассеиваемого единицей объема среды благодаря флуктуациям плотности, пропорциональна величине  [c.119]

Наличие классических флуктуаций связано с дискретным строением излучающего тела, состоящего из огромного числа светящихся частиц, непрерывно взаимодействующих между собой. Это взаимодействие, связанное с их тепловым движением, может либо стимулировать, либо гасить свечение отдельных центров, что будет приводить к развитию статистических флуктуаций в слабом световом потоке. Такие флуктуации сильно зависят от температуры, быстро возрастая с ее ростом.  [c.164]

Квантовые флуктуации объясняются независимостью спонтанных актов излучения отдельных молекул. Квантовые флуктуации не зависят от температуры и проявляются при любом ослаблении энергии исследуемого светового потока, регистрируемого приемником. В общем случае классические и квантовые флуктуации накладываются друг на друга и наблюдатель видит их суммарный эффект.  [c.164]

Вавилов показал, что для видимого света, если температура источника не превышает 3000 К (обычно используемые источники света), классические флуктуации исчезающе малы по сравнению с квантовыми и ими можно пренебречь. При этом квантовые флуктуации могут быть обнаружены лишь при сильном ослаблении исследуемого потока, когда в приемник за единицу времени попадает небольшое число фотонов.  [c.164]

Флуктуации в равновесном фотонном газе. Для равновесного фотонного газа, имеющего температуру Т, вероятность W,. описывается выражением (см. (2.4.22))  [c.295]

Случайные флуктуации силы тока, питающего дуговой или искровои разряд, концентраций атомов вещества пробы в плазме и другие причины могут привести к изменению температуры разряда.  [c.42]


Вычислим критический радиус капли для наступления конденсации пара. Предположим, что в результате происшедшей флуктуации в старой фазе при температуре Т и давлении р образовался очаг новой фазы, например в паре — капелька жидкости радиуса R. Энергия Гиббса пара до образования капли равна  [c.230]

Таким образом, принимая в соответствии с этим определением понятия большая (меньш ая) температура i/>0, мы выбираем положительную температуру Т. Такой выбор знака Т приводит по второму началу к тому, что при тепловом контакте двух тел теплота самопроизвольно переходит от тела с большей температурой к телу с меньшей температурой. Эго позволяет легко понять физический смысл условий устойчивости (6.16) или (6.17). Действительно, предположим, что при 7 >0 К условие Ср>0 не выполнялось бы и вместо него было бы Ср<0. Тогда при флуктуациях, вызывающих отдачу системой теплоты термостату, температура  [c.108]

Неравновесные флуктуации наблюдаются либо в системах, далеких от равновесия, когда время наблюдения меньше времени установления термодинамического равновесия, либо при наличии внешних воздействий (например, разности температур, электрических напряжений или давлений на границах системы), поддерживающих вынужденные отклонения от равновесного состояния . Неравновесные флуктуации рассматриваются в кинетической теории неравновесных систем.  [c.292]

Эта величина называется эквивалентной шумовой температурой флуктуаций спонтанной эмиссии активного материала. При /=1010 гц и 7 8 = 4°К кЦкТз=0, 2, так что преобладает первое условие.  [c.148]

К настоящему времени изучены флуктуации давления и температуры. Флуктуации влажности исследованы очень чало, между тем как попытки построить теорию рассегаия без уч а флуктуаций влажности приводят к огромному расхождению с опытными данными.  [c.9]

На рис. 7.1 приведены величины ДHv для значений 2Ь1к в области от 1 до 100. Наиболее поразительным на рис. 7.1 является наложение больших флуктуаций Ai/v на плавно меняющуюся функцию АПу. Величина этих флуктуаций обратно пропорциональна ширине полосы V, и поэтому флуктуации с увеличением частоты уменьшаются значительно медленнее, чем уменьшается Ai/v. Из рис. 7.1 ясно, что для встречающихся в практике оптической термометрии размеров полостей, длин волн и температур отличия от закона Планка малы. Например, для длины волны 1 мкм и размера полости 1 мм получаем Ai/v = 2,5 10 , что пренебрежимо мало. Однако, если используется очень малая ширина полосы, среднеквадратичная флуктуация (бi/v) перестает быть незначительной. В современной высокоточной оптической пирометрии использование ширины полосы в 1 нм и менее является обычным. Это приводит к значениям (6Н ) = 5 10 или 10 , которыми пренебречь  [c.316]

При высоких (закалочных) скоростях охлаждения и степенях переохлаждения в некоторых сплавах типа твердых растворов замещения (алюминиевых, медных, никелевых и др.) образуются особого рода метастабильные фазы, представляющие собой локальные зоны с повышенной концентрацией легирующего элемента. Из-за различия в атомных диаметрах металла-растворителя и легирующего элемента скопление последнего вызывает местное изменение межплоскостных расстояний. Эти зоны называют зонами Гинье — Престона (ГП). Учитывая, что тип решетки не изменяется, зоны ГП часто называют предвыделениями . Они имеют форму тонких пластин или дисков и размеры порядка мкм. Границы их раздела полностью когерентны, поэтому поверхностная энергия зон пренебрежимо мала. У зон малого размера энергия упругих искажений решетки также мала, поэтому энергетический барьер для их зарождения весьма невелик. Зоны ГП зарождаются гомогенно на концентрационных флуктуациях. Особенность образования зон ГП — быстрота и безынкубационность их возникновения даже при комнатной и отрицательной температурах. Это обусловлено повышенной диффузионной подвижностью легирующих элементов, которая связывается с пересыщением сплава вакансиями при закалке.  [c.498]

Если переохлаждение невелико, то критический радиус капли, определяемый формулой (6.18), велик, и требуется очень большая флуктуация плотности, чтобы конденсация началась. При дальнейшем же увеличении давления или понижении температуры величина критического радиуса уменьшается. Поэтому вероятность соответствующей флуктуации увеличивается. Тем самым увеличивается.леро-ятность начала перехода. Понятно, что капля критического радиуса.  [c.135]

Наиболее интенсивно изучается фазовый переход между магнитным и немагнитным состояниями вещества. Во многих веществах имеются элементарные атомные магниты, которые стремятся расположиться параллельно друг другу. Если тепловые флуктуации достаточно малы, такая тенденция приводит к макроскопическому (наблюдаемому) упорядочиванию, которое и называется магнетизмом. Этот порядок с ростом температуры становится все более нечетким, а в точке Кюри (названной так в честь Пьера Кюри - мужа Марии Кюри) порядок превращается в беспорядок. Для железа это происходит при температуре 770 С. Выше этой температуры есть только намек на магнетизм на определенных расстояниях и в течение определенных проме-xgrn os времени эшмент вые магниты могут сохранять упорядоченность,  [c.83]

Ч го же происходит, когда те.мпература больше нулу, но не бесконечна Рассмотрим вначале низкие температуры. Здесь также есть макроскопический порядок, но он не вполне идеален, так как некоторые из атомных магнитов отклоняются от выделенной линии из-за тепловых флуктуаций. Сравнивая различные масштабы, мы замечаем рачличня. Так, например, флуктуации можно наблюдать при нанометровом масштабе, но не дальше.. В микро-метрово.м масштабе они незаметны, и магнит выглядит точно так же, как и при температуре абсолютного нуля. То есть огрубление шкалы от наномет-роб до микрометров приводит к эффективному понюкению температуры.  [c.85]

Подчеркнем в то же время, что с разрушенной флуктуациями структурой р (г) (т. е. в которой стало уже р = onst) среда отнюдь не становится обычной жидкостью. Принципиальное отличие состоит в свойствах корреляционной функции флуктуаций плотности в различных точках пространства (бр (г ) бр (гг)). В обычной жидкости эта функция изотропна и убывает при г = Га— -> -> 00 по экспоненциальному закону (см. V, 116). В системе же с р = р (г) корреляционная функция остается (при увеличении размеров тела) анизотропной и убывает при г -> оо лишь по медленному степенному закону, причем тем медленнее, чем ниже температура (см. V, 138).  [c.229]

Другой легко осуществимый случай молекулярного рассеяния света наблюдается при исследовании некоторых растворов. В растворах мы имеем дело со смесью двух (или более) сортов молекул, которые характеризуются своими значениями поляризуемости а. В обычных условиях распределение одного вещества в другом происходит настолько равномерно, что и растворы представляют, собой среду, в оптическом отношении не менее однородную, чем обычные жидкости. Мы можем сказать, что концентрация растворенного вещества во всем объеме одинакова и отступления от среднего флуктуации концентрации) крайне малы. Однако известны многочисленные комбинации веществ, которые при обычной температуре лишь частично растворяются друг в друге, но при повышении температуры становятся способными смешиваться друг с другом в любых соотношениях. Температура, выше которой наблюдается такое смешивание, называется критической температурой смешения. При этой температуре две жидкости полностью смешиваются, если их весовые соотношения подобраны вполне определенным образом. Так, например, сероуглерод и метиловый спирт при 40 °С дают вполне однородную смесь, если взято 20 частей по весу сероуглерода и 80 частей метилового спирта. При более низкой температуре растворение происходит лишь частично, и мы имеем две ясно различимые жидкости раствор сероуглерода в спирте и раствор спирта в сероуглероде. При температурах выше 40 °С можно получить однородную смесь при любом весовом соотношении компонент. С интересующей нас точкй зрения критическая температура смещения характеризует такое состояние смеси, при котором особенно легко осуществляется местное отступление от равномерного распределения. Следовательно, при критической температуре смешения следует ожидать значительных флуктуаций концентрации и связанных с ними нарушений оптической однородности. Действительно, в таких смесях при критической температуре смешения имеет место очень интенсивное рассеяние света, легко наблюдаемое на опыте.  [c.583]


Во многих диэлектоиках имеются слабосвязанные ионы. Это могут быть ионы, находящиеся в междоузлиях, или ионы, локализованные вблизи структурных дефектов. За счет тепловых флуктуаций ионы могут переходить из одних положений равновесия в другие, преодолевая потенциальные барьеры. При отсутствии внешнего электрического поля такие перемещения являются случайными и диэлектрик остается неполяризованным. Под действием поля изменяется потенциальный рельеф и появляется некоторое преимущественное перемещение ионов в дефектных областях. Так возникает поляризация. В зависимости от особенностей структуры диэлектрика и типа дефектов время релаксации ионной тепловой поляризации при комнатной температуре колеблется от Ю до Ю- с.  [c.284]

Действительно, предположим, что при Т>0 К условие Ср>0 не выполнялось бы и вместо него было бы Ср<0. Тогда при флуктуациях, вызывающих отдачу системой теплоты термостату, температура этой системы повысилась бы, что привело бы, в свою очередь, к дальнейшей отдаче теплоты (так как Г>0 К) и система, следовательно, при Ср<0 не могла бы быть в устойчивом равновесии. Аналогично, если вместо dpldV)j<0 будет др1дУ)т>0, то это означает, что даже при небольшом флуктуационном уменьшении объема давление в системе уменьшится. Это вызвало бы дальнейшее сжатие объема и т. д. Следовательно, система находилась не в равновесии.  [c.130]

Однородная система (фаза) в заданном объеме может существовать в некотором интервале температур, имея свободную энергию, большую свободной энергии неоднородной системы из тех же частиц. Такое состояние фазы является метастабильным. С течением времени система перейдет в состояние с минимальным значением свободной энергии, т. е. станет неоднородной. Однако этот переход затрудняется поверхностным эффектом, т. е. тем, что образование в данной фазе объектов малых размеров другой фазы из-за поверхностной свободной энергии этих объектов приводит к увеличению свободной энергии системы и поэтому переход термодинамически невыгоден. Например, начало конденсации пара затруднено по той причине, что при образовании в паре малых (радиуса Л) капель жидкости их поверхностная свободная энергия Л, пропорциональная растет быстрее, чем уменьшается их объемная свободная энергия, пропорциональная Поэтому появление малых капель оказывается термодинамически невыгодным и конденсация задерживается. При больших же каплях, начиная с некоторого Л = У кр, наоборот, объемный член уменьшается быстрее, чем растет поверхнос1Ный, и конденсация становится возможной возникшая в результате флуктуаций такая капля будет расти.  [c.229]


Смотреть страницы где упоминается термин Температуры флуктуации : [c.32]    [c.33]    [c.277]    [c.50]    [c.311]    [c.318]    [c.322]    [c.111]    [c.837]    [c.99]    [c.219]   
Температура и её измерение (1960) -- [ c.224 ]



ПОИСК



Оценка поверхностной температуры звезды . Флуктуации числа фотонов

Флуктуации

Флуктуации объема и плотности , 26.3. Флуктуации температуры, энтропии и давления

Флуктуации температуры, давления, объема, плотности, энергии, концентрации



© 2025 Mash-xxl.info Реклама на сайте